
Circuit Lower-bounds

Lecture 24
Weak circuits are indeed weak

1

Circuit Lower-bounds

2

Circuit Lower-bounds

Today:

2

Circuit Lower-bounds

Today:

PARITY ∉ AC0

2

Circuit Lower-bounds

Today:

PARITY ∉ AC0

Two different proofs! (Latter generalizes to ACC0)

2

Circuit Lower-bounds

Today:

PARITY ∉ AC0

Two different proofs! (Latter generalizes to ACC0)

CLIQUE cannot be decided by poly-sized monotone
circuits

2

Circuit Lower-bounds

Today:

PARITY ∉ AC0

Two different proofs! (Latter generalizes to ACC0)

CLIQUE cannot be decided by poly-sized monotone
circuits

(Only sketches/partial proofs. See textbook or lecture-
notes from linked courses)

2

PARITY ∉ AC0

3

PARITY ∉ AC0

Recall AC0

3

PARITY ∉ AC0

Recall AC0

Poly size, constant depth (unbounded fan-in)

3

PARITY ∉ AC0

Recall AC0

Poly size, constant depth (unbounded fan-in)

Today, non-uniform AC0

3

PARITY ∉ AC0

Recall AC0

Poly size, constant depth (unbounded fan-in)

Today, non-uniform AC0

How powerful can AC0 be?

3

PARITY ∉ AC0

Recall AC0

Poly size, constant depth (unbounded fan-in)

Today, non-uniform AC0

How powerful can AC0 be?

Recall PARITY

3

PARITY ∉ AC0

Recall AC0

Poly size, constant depth (unbounded fan-in)

Today, non-uniform AC0

How powerful can AC0 be?

Recall PARITY

How shallow can a poly-sized circuit family for
PARITY be?

3

A Switching Argument

4

A Switching Argument

Suppose constant depth (say ≤ d, d being minimal) circuits
for PARITY

4

A Switching Argument

Suppose constant depth (say ≤ d, d being minimal) circuits
for PARITY

Plan for contradiction: Show depth d-1 circuits for every
input size n: start from depth d circuit for a larger n’,
and construct one for the smaller n.

4

A Switching Argument

Suppose constant depth (say ≤ d, d being minimal) circuits
for PARITY

Plan for contradiction: Show depth d-1 circuits for every
input size n: start from depth d circuit for a larger n’,
and construct one for the smaller n.

By “restricting” to n inputs

4

A Switching Argument

Suppose constant depth (say ≤ d, d being minimal) circuits
for PARITY

Plan for contradiction: Show depth d-1 circuits for every
input size n: start from depth d circuit for a larger n’,
and construct one for the smaller n.

By “restricting” to n inputs

And showing how to rewrite with depth d-1, staying
poly sized

4

AND-OR trees

5

AND-OR trees

Any function can be written as depth 2 AND-OR tree or an
OR-AND tree

5

AND-OR trees

Any function can be written as depth 2 AND-OR tree or an
OR-AND tree

But exponential size

5

AND-OR trees

Any function can be written as depth 2 AND-OR tree or an
OR-AND tree

But exponential size

Any circuit can be rewritten as an AND-OR tree (each leaf
has a literal, possibly shared with other leaves)

5

AND-OR trees

Any function can be written as depth 2 AND-OR tree or an
OR-AND tree

But exponential size

Any circuit can be rewritten as an AND-OR tree (each leaf
has a literal, possibly shared with other leaves)

If polynomial size and constant depth (AC0), stays so

5

Switching

6

Switching
In an AND-OR tree, if bottom
two levels can be replaced by
equivalent two levels with
switched AND-OR order, and
polynomial size

6

Switching
In an AND-OR tree, if bottom
two levels can be replaced by
equivalent two levels with
switched AND-OR order, and
polynomial size

6

Switching
In an AND-OR tree, if bottom
two levels can be replaced by
equivalent two levels with
switched AND-OR order, and
polynomial size

6

Switching
In an AND-OR tree, if bottom
two levels can be replaced by
equivalent two levels with
switched AND-OR order, and
polynomial size

6

Switching
In an AND-OR tree, if bottom
two levels can be replaced by
equivalent two levels with
switched AND-OR order, and
polynomial size

A depth d AC0 circuit
changes into depth d-1

6

Switching
In an AND-OR tree, if bottom
two levels can be replaced by
equivalent two levels with
switched AND-OR order, and
polynomial size

A depth d AC0 circuit
changes into depth d-1

When is switching possible?

6

Switching
In an AND-OR tree, if bottom
two levels can be replaced by
equivalent two levels with
switched AND-OR order, and
polynomial size

A depth d AC0 circuit
changes into depth d-1

When is switching possible?

6

Switching
In an AND-OR tree, if bottom
two levels can be replaced by
equivalent two levels with
switched AND-OR order, and
polynomial size

A depth d AC0 circuit
changes into depth d-1

When is switching possible?

6

Switching
In an AND-OR tree, if bottom
two levels can be replaced by
equivalent two levels with
switched AND-OR order, and
polynomial size

A depth d AC0 circuit
changes into depth d-1

When is switching possible?

Distributivity

6

Switching
In an AND-OR tree, if bottom
two levels can be replaced by
equivalent two levels with
switched AND-OR order, and
polynomial size

A depth d AC0 circuit
changes into depth d-1

When is switching possible?

Distributivity a

b

6

Switching
In an AND-OR tree, if bottom
two levels can be replaced by
equivalent two levels with
switched AND-OR order, and
polynomial size

A depth d AC0 circuit
changes into depth d-1

When is switching possible?

Distributivity a

b

ba

a

6

Switching
In an AND-OR tree, if bottom
two levels can be replaced by
equivalent two levels with
switched AND-OR order, and
polynomial size

A depth d AC0 circuit
changes into depth d-1

When is switching possible?

Distributivity

But may increase size to
exponential

a

b

ba

a

6

Switching Lemma
a

b

ba

a

a

b

7

Switching Lemma
A modified function has a switched
circuit a

b

ba

a

a

b

7

Switching Lemma
A modified function has a switched
circuit

Size stays polynomial even after
switching

a

b

ba

a

a

b

7

Switching Lemma
A modified function has a switched
circuit

Size stays polynomial even after
switching

Computes same function as before
but with most variables already set
to specific values (a “restriction” of
the original function)

a

b

ba

a

a

b

7

Switching Lemma
A modified function has a switched
circuit

Size stays polynomial even after
switching

Computes same function as before
but with most variables already set
to specific values (a “restriction” of
the original function)

a

b

ba

a

c’

c

a

b

7

Switching Lemma
A modified function has a switched
circuit

Size stays polynomial even after
switching

Computes same function as before
but with most variables already set
to specific values (a “restriction” of
the original function)

a

b

ba

a

c’

c

a

b

c’’

c’

7

Switching Lemma
A modified function has a switched
circuit

Size stays polynomial even after
switching

Computes same function as before
but with most variables already set
to specific values (a “restriction” of
the original function)

Still function of many variables

a

b

ba

a

c’

c

a

b

c’’

c’

7

Switching Lemma
A modified function has a switched
circuit

Size stays polynomial even after
switching

Computes same function as before
but with most variables already set
to specific values (a “restriction” of
the original function)

Still function of many variables

How to find such a modified function

a

b

ba

a

c’

c

a

b

c’’

c’

7

Switching Lemma
A modified function has a switched
circuit

Size stays polynomial even after
switching

Computes same function as before
but with most variables already set
to specific values (a “restriction” of
the original function)

Still function of many variables

How to find such a modified function

Random restriction

a

b

ba

a

c’

c

a

b

c’’

c’

7

Switching Lemma
A modified function has a switched
circuit

Size stays polynomial even after
switching

Computes same function as before
but with most variables already set
to specific values (a “restriction” of
the original function)

Still function of many variables

How to find such a modified function

Random restriction

a

b

ba

a

c’

c

fix bits with
prob. 1-n-2/3

a

b

c’’

c’

7

Switching Lemma

8

Switching Lemma

Random restriction. With positive probability:

8

Switching Lemma

Random restriction. With positive probability:

can switch bottom levels, staying poly sized

8

Switching Lemma

Random restriction. With positive probability:

can switch bottom levels, staying poly sized

with high probability for each node above the
leaf level (switching lemma); then union bound

8

Switching Lemma

Random restriction. With positive probability:

can switch bottom levels, staying poly sized

with high probability for each node above the
leaf level (switching lemma); then union bound

computes PARITY for n2/3 variables (Chernoff)

8

Switching Lemma

Random restriction. With positive probability:

can switch bottom levels, staying poly sized

with high probability for each node above the
leaf level (switching lemma); then union bound

computes PARITY for n2/3 variables (Chernoff)

Depth d-1, poly-sized circuit family for PARITY

8

Switching Lemma

Random restriction. With positive probability:

can switch bottom levels, staying poly sized

with high probability for each node above the
leaf level (switching lemma); then union bound

computes PARITY for n2/3 variables (Chernoff)

Depth d-1, poly-sized circuit family for PARITY

Contradiction: started with minimal depth!

8

Razborov-Smolensky

9

Razborov-Smolensky
An alternate proof that PARITY ∉ AC0

9

Razborov-Smolensky
An alternate proof that PARITY ∉ AC0

Generalizes to ACC0(p) for odd primes p

9

Razborov-Smolensky
An alternate proof that PARITY ∉ AC0

Generalizes to ACC0(p) for odd primes p

Plan:

9

Razborov-Smolensky
An alternate proof that PARITY ∉ AC0

Generalizes to ACC0(p) for odd primes p

Plan:

Given a circuit C, can find a polynomial s.t.

9

Razborov-Smolensky
An alternate proof that PARITY ∉ AC0

Generalizes to ACC0(p) for odd primes p

Plan:

Given a circuit C, can find a polynomial s.t.

Polynomial has “low degree”

9

Razborov-Smolensky
An alternate proof that PARITY ∉ AC0

Generalizes to ACC0(p) for odd primes p

Plan:

Given a circuit C, can find a polynomial s.t.

Polynomial has “low degree”

Polynomial agrees with C on most inputs

9

Razborov-Smolensky
An alternate proof that PARITY ∉ AC0

Generalizes to ACC0(p) for odd primes p

Plan:

Given a circuit C, can find a polynomial s.t.

Polynomial has “low degree”

Polynomial agrees with C on most inputs

Show that no low degree polynomial can agree with
PARITY on that many inputs

9

Polynomial from Circuit

10

Polynomial from Circuit
Assume circuit has OR, NOT gates

10

Polynomial from Circuit
Assume circuit has OR, NOT gates

Replace gates by polynomials (over some field), and
compose together into one big polynomial

10

Polynomial from Circuit
Assume circuit has OR, NOT gates

Replace gates by polynomials (over some field), and
compose together into one big polynomial

If we do this faithfully, degree will be large

10

Polynomial from Circuit
Assume circuit has OR, NOT gates

Replace gates by polynomials (over some field), and
compose together into one big polynomial

If we do this faithfully, degree will be large

Large enough to evaluate PARITY

10

Polynomial from Circuit
Assume circuit has OR, NOT gates

Replace gates by polynomials (over some field), and
compose together into one big polynomial

If we do this faithfully, degree will be large

Large enough to evaluate PARITY

So allow polynomials which err on some inputs

10

Polynomial from Circuit
Assume circuit has OR, NOT gates

Replace gates by polynomials (over some field), and
compose together into one big polynomial

If we do this faithfully, degree will be large

Large enough to evaluate PARITY

So allow polynomials which err on some inputs

At each gate will pick polynomial from a distribution

10

Polynomial from Circuit
Assume circuit has OR, NOT gates

Replace gates by polynomials (over some field), and
compose together into one big polynomial

If we do this faithfully, degree will be large

Large enough to evaluate PARITY

So allow polynomials which err on some inputs

At each gate will pick polynomial from a distribution

Composed polynomial will be good with prob. > 0

10

Polynomials for OR, NOT
and PARITY

11

Polynomials for OR, NOT
and PARITY

Want that PARITY is complex (high degree) while OR, NOT are
simple (low degree)

11

Polynomials for OR, NOT
and PARITY

Want that PARITY is complex (high degree) while OR, NOT are
simple (low degree)

If over GF(2), PARITY is just sum (degree 1)!

11

Polynomials for OR, NOT
and PARITY

Want that PARITY is complex (high degree) while OR, NOT are
simple (low degree)

If over GF(2), PARITY is just sum (degree 1)!

We will work over GF(q), q>2

11

Polynomials for OR, NOT
and PARITY

Want that PARITY is complex (high degree) while OR, NOT are
simple (low degree)

If over GF(2), PARITY is just sum (degree 1)!

We will work over GF(q), q>2

PARITY = [1-(1-2x1)(1-2x2)....(1-2xn)]/2 (if 2≠0)

11

Polynomials for OR, NOT
and PARITY

Want that PARITY is complex (high degree) while OR, NOT are
simple (low degree)

If over GF(2), PARITY is just sum (degree 1)!

We will work over GF(q), q>2

PARITY = [1-(1-2x1)(1-2x2)....(1-2xn)]/2 (if 2≠0)

NOT = 1-x.

11

Polynomials for OR, NOT
and PARITY

Want that PARITY is complex (high degree) while OR, NOT are
simple (low degree)

If over GF(2), PARITY is just sum (degree 1)!

We will work over GF(q), q>2

PARITY = [1-(1-2x1)(1-2x2)....(1-2xn)]/2 (if 2≠0)

NOT = 1-x.

OR = 1- (1-x1)...(1-xn)

11

Polynomials for OR, NOT
and PARITY

Want that PARITY is complex (high degree) while OR, NOT are
simple (low degree)

If over GF(2), PARITY is just sum (degree 1)!

We will work over GF(q), q>2

PARITY = [1-(1-2x1)(1-2x2)....(1-2xn)]/2 (if 2≠0)

NOT = 1-x.

OR = 1- (1-x1)...(1-xn)

But high degree! Need OR to be simple!
11

Approximate Polynomials

12

Approximate Polynomials
Consider (random) polynomial p(x1,...,xn) = (a1x1 +...+ anxn)q-1
where ai are picked at random from the field

12

Approximate Polynomials
Consider (random) polynomial p(x1,...,xn) = (a1x1 +...+ anxn)q-1
where ai are picked at random from the field

If OR(x1,...,xn)=0 then p(x1,...,xn)=0

12

Approximate Polynomials
Consider (random) polynomial p(x1,...,xn) = (a1x1 +...+ anxn)q-1
where ai are picked at random from the field

If OR(x1,...,xn)=0 then p(x1,...,xn)=0

If OR(x1,...,xn)=1

12

Approximate Polynomials
Consider (random) polynomial p(x1,...,xn) = (a1x1 +...+ anxn)q-1
where ai are picked at random from the field

If OR(x1,...,xn)=0 then p(x1,...,xn)=0

If OR(x1,...,xn)=1

Pra[a1x1 +...+ anxn = 0] ≤ 1/q (why?)

12

Approximate Polynomials
Consider (random) polynomial p(x1,...,xn) = (a1x1 +...+ anxn)q-1
where ai are picked at random from the field

If OR(x1,...,xn)=0 then p(x1,...,xn)=0

If OR(x1,...,xn)=1

Pra[a1x1 +...+ anxn = 0] ≤ 1/q (why?)

Recall in GF(q), uq-1 = 1 unless u=0 (since non-0 elements
form a group of order q-1 under multiplication)

12

Approximate Polynomials
Consider (random) polynomial p(x1,...,xn) = (a1x1 +...+ anxn)q-1
where ai are picked at random from the field

If OR(x1,...,xn)=0 then p(x1,...,xn)=0

If OR(x1,...,xn)=1

Pra[a1x1 +...+ anxn = 0] ≤ 1/q (why?)

Recall in GF(q), uq-1 = 1 unless u=0 (since non-0 elements
form a group of order q-1 under multiplication)

i.e. Pra[(a1x1 +...+ anxn)q-1 = 1] ≥ 1-1/q

12

Approximate Polynomials
Consider (random) polynomial p(x1,...,xn) = (a1x1 +...+ anxn)q-1
where ai are picked at random from the field

If OR(x1,...,xn)=0 then p(x1,...,xn)=0

If OR(x1,...,xn)=1

Pra[a1x1 +...+ anxn = 0] ≤ 1/q (why?)

Recall in GF(q), uq-1 = 1 unless u=0 (since non-0 elements
form a group of order q-1 under multiplication)

i.e. Pra[(a1x1 +...+ anxn)q-1 = 1] ≥ 1-1/q

Can boost probability by doing (exact) OR t times: deg < qt

12

Approximate Polynomials

13

Approximate Polynomials

OR: a random polynomial of degree O(log 1/ε), such that it is
correct with prob. > 1-ε

13

Approximate Polynomials

OR: a random polynomial of degree O(log 1/ε), such that it is
correct with prob. > 1-ε

Composing gate-polynomials into circuit-polynomial

13

Approximate Polynomials

OR: a random polynomial of degree O(log 1/ε), such that it is
correct with prob. > 1-ε

Composing gate-polynomials into circuit-polynomial

Substitute child polynomials as variables

13

Approximate Polynomials

OR: a random polynomial of degree O(log 1/ε), such that it is
correct with prob. > 1-ε

Composing gate-polynomials into circuit-polynomial

Substitute child polynomials as variables

Degree multiplies: depth d circuit gives deg O(log 1/ε)d

13

Approximate Polynomials

OR: a random polynomial of degree O(log 1/ε), such that it is
correct with prob. > 1-ε

Composing gate-polynomials into circuit-polynomial

Substitute child polynomials as variables

Degree multiplies: depth d circuit gives deg O(log 1/ε)d

Error adds (by union bound): size s circuit gives error < sε

13

Approximate Polynomials

OR: a random polynomial of degree O(log 1/ε), such that it is
correct with prob. > 1-ε

Composing gate-polynomials into circuit-polynomial

Substitute child polynomials as variables

Degree multiplies: depth d circuit gives deg O(log 1/ε)d

Error adds (by union bound): size s circuit gives error < sε

Using ε=1/(4s), degree O(log s)d polynomial, correct w.p. > 3/4

13

Approximate Polynomials

OR: a random polynomial of degree O(log 1/ε), such that it is
correct with prob. > 1-ε

Composing gate-polynomials into circuit-polynomial

Substitute child polynomials as variables

Degree multiplies: depth d circuit gives deg O(log 1/ε)d

Error adds (by union bound): size s circuit gives error < sε

Using ε=1/(4s), degree O(log s)d polynomial, correct w.p. > 3/4

One polynomial, correct on > 3/4 fraction of inputs (why?)

13

How about PARITY?

14

How about PARITY?

Can PARITY also be approximated (i.e., calculated for some
large input set S) by a low-degree polynomial?

14

How about PARITY?

Can PARITY also be approximated (i.e., calculated for some
large input set S) by a low-degree polynomial?

PARITY is essentially Πi=1 to n xi, for inputs from {+1,-1}n

14

How about PARITY?

Can PARITY also be approximated (i.e., calculated for some
large input set S) by a low-degree polynomial?

PARITY is essentially Πi=1 to n xi, for inputs from {+1,-1}n

If can calculate Πi=1 to n xi (for S ⊆ {+1,-1}n) using degree D,
then can calculate (for S) any polynomial using degree
D+n/2 polynomial (why?)

14

How about PARITY?

Can PARITY also be approximated (i.e., calculated for some
large input set S) by a low-degree polynomial?

PARITY is essentially Πi=1 to n xi, for inputs from {+1,-1}n

If can calculate Πi=1 to n xi (for S ⊆ {+1,-1}n) using degree D,
then can calculate (for S) any polynomial using degree
D+n/2 polynomial (why?)

But if S large, too many polynomials, distinct for S

14

How about PARITY?

Can PARITY also be approximated (i.e., calculated for some
large input set S) by a low-degree polynomial?

PARITY is essentially Πi=1 to n xi, for inputs from {+1,-1}n

If can calculate Πi=1 to n xi (for S ⊆ {+1,-1}n) using degree D,
then can calculate (for S) any polynomial using degree
D+n/2 polynomial (why?)

But if S large, too many polynomials, distinct for S

Need D = Ω(√n) to have enough degree D+n/2 polys.

14

PARITY ∉ ACC(q)0

15

PARITY ∉ ACC(q)0

Given depth d, size s circuit C, there is a polynomial of
degree O(log(s))d which agrees with C on 3/4 of inputs

15

PARITY ∉ ACC(q)0

Given depth d, size s circuit C, there is a polynomial of
degree O(log(s))d which agrees with C on 3/4 of inputs

Using approximate OR polynomials

15

PARITY ∉ ACC(q)0

Given depth d, size s circuit C, there is a polynomial of
degree O(log(s))d which agrees with C on 3/4 of inputs

Using approximate OR polynomials

Even if circuit has Modq (boolean) gates: (x1+...+xn)q-1

15

PARITY ∉ ACC(q)0

Given depth d, size s circuit C, there is a polynomial of
degree O(log(s))d which agrees with C on 3/4 of inputs

Using approximate OR polynomials

Even if circuit has Modq (boolean) gates: (x1+...+xn)q-1

PARITY needs degree Ω(√n) polynomial for approximation

15

PARITY ∉ ACC(q)0

Given depth d, size s circuit C, there is a polynomial of
degree O(log(s))d which agrees with C on 3/4 of inputs

Using approximate OR polynomials

Even if circuit has Modq (boolean) gates: (x1+...+xn)q-1

PARITY needs degree Ω(√n) polynomial for approximation

log(s) = Ω(√n)1/d or s = 2Ω(n)^(1/2d) : i.e., if depth is constant
then size not poly (in fact exponential)

15

Monotone Circuits

16

Monotone Circuits

Another restricted class for which strong lower-bounds
are known

16

Monotone Circuits

Another restricted class for which strong lower-bounds
are known

Monotone circuits: no NOT gate (and no neg. literal)

16

Monotone Circuits

Another restricted class for which strong lower-bounds
are known

Monotone circuits: no NOT gate (and no neg. literal)

For monotonic functions f

16

Monotone Circuits

Another restricted class for which strong lower-bounds
are known

Monotone circuits: no NOT gate (and no neg. literal)

For monotonic functions f

To show that f has no poly-sized monotone circuit
family

16

Monotone Circuits

Another restricted class for which strong lower-bounds
are known

Monotone circuits: no NOT gate (and no neg. literal)

For monotonic functions f

To show that f has no poly-sized monotone circuit
family

Still possible that f may have a more efficient non-
monotone circuit family (or even be in P)

16

CLIQUE

17

CLIQUE
CLIQUEn,k does not have poly-sized monotone circuits

17

CLIQUE
CLIQUEn,k does not have poly-sized monotone circuits

A way to turn a circuit into an approximately correct circuit,
gate by gate (AND/OR gate → “approximation gate”)

17

CLIQUE
CLIQUEn,k does not have poly-sized monotone circuits

A way to turn a circuit into an approximately correct circuit,
gate by gate (AND/OR gate → “approximation gate”)

Will consider effect of this change on some Yes examples
and some No examples

17

CLIQUE
CLIQUEn,k does not have poly-sized monotone circuits

A way to turn a circuit into an approximately correct circuit,
gate by gate (AND/OR gate → “approximation gate”)

Will consider effect of this change on some Yes examples
and some No examples

Converting each gate to approximation makes only a few
extra examples go wrong

17

CLIQUE
CLIQUEn,k does not have poly-sized monotone circuits

A way to turn a circuit into an approximately correct circuit,
gate by gate (AND/OR gate → “approximation gate”)

Will consider effect of this change on some Yes examples
and some No examples

Converting each gate to approximation makes only a few
extra examples go wrong

A circuit with only approximation gates errs on a large
number of the examples

17

CLIQUE
CLIQUEn,k does not have poly-sized monotone circuits

A way to turn a circuit into an approximately correct circuit,
gate by gate (AND/OR gate → “approximation gate”)

Will consider effect of this change on some Yes examples
and some No examples

Converting each gate to approximation makes only a few
extra examples go wrong

A circuit with only approximation gates errs on a large
number of the examples

Original circuit must have been large

17

Proof Sketch

18

Input sets

Proof Sketch

18

Input sets

Yes set: graphs with no edges except a single k-clique.
No set: complete (k-1)-partite graphs

Proof Sketch

18

Input sets

Yes set: graphs with no edges except a single k-clique.
No set: complete (k-1)-partite graphs

Since monotone circuit, we can label each gate with a set of
subgraphs which will make the gate’s output 1

Proof Sketch

18

Input sets

Yes set: graphs with no edges except a single k-clique.
No set: complete (k-1)-partite graphs

Since monotone circuit, we can label each gate with a set of
subgraphs which will make the gate’s output 1

Input gates: edges

Proof Sketch

18

Input sets

Yes set: graphs with no edges except a single k-clique.
No set: complete (k-1)-partite graphs

Since monotone circuit, we can label each gate with a set of
subgraphs which will make the gate’s output 1

Input gates: edges

OR: take union of the two sets of input-subsets

Proof Sketch

18

Input sets

Yes set: graphs with no edges except a single k-clique.
No set: complete (k-1)-partite graphs

Since monotone circuit, we can label each gate with a set of
subgraphs which will make the gate’s output 1

Input gates: edges

OR: take union of the two sets of input-subsets

AND: take set of pair-wise unions of input-subsets

Proof Sketch

18

Proof Sketch

19

Approximation gate: output wire labeled by a sample of M
cliques of at most t vertices. Value 1 if at least one of those
M cliques is present in the input

Proof Sketch

19

Approximation gate: output wire labeled by a sample of M
cliques of at most t vertices. Value 1 if at least one of those
M cliques is present in the input

Input gates: edges

Proof Sketch

19

Approximation gate: output wire labeled by a sample of M
cliques of at most t vertices. Value 1 if at least one of those
M cliques is present in the input

Input gates: edges

OR: take union of the two sets of subsets, and “prune”
to M subsets

Proof Sketch

19

Approximation gate: output wire labeled by a sample of M
cliques of at most t vertices. Value 1 if at least one of those
M cliques is present in the input

Input gates: edges

OR: take union of the two sets of subsets, and “prune”
to M subsets

AND: take set of pair-wise unions of subsets which are
at most t vertices, and “prune” to M subsets

Proof Sketch

19

Approximation gate: output wire labeled by a sample of M
cliques of at most t vertices. Value 1 if at least one of those
M cliques is present in the input

Input gates: edges

OR: take union of the two sets of subsets, and “prune”
to M subsets

AND: take set of pair-wise unions of subsets which are
at most t vertices, and “prune” to M subsets

Pruning uses “sunflower lemma”: find a sunflower and
replace petals by core

Proof Sketch

19

Proof Sketch

20

Proof Sketch

Converting each gate to approximation makes only a few more
examples go wrong

20

Proof Sketch

Converting each gate to approximation makes only a few more
examples go wrong

Bounding new false positives among No sets and false
negatives among Yes sets introduced by pruning

20

Proof Sketch

Converting each gate to approximation makes only a few more
examples go wrong

Bounding new false positives among No sets and false
negatives among Yes sets introduced by pruning

A circuit with only approximation gates errs on a large
number of the examples

20

Proof Sketch

Converting each gate to approximation makes only a few more
examples go wrong

Bounding new false positives among No sets and false
negatives among Yes sets introduced by pruning

A circuit with only approximation gates errs on a large
number of the examples

If output identically “No” then errs on entire Yes set.
Else, output wire’s label has some subset X, |X| ≤ t = O(√k),
and then a constant fraction of No-examples get accepted

20

