Circuit Lower-bounds

Lecture 24
Weak circuits are indeed weak
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Circuit Lower-bounds

@ Today:

@ PARITY & AC°

@ Two different proofs! (Latter generalizes to ACC°)

@ CLIQUE cannot be decided by poly-sized monotone
circuits

@ (Only sketches/partial proofs. See textbook or lecture-
notes from linked courses)
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PARITY & AC

@ Recall AC°
@ Poly size, constant depth (unbounded fan-in)
@ Today, non-uniform AC°

@ How powerful can AC° be?

@ Recall PARITY

@ How shallow can a poly-sized circuit family for
PARITY be?




A Switching Argument




A Switching Argument

@ Suppose constant depth (say < d, d being minimal) circuits
for PARITY




A Switching Argument

@ Suppose constant depth (say < d, d being minimal) circuits
for PARITY

@ Plan for contradiction: Show depth d-1 circuits for every
input size n: start from depth d circuit for a larger n’,
and construct one for the smaller n.




A Switching Argument

@ Suppose constant depth (say < d, d being minimal) circuits
for PARITY

@ Plan for contradiction: Show depth d-1 circuits for every
input size n: start from depth d circuit for a larger n’,
and construct one for the smaller n.

@ By “restricting” to n inputs




A Switching Argument

@ Suppose constant depth (say < d, d being minimal) circuits
for PARITY

@ Plan for contradiction: Show depth d-1 circuits for every
input size n: start from depth d circuit for a larger n’,
and construct one for the smaller n.

@ By “restricting” to n inputs

@ And showing how to rewrite with depth d-1, staying
poly sized




AND-OR trees




AND-OR trees

@ Any function can be written as depth 2 AND-OR tree or an
OR-AND ftree




AND-OR trees

@ Any function can be written as depth 2 AND-OR tree or an
OR-AND ftree

@ But exponential size




AND-OR trees

@ Any function can be written as depth 2 AND-OR tree or an
OR-AND ftree

@ But exponential size

@ Any circuit can be rewritten as an AND-OR tree (each leaf
has a literal, possibly shared with other leaves)




AND-OR trees

@ Any function can be written as depth 2 AND-OR tree or an
OR-AND ftree

@ But exponential size

@ Any circuit can be rewritten as an AND-OR tree (each leaf
has a literal, possibly shared with other leaves)

@ If polynomial size and constant depth (AC°), stays so
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Switching

@ In an AND-OR ftree, if bottom
two levels can be replaced by /\ /\
equivalent two levels with ) AN
switched AND-OR order, and é/T\O /\
polynomial size fl) \%X
o A depth d ACP circuit OCl)i@ OOE)
(107

changes into depth d-1 &

@ When is switching possible?

o Distributivity a ﬁg b“gj%%
OO OO

@ But may increase size to b %{ a wgv

exPonen’rial OO0 OO0




Switching Lemma




Switching Lemma

® A modified function has a switched

circuit Q\ ,@
ool csos




Switching Lemma

® A modified function has a switched

circuit Q A
. | / lé} C{ /] &
@ Size stays polynomial even after O/Cl)\ O/Cl)\
switching v ¥\ ¥\
ulnn 00




Switching Lemma

® A modified function has a switched

circuit a vgﬁg ba C;?%C%
@ Size stays polynomial even after OO OO

switching | '7%' . VLP(

LIL1L] LI L]

@ Computes same function as before
but with most variables already set
to specific values (a “restriction” of
the original function)




Switching Lemma

® A modified function has a switched

circuit a vgﬁg ba C;j%
@ Size stays polynomial even after OO OO

b
switching W a VLPV
un 000
@ Computes same function as before
but with most variables already set
to specific values (a “restriction” of

the original function)

R o\ &
'y

/
¢

O
C
O]

Ll




Switching Lemma

® A modified function has a switched

circuit a ﬁ ba gj%
@ Size stays polynomial even after OO Q

switching ? '7‘43:' . VLPV

LIL1L] LI L]

Q

(]

@ Computes same function as before E

but with most variables already set |

to specific values (a “restriction” of
the original function)

ol S
O O

L




Switching Lemma

® A modified function has a switched

circuit a ﬁ ba gj%
@ Size stays polynomial even after OO Q

switching ? '7‘43:' . VLPV

LIL1L] LI L]

Q

(]

@ Computes same function as before E

but with most variables already set |

to specific values (a “restriction” of
the original function)

ol S
O O

C, Cu
@ Still function of many variables Oz § %ng[\ié
O O




Switching Lemma

® A modified function has a switched

circuit a vgﬁg ba C;j%
@ Size stays polynomial even after OO Q

switching ? W . VLPV

LIL1L] LI L]

Q

@ Computes same function as before
but with most variables already set
to specific values (a “restriction” of
the original function)

R o\ &
'y

® How to find such a modified function

C, Cu
@ Still function of many variables & %ﬁié
C
O O O




Switching Lemma

® A modified function has a switched

circuit a ﬁ ba gj%
@ Size stays polynomial even after OO Q

switching ? '7‘43:' . VLPV

LIL1L] LI L]

Q

(]

@ Computes same function as before E

but with most variables already set |

to specific values (a “restriction” of
the original function)

C, Cu
@ Still function of many variables Oz § %ng[\ié
O O

C C

® How to find such a modified function b

® Random restriction




Switching Lemma

® A modified function has a switched

circuit a ﬁ ba gj%
@ Size stays polynomial even after OO OO
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@ Computes same function as before E
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Switching Lemma

@ Random restriction. With positive probability:
@ can switch bottom levels, staying poly sized

@ with high probability for each node above the
leaf level (switching lemma); then union bound

@ computes PARITY for n?/3 variables (Chernoff)
@ Depth d-1, poly-sized circuit family for PARITY

@ Conftradiction: started with minimal depth!
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Razborov-Smolensky

@ An alternate proof that PARITY & AC°

@ Generalizes to ACCYp) for odd primes p
@ Plan:
@ Given a circuit C, can find a polynomial s.t.
@ Polynomial has “low degree”
@ Polynomial agrees with C on most inputs

@ Show that no low degree polynomial can agree with
PARITY on that many inputs
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Polynomial from Circuit

@ Assume circuit has OR, NOT gates

@ Replace gates by polynomials (over some field), and
compose together into one big polynomial

@ If we do this faithfully, degree will be large
@ Large enough to evaluate PARITY
@ So allow polynomials which err on some inputs
® At each gate will pick polynomial from a distribution

@ Composed polynomial will be good with prob. > O
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® Want that PARITY is complex (high degree) while OR, NOT are
simple (low degree)

o If over GF(2), PARITY is just sum (degree 1)!
@ We will work over GF(q), q>2

@ PARITY = [1-(1-2x1)(1-2x%2)....(1-2x,)]/2 (if 2+0)
@ NOT = 1-x.

@ OR = 1- (1-x1)...(1-%n)



Polynomials for OR, NOT
and PARITY

® Want that PARITY is complex (high degree) while OR, NOT are
simple (low degree)

o If over GF(2), PARITY is just sum (degree 1)!
@ We will work over GF(q), q>2
& PARITY = [1-(1-2x1)(1-2X>)....(1-2xn)]1/2 (if 2+0)
@ NOT = 1-x.
@ OR = 1- (1-xy)...(1-%n)

@ But high degree! Need OR to be simple!
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Approximate Polynomials

@ Consider (random) polynomial p(xi,...,Xn) = ( )a-!
where a; are picked at random from the field

@ If OR(xy,...,%n)=0 then p(xi,...,xn)=0
D IF OR(XI,...,Xn)=].
@ Pry =0]<1/q (why?)

@ Recall in GF(qg), u%! = 1 unless u=0 (since non-0 elements
form a group of order g-1 under multiplication)

@ i.e. Pryf ( )9 t=1]2 1-1/q

® Can boost probability by doing (exact) OR t times: deg < qt
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Approximate Polynomials

@ OR: a random polynomial of degree O(log 1/€), such that it is
correct with prob. > 1-€

@ Composing gate-polynomials into circuit-polynomial
@ Substitute child polynomials as variables
@ Degree multiplies: depth d circuit gives deg
@ Error adds (by union bound): size s circuit gives
@ Using €=1/(4s), correct w.p. > 3/4
@ One polynomial, (Why?)
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How about PARITY?

® Can PARITY also be approximated (i.e., calculated for some
large input set S) by a low-degree polynomial?

@ PARITY is essentially MM to n Xi, for inputs from {+1,-1}"

@ If can calculate Mz ton Xi (for S € {+1,-1}") using degree D,

then can calculate (for S) any polynomial using degree
D+n/2 polynomial (why?)

@ But if S large, too many polynomials, distinct for S

@ Need D = Q(+/n) to have enough degree D+n/2 polys.
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PARITY & ACC(q)°

@ Using approximate OR polynomials
@ Even if circuit has Modq (boolean) gates: (Xi+...+Xn)3™

@ PARITY needs degree Q(+/n) polynomial for approximation

@ log(s) = Q(Jn)¥d or s = 22 (W/2d) . j o  if depth is constant
then size not poly (in fact exponential)
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Monotone Circuits

@ Another restricted class for which strong lower-bounds
are known

@ Monotone circuits: no NOT gate (and no neg. literal)
@ For monotonic functions f

@ To show that f has no poly-sized monotone circuit
family

@ Still possible that f may have a more efficient non-
monotone circuit family (or even be in P)
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CLIQUE

® CLIQUEk does not have poly-sized monotone circuits

@ A way fo turn a circuit info an approximately correct circuit,
ga'l-e by ga"'e (AND/OR ga"'e —=5 “approxima.rion ga_'_eu)

@ WIll consider effect of this change on some Yes examples
and some No examples

@ Converting each gate to approximation makes only a few
extra examples go wrong

@ A circuit with only approximation gates errs on a large
number of the examples

@ Original circuit must have been large
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Proof Sketch

@ Input sets

@ Yes set: graphs with no edges except a single k-clique.
No set: complete (k-1)-partite graphs

@ Since monotone circuit, we can label each gate with a set of
subgraphs which will make the gate’s output 1

@ Input gates: edges
@ OR: take union of the two sets of input-subsets

@ AND: take set of pair-wise unions of input-subsefts
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@ Approximation gate: output wire labeled by a sample of M
cliques of at most t vertices. Value 1 if at least one of those
M cliques is present in the input

@ Input gates: edges

@ OR: take union of the two sets of subsets, and “prune”
to M subsets

@ AND: fake set of pair-wise unions of subsets which are
at most t vertices, and “prune” to M subsets

@ Pruning uses "sunflower lemma”: find a sunflower and
replace petals by core
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Proof Sketch

@ Converting each gate to approximation makes only a few more
examples go wrong

@ Bounding new false positives among No sets and false
negatives among Yes sets introduced by pruning

@ A circuit with only approximation gates errs on a large
number of the examples

@ If output identically "No” then errs on entire Yes set.
Else, output wires label has some subset X, |X| < t = O(J/K),
and then a constant fraction of No-examples get accepted



