
Circuit Lower-bounds

Lecture 24
Weak circuits are indeed weak
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Circuit Lower-bounds

Today:

PARITY ∉ AC0 

Two different proofs! (Latter generalizes to ACC0)

CLIQUE cannot be decided by poly-sized monotone 
circuits

(Only sketches/partial proofs. See textbook or lecture-
notes from linked courses)
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PARITY ∉ AC0

Recall AC0

Poly size, constant depth (unbounded fan-in)

Today, non-uniform AC0

How powerful can AC0 be?

Recall PARITY

How shallow can a poly-sized circuit family for 
PARITY be?
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A Switching Argument

Suppose constant depth (say ≤ d, d being minimal) circuits 
for PARITY

Plan for contradiction: Show depth d-1 circuits for every 
input size n: start from depth d circuit for a larger n’, 
and construct one for the smaller n. 

By “restricting” to n inputs

And showing how to rewrite with depth d-1, staying 
poly sized
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AND-OR trees

Any function can be written as depth 2 AND-OR tree or an 
OR-AND tree

But exponential size

Any circuit can be rewritten as an AND-OR tree (each leaf 
has a literal, possibly shared with other leaves)

If polynomial size and constant depth (AC0),  stays so
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Switching
In an AND-OR tree, if bottom 
two levels can be replaced by 
equivalent two levels with 
switched AND-OR order, and 
polynomial size

A depth d AC0 circuit 
changes into depth d-1

When is switching possible?

Distributivity

But may increase size to 
exponential

a

b

ba

a
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Switching Lemma
A modified function has a switched 
circuit

Size stays polynomial even after 
switching

Computes same function as before 
but with most variables already set 
to specific values (a “restriction” of 
the original function)

Still function of many variables

How to find such a modified function

Random restriction

a

b

ba

a

c’

c

fix bits with 
prob. 1-n-2/3

a

b

c’’

c’
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Switching Lemma

Random restriction. With positive probability:

can switch bottom levels, staying poly sized 

with high probability for each node above the 
leaf level (switching lemma); then union bound

computes PARITY for n2/3 variables (Chernoff)

Depth d-1, poly-sized circuit family for PARITY

Contradiction: started with minimal depth!
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Razborov-Smolensky
An alternate proof that PARITY ∉ AC0

Generalizes to ACC0(p) for odd primes p

Plan:

Given a circuit C, can find a polynomial s.t.

Polynomial has “low degree”

Polynomial agrees with C on most inputs

Show that no low degree polynomial can agree with 
PARITY on that many inputs
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Polynomial from Circuit
Assume circuit has OR, NOT gates

Replace gates by polynomials (over some field), and 
compose together into one big polynomial

If we do this faithfully, degree will be large

Large enough to evaluate PARITY

So allow polynomials which err on some inputs

At each gate will pick polynomial from a distribution

Composed polynomial will be good with prob. > 0
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Polynomials for OR, NOT 
and PARITY

Want that PARITY is complex (high degree) while OR, NOT are 
simple (low degree)

If over GF(2), PARITY is just sum (degree 1)!

We will work over GF(q), q>2

PARITY = [1-(1-2x1)(1-2x2)....(1-2xn)]/2  (if 2≠0)

NOT = 1-x. 

OR = 1- (1-x1)...(1-xn)

But high degree! Need OR to be simple!
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Approximate Polynomials
Consider (random) polynomial p(x1,...,xn) = (a1x1 +...+ anxn)q-1 
where ai are picked at random from the field

If OR(x1,...,xn)=0 then p(x1,...,xn)=0

If OR(x1,...,xn)=1

Pra[ a1x1 +...+ anxn = 0 ] ≤ 1/q   (why?)

Recall in GF(q), uq-1 = 1 unless u=0 (since non-0 elements 
form a group of order q-1 under multiplication)

i.e. Pra[ (a1x1 +...+ anxn)q-1 = 1 ] ≥ 1-1/q

Can boost probability by doing (exact) OR t times: deg < qt
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Approximate Polynomials

OR: a random polynomial of degree O(log 1/ε), such that it is 
correct with prob. > 1-ε

Composing gate-polynomials into circuit-polynomial

Substitute child polynomials as variables

Degree multiplies: depth d circuit gives deg O(log 1/ε)d

Error adds (by union bound): size s circuit gives error < sε

Using ε=1/(4s), degree O(log s)d polynomial, correct w.p. > 3/4

One polynomial, correct on > 3/4 fraction of inputs  (why?)
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Can PARITY also be approximated (i.e., calculated for some 
large input set S) by a low-degree polynomial?

PARITY is essentially Πi=1 to n xi, for inputs from {+1,-1}n

If can calculate Πi=1 to n xi (for S ⊆ {+1,-1}n) using degree D, 
then can calculate (for S) any polynomial using degree       
D+n/2 polynomial  (why?)

But if S large, too many polynomials, distinct for S

Need D = Ω(√n) to have enough degree D+n/2 polys.
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PARITY ∉ ACC(q)0

Given depth d, size s circuit C, there is a polynomial of 
degree O(log(s))d which agrees with C on 3/4 of inputs

Using approximate OR polynomials

Even if circuit has Modq (boolean) gates: (x1+...+xn)q-1

PARITY needs degree Ω(√n) polynomial for approximation

log(s) = Ω(√n)1/d or s = 2Ω(n)^(1/2d) : i.e., if depth is constant 
then size not poly (in fact exponential)
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Monotone Circuits

Another restricted class for which strong lower-bounds 
are known

Monotone circuits: no NOT gate (and no neg. literal)

For monotonic functions f

To show that f has no poly-sized monotone circuit 
family

Still possible that f may have a more efficient non-
monotone circuit family (or even be in P)
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CLIQUE
CLIQUEn,k does not have poly-sized monotone circuits

A way to turn a circuit into an approximately correct circuit, 
gate by gate (AND/OR gate → “approximation gate”)

Will consider effect of this change on some Yes examples 
and some No examples

Converting each gate to approximation makes only a few 
extra examples go wrong

A circuit with only approximation gates errs on a large 
number of the examples

Original circuit must have been large
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Input sets

Yes set: graphs with no edges except a single k-clique.        
No set: complete (k-1)-partite graphs

Since monotone circuit, we can label each gate with a set of 
subgraphs which will make the gate’s output 1

Input gates: edges

OR: take union of the two sets of input-subsets

AND: take set of pair-wise unions of input-subsets
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Approximation gate: output wire labeled by a sample of M 
cliques of at most t vertices. Value 1 if at least one of those 
M cliques is present in the input
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OR: take union of the two sets of subsets, and “prune” 
to M subsets
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Approximation gate: output wire labeled by a sample of M 
cliques of at most t vertices. Value 1 if at least one of those 
M cliques is present in the input

Input gates: edges

OR: take union of the two sets of subsets, and “prune” 
to M subsets

AND: take set of pair-wise unions of subsets which are 
at most t vertices, and “prune” to M subsets

Pruning uses “sunflower lemma”: find a sunflower and 
replace petals by core
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Converting each gate to approximation makes only a few more 
examples go wrong
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Proof Sketch

Converting each gate to approximation makes only a few more 
examples go wrong

Bounding new false positives among No sets and false 
negatives among Yes sets introduced by pruning

A circuit with only approximation gates errs on a large 
number of the examples

If output identically “No” then errs on entire Yes set.   
Else, output wire’s label has some subset X, |X| ≤ t = O(√k), 
and then a constant fraction of No-examples get accepted
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