Circuit Lower-bounds

Lecture 24
Weak circuits are indeed weak

Circuit Lower-bounds

Circuit Lower-bounds

@ Today:

Circuit Lower-bounds

@ Today:

@ PARITY & AC°

Circuit Lower-bounds

@ Today:

@ PARITY & AC°

@ Two different proofs! (Latter generalizes to ACC°)

Circuit Lower-bounds

@ Today:

@ PARITY & AC°

@ Two different proofs! (Latter generalizes to ACC°)

@ CLIQUE cannot be decided by poly-sized monotone
circuits

Circuit Lower-bounds

@ Today:

@ PARITY & AC°

@ Two different proofs! (Latter generalizes to ACC°)

@ CLIQUE cannot be decided by poly-sized monotone
circuits

@ (Only sketches/partial proofs. See textbook or lecture-
notes from linked courses)

PARITY & AC

PARITY & AC

® Recall AC°

PARITY & AC

® Recall AC°

@ Poly size, constant depth (unbounded fan-in)

PARITY & AC

® Recall AC°

@ Poly size, constant depth (unbounded fan-in)

@ Today, non-uniform AC°

PARITY & AC

@ Recall AC°
@ Poly size, constant depth (unbounded fan-in)

@ Today, non-uniform AC°

@ How powerful can AC° be?

PARITY & AC

@ Recall AC°
@ Poly size, constant depth (unbounded fan-in)
@ Today, non-uniform AC°

@ How powerful can AC° be?

@ Recall PARITY

PARITY & AC

@ Recall AC°
@ Poly size, constant depth (unbounded fan-in)
@ Today, non-uniform AC°

@ How powerful can AC° be?

@ Recall PARITY

@ How shallow can a poly-sized circuit family for
PARITY be?

A Switching Argument

A Switching Argument

@ Suppose constant depth (say < d, d being minimal) circuits
for PARITY

A Switching Argument

@ Suppose constant depth (say < d, d being minimal) circuits
for PARITY

@ Plan for contradiction: Show depth d-1 circuits for every
input size n: start from depth d circuit for a larger n’,
and construct one for the smaller n.

A Switching Argument

@ Suppose constant depth (say < d, d being minimal) circuits
for PARITY

@ Plan for contradiction: Show depth d-1 circuits for every
input size n: start from depth d circuit for a larger n’,
and construct one for the smaller n.

@ By “restricting” to n inputs

A Switching Argument

@ Suppose constant depth (say < d, d being minimal) circuits
for PARITY

@ Plan for contradiction: Show depth d-1 circuits for every
input size n: start from depth d circuit for a larger n’,
and construct one for the smaller n.

@ By “restricting” to n inputs

@ And showing how to rewrite with depth d-1, staying
poly sized

AND-OR trees

AND-OR trees

@ Any function can be written as depth 2 AND-OR tree or an
OR-AND ftree

AND-OR trees

@ Any function can be written as depth 2 AND-OR tree or an
OR-AND ftree

@ But exponential size

AND-OR trees

@ Any function can be written as depth 2 AND-OR tree or an
OR-AND ftree

@ But exponential size

@ Any circuit can be rewritten as an AND-OR tree (each leaf
has a literal, possibly shared with other leaves)

AND-OR trees

@ Any function can be written as depth 2 AND-OR tree or an
OR-AND ftree

@ But exponential size

@ Any circuit can be rewritten as an AND-OR tree (each leaf
has a literal, possibly shared with other leaves)

@ If polynomial size and constant depth (AC°), stays so

Switching

Switching

@ In an AND-OR tree, if bottom
two levels can be replaced by
equivalent two levels with
switched AND-OR order, and
polynomial size

Switching

@ In an AND-OR tree, if bottom
two levels can be replaced by /\
equivalent two levels with)
switched AND-OR order, and Cs/T\O
polynomial size fl)
OO\b

Switching

@ In an AND-OR tree, if bottom
two levels can be replaced by /\ /\
equivalent two levels with))
switched AND-OR order, and Cs/T\O <5/T\O
polynomial size fl)\@

Switching

@ In an AND-OR tree, if bottom
two levels can be replaced by /\ /\
equivalent two levels with) AN
switched AND-OR order, and Cs/T\O /\
polynomial size fl) S, f,\g;
A O{)é%

Dél\ﬁl lj/lfl/ﬁlmktl

Switching

@ In an AND-OR tree, if bottom
two levels can be replaced by /\ /\
equivalent two levels with) AN
switched AND-OR order, and 6/T\O /\

polynomial size

AN

® A depth d ACO circuit OO i
changes into depth d-1 é\é U/DEIDMG

Switching

@ In an AND-OR tree, if bottom
two levels can be replaced by /\ /\
equivalent two levels with) AN
switched AND-OR order, and Cs/T\O /\
polynomial Size fl) \szf/%/
o A depth d ACP circuit OCl)i@ C?O})
(101 lj/m El%

changes into depth d-1 -

@ When is switching possible?

Switching

@ In an AND-OR tree, if bottom
two levels can be replaced by /\ /\
equivalent two levels with) AN
switched AND-OR order, and Cs/T\O /\
polynomial Size fl) \szf/%/
o A depth d ACP circuit OCl)i@ C?O})
(101 lj/m El%

changes into depth d-1 -

@ When is switching possible?

Switching

@ In an AND-OR tree, if bottom
two levels can be replaced by /\ /\
equivalent two levels with) AN
switched AND-OR order, and 6/T\O /\

polynomial size

® A depth d ACO circuit OO c?
changes into depth d-1 é\é U/DEIDMG

@ When is switching possible?

Switching

@ In an AND-OR ftree, if bottom
two levels can be replaced by /\ /\
equivalent two levels with) AN
switched AND-OR order, and 6/T\O /\
polynomial size fl) \24[/\5
o A depth d ACP circuit OCl)i@ 00}3
(107

changes into depth d-1 -

@ When is switching possible?

o Distributivity @@E} C{) &)

Switching

@ In an AND-OR ftree, if bottom
two levels can be replaced by /\ /\
equivalent two levels with) AN
switched AND-OR order, and 6/T\O /\
polynomial size fl) \24[/\5
o A depth d ACP circuit OCl)i@ 00}3
(107

changes into depth d-1 -

@ When is switching possible?

o Distributivity a ﬁg C{ l
OO E)

Switching

@ In an AND-OR ftree, if bottom
two levels can be replaced by /\ /\
equivalent two levels with) AN
switched AND-OR order, and é/T\O /\
polynomial size fl) \%X
o A depth d ACP circuit OCl)i@ OOE)
(107

changes into depth d-1 -

@ When is switching possible?

o Distributivity a ﬁg b“gj%é@
OO : OO

Switching

@ In an AND-OR ftree, if bottom
two levels can be replaced by /\ /\
equivalent two levels with) AN
switched AND-OR order, and é/T\O /\
polynomial size fl) \%X
o A depth d ACP circuit OCl)i@ OOE)
(107

changes into depth d-1 &

@ When is switching possible?

o Distributivity a ﬁg b“gj%%
OO OO

@ But may increase size to b %{ a wgv

exPonen’rial OO0 OO0

Switching Lemma

Switching Lemma

® A modified function has a switched

circuit Q\ ,@
ool csos

Switching Lemma

® A modified function has a switched

circuit Q A
. | / lé} C{ /] &
@ Size stays polynomial even after O/Cl)\ O/Cl)\
switching v ¥\ ¥\
ulnn 00

Switching Lemma

® A modified function has a switched

circuit a vgﬁg ba C;?%C%
@ Size stays polynomial even after OO OO

switching | '7%' . VLP(

LIL1L] LI L]

@ Computes same function as before
but with most variables already set
to specific values (a “restriction” of
the original function)

Switching Lemma

® A modified function has a switched

circuit a vgﬁg ba C;j%
@ Size stays polynomial even after OO OO

b
switching W a VLPV
un 000
@ Computes same function as before
but with most variables already set
to specific values (a “restriction” of

the original function)

R o\ &
'y

/
¢

O
C
O]

Ll

Switching Lemma

® A modified function has a switched

circuit a ﬁ ba gj%
@ Size stays polynomial even after OO Q

switching ? '7‘43:' . VLPV

LIL1L] LI L]

Q

(]

@ Computes same function as before E

but with most variables already set |

to specific values (a “restriction” of
the original function)

ol S
O O

L

Switching Lemma

® A modified function has a switched

circuit a ﬁ ba gj%
@ Size stays polynomial even after OO Q

switching ? '7‘43:' . VLPV

LIL1L] LI L]

Q

(]

@ Computes same function as before E

but with most variables already set |

to specific values (a “restriction” of
the original function)

ol S
O O

C, Cu
@ Still function of many variables Oz § %ng[\ié
O O

Switching Lemma

® A modified function has a switched

circuit a vgﬁg ba C;j%
@ Size stays polynomial even after OO Q

switching ? W . VLPV

LIL1L] LI L]

Q

@ Computes same function as before
but with most variables already set
to specific values (a “restriction” of
the original function)

R o\ &
'y

® How to find such a modified function

C, Cu
@ Still function of many variables & %ﬁié
C
O O O

Switching Lemma

® A modified function has a switched

circuit a ﬁ ba gj%
@ Size stays polynomial even after OO Q

switching ? '7‘43:' . VLPV

LIL1L] LI L]

Q

(]

@ Computes same function as before E

but with most variables already set |

to specific values (a “restriction” of
the original function)

C, Cu
@ Still function of many variables Oz § %ng[\ié
O O

C C

® How to find such a modified function b

® Random restriction

Switching Lemma

® A modified function has a switched

circuit a ﬁ ba gj%
@ Size stays polynomial even after OO OO

switching ? '7‘43:' . ﬁg

LIL1L]

]
@ Computes same function as before E
but with most variables already set e

| prob. 1-n"?/3
to specific values (a “restriction” of ;
the original function)

C, Cu
@ Still function of many variables & 7%%
.

c
® How to find such a modified function ?Ag 0 O

fix bits with

O

® Random restriction

Switching Lemma

Switching Lemma

@ Random restriction. With positive probability:

Switching Lemma

@ Random restriction. With positive probability:

@ can switch bottom levels, staying poly sized

Switching Lemma

@ Random restriction. With positive probability:

@ can switch bottom levels, staying poly sized

@ with high probability for each node above the
leaf level (switching lemma); then union bound

Switching Lemma

@ Random restriction. With positive probability:
@ can switch bottom levels, staying poly sized

@ with high probability for each node above the
leaf level (switching lemma); then union bound

@ computes PARITY for n?/3 variables (Chernoff)

Switching Lemma

@ Random restriction. With positive probability:
@ can switch bottom levels, staying poly sized

@ with high probability for each node above the
leaf level (switching lemma); then union bound

@ computes PARITY for n?/3 variables (Chernoff)

@ Depth d-1, poly-sized circuit family for PARITY

Switching Lemma

@ Random restriction. With positive probability:
@ can switch bottom levels, staying poly sized

@ with high probability for each node above the
leaf level (switching lemma); then union bound

@ computes PARITY for n?/3 variables (Chernoff)
@ Depth d-1, poly-sized circuit family for PARITY

@ Conftradiction: started with minimal depth!

Razborov-Smolensky

Razborov-Smolensky

@ An alternate proof that PARITY & AC°

Razborov-Smolensky

@ An alternate proof that PARITY & AC°

@ Generalizes to ACCYp) for odd primes p

Razborov-Smolensky

@ An alternate proof that PARITY & AC°

@ Generalizes to ACCYp) for odd primes p

@ Plan:

Razborov-Smolensky

@ An alternate proof that PARITY & AC°

@ Generalizes to ACCYp) for odd primes p

@ Plan:

@ Given a circuit C, can find a polynomial s.t.

Razborov-Smolensky

@ An alternate proof that PARITY & AC°

@ Generalizes to ACCYp) for odd primes p
@ Plan:

@ Given a circuit C, can find a polynomial s.t.

@ Polynomial has “low degree”

Razborov-Smolensky

@ An alternate proof that PARITY & AC°

@ Generalizes to ACCYp) for odd primes p
@ Plan:
@ Given a circuit C, can find a polynomial s.t.

@ Polynomial has “low degree”

@ Polynomial agrees with C on most inputs

Razborov-Smolensky

@ An alternate proof that PARITY & AC°

@ Generalizes to ACCYp) for odd primes p
@ Plan:
@ Given a circuit C, can find a polynomial s.t.
@ Polynomial has “low degree”
@ Polynomial agrees with C on most inputs

@ Show that no low degree polynomial can agree with
PARITY on that many inputs

Polynomial from Circuit

Polynomial from Circuit

@ Assume circuit has OR, NOT gates

Polynomial from Circuit

@ Assume circuit has OR, NOT gates

@ Replace gates by polynomials (over some field), and
compose together into one big polynomial

Polynomial from Circuit

@ Assume circuit has OR, NOT gates

@ Replace gates by polynomials (over some field), and
compose together into one big polynomial

@ If we do this faithfully, degree will be large

Polynomial from Circuit

@ Assume circuit has OR, NOT gates

@ Replace gates by polynomials (over some field), and
compose together into one big polynomial

@ If we do this faithfully, degree will be large

@ Large enough to evaluate PARITY

Polynomial from Circuit

@ Assume circuit has OR, NOT gates

@ Replace gates by polynomials (over some field), and
compose together into one big polynomial

@ If we do this faithfully, degree will be large

@ Large enough to evaluate PARITY

@ So allow polynomials which err on some inputs

Polynomial from Circuit

@ Assume circuit has OR, NOT gates

@ Replace gates by polynomials (over some field), and
compose together into one big polynomial

@ If we do this faithfully, degree will be large
@ Large enough to evaluate PARITY

@ So allow polynomials which err on some inputs

® At each gate will pick polynomial from a distribution

Polynomial from Circuit

@ Assume circuit has OR, NOT gates

@ Replace gates by polynomials (over some field), and
compose together into one big polynomial

@ If we do this faithfully, degree will be large
@ Large enough to evaluate PARITY
@ So allow polynomials which err on some inputs
® At each gate will pick polynomial from a distribution

@ Composed polynomial will be good with prob. > O

Polynomials for OR, NOT
and PARITY

Polynomials for OR, NOT
and PARITY

® Want that PARITY is complex (high degree) while OR, NOT are
simple (low degree)

Polynomials for OR, NOT
and PARITY

® Want that PARITY is complex (high degree) while OR, NOT are
simple (low degree)

o If over GF(2), PARITY is just sum (degree 1)!

Polynomials for OR, NOT
and PARITY

® Want that PARITY is complex (high degree) while OR, NOT are
simple (low degree)

o If over GF(2), PARITY is just sum (degree 1)!

@ We will work over GF(q), q>2

Polynomials for OR, NOT
and PARITY

® Want that PARITY is complex (high degree) while OR, NOT are
simple (low degree)

o If over GF(2), PARITY is just sum (degree 1)!

@ We will work over GF(q), q>2

@ PARITY = [1-(1-2x1)(1-2x2)....(1-2%.)]/2 (if 2%0)

Polynomials for OR, NOT
and PARITY

® Want that PARITY is complex (high degree) while OR, NOT are
simple (low degree)

o If over GF(2), PARITY is just sum (degree 1)!
@ We will work over GF(q), q>2

@ PARITY = [1-(1-2x1)(1-2x2)....(1-2%.)]/2 (if 2%0)

@ NOT = 1-x.

Polynomials for OR, NOT
and PARITY

® Want that PARITY is complex (high degree) while OR, NOT are
simple (low degree)

o If over GF(2), PARITY is just sum (degree 1)!
@ We will work over GF(q), q>2

@ PARITY = [1-(1-2x1)(1-2x%2)....(1-2x,)]/2 (if 2+0)
@ NOT = 1-x.

@ OR = 1- (1-x1)...(1-%n)

Polynomials for OR, NOT
and PARITY

® Want that PARITY is complex (high degree) while OR, NOT are
simple (low degree)

o If over GF(2), PARITY is just sum (degree 1)!
@ We will work over GF(q), q>2
& PARITY = [1-(1-2x1)(1-2X>)....(1-2xn)]1/2 (if 2+0)
@ NOT = 1-x.
@ OR = 1- (1-xy)...(1-%n)

@ But high degree! Need OR to be simple!

Approximate Polynomials

Approximate Polynomials

@ Consider (random) polynomial p(xi,...,Xn) =)a-!
where a; are picked at random from the field

Approximate Polynomials

@ Consider (random) polynomial p(xi,...,Xn) = ()a-!
where a; are picked at random from the field

@ If OR(xy,...,%n)=0 then p(xi,...,xn)=0

Approximate Polynomials

@ Consider (random) polynomial p(xi,...,Xn) = ()a-!
where a; are picked at random from the field

@ If OR(xy,...,%n)=0 then p(xi,...,xn)=0

D IF OR(XI,...,Xn)=].

Approximate Polynomials

@ Consider (random) polynomial p(xi,...,Xn) = ()a-!
where a; are picked at random from the field

@ If OR(xy,...,%n)=0 then p(xi,...,xn)=0

D IF OR(XI,...,Xn)=].

@ Pry =0]<1/q (why?)

Approximate Polynomials

@ Consider (random) polynomial p(xi,...,Xn) = ()a-!
where a; are picked at random from the field

@ If OR(xy,...,%n)=0 then p(xi,...,xn)=0
D IF OR(XI,...,Xn)=].

@ Pry =0]<1/q (why?)

@ Recall in GF(qg), u%! = 1 unless u=0 (since non-0 elements
form a group of order g-1 under multiplication)

Approximate Polynomials

@ Consider (random) polynomial p(xi,...,Xn) = ()a-!
where a; are picked at random from the field

@ If OR(xy,...,%n)=0 then p(xi,...,xn)=0
D IF OR(XI,...,Xn)=].
@ Pry =0]<1/q (why?)

@ Recall in GF(qg), u%! = 1 unless u=0 (since non-0 elements
form a group of order g-1 under multiplication)

@ i.e. Pryf ()9 t=1]2 1-1/q

Approximate Polynomials

@ Consider (random) polynomial p(xi,...,Xn) = ()a-!
where a; are picked at random from the field

@ If OR(xy,...,%n)=0 then p(xi,...,xn)=0
D IF OR(XI,...,Xn)=].
@ Pry =0]<1/q (why?)

@ Recall in GF(qg), u%! = 1 unless u=0 (since non-0 elements
form a group of order g-1 under multiplication)

@ i.e. Pryf ()9 t=1]2 1-1/q

® Can boost probability by doing (exact) OR t times: deg < qt

Approximate Polynomials

Approximate Polynomials

@ OR: a random polynomial of degree O(log 1/€), such that it is
correct with prob. > 1-€

Approximate Polynomials

@ OR: a random polynomial of degree O(log 1/€), such that it is
correct with prob. > 1-€

@ Composing gate-polynomials into circuit-polynomial

Approximate Polynomials

@ OR: a random polynomial of degree O(log 1/€), such that it is
correct with prob. > 1-€

@ Composing gate-polynomials into circuit-polynomial

@ Substitute child polynomials as variables

Approximate Polynomials

@ OR: a random polynomial of degree O(log 1/€), such that it is
correct with prob. > 1-€

@ Composing gate-polynomials into circuit-polynomial

@ Substitute child polynomials as variables

@ Degree multiplies: depth d circuit gives deg

Approximate Polynomials

@ OR: a random polynomial of degree O(log 1/€), such that it is
correct with prob. > 1-€

@ Composing gate-polynomials into circuit-polynomial
@ Substitute child polynomials as variables

@ Degree multiplies: depth d circuit gives deg

@ Error adds (by union bound): size s circuit gives

Approximate Polynomials

@ OR: a random polynomial of degree O(log 1/€), such that it is
correct with prob. > 1-€

@ Composing gate-polynomials into circuit-polynomial
@ Substitute child polynomials as variables
@ Degree multiplies: depth d circuit gives deg

@ Error adds (by union bound): size s circuit gives

@ Using €=1/(4s), correct w.p. > 3/4

Approximate Polynomials

@ OR: a random polynomial of degree O(log 1/€), such that it is
correct with prob. > 1-€

@ Composing gate-polynomials into circuit-polynomial
@ Substitute child polynomials as variables
@ Degree multiplies: depth d circuit gives deg
@ Error adds (by union bound): size s circuit gives
@ Using €=1/(4s), correct w.p. > 3/4
@ One polynomial, (Why?)

How about PARITY?

How about PARITY?

® Can PARITY also be approximated (i.e., calculated for some
large input set S) by a low-degree polynomial?

How about PARITY?

® Can PARITY also be approximated (i.e., calculated for some
large input set S) by a low-degree polynomial?

@ PARITY is essentially MM to n Xi, for inputs from {+1,-1}"

How about PARITY?

® Can PARITY also be approximated (i.e., calculated for some
large input set S) by a low-degree polynomial?

@ PARITY is essentially MM to n Xi, for inputs from {+1,-1}"

@ If can calculate Mz ton Xi (for S € {+1,-1}") using degree D,

then can calculate (for S) any polynomial using degree
D+n/2 polynomial (why?)

How about PARITY?

® Can PARITY also be approximated (i.e., calculated for some
large input set S) by a low-degree polynomial?

@ PARITY is essentially MM to n Xi, for inputs from {+1,-1}"

@ If can calculate Mz ton Xi (for S € {+1,-1}") using degree D,

then can calculate (for S) any polynomial using degree
D+n/2 polynomial (why?)

@ But if S large, too many polynomials, distinct for S

How about PARITY?

® Can PARITY also be approximated (i.e., calculated for some
large input set S) by a low-degree polynomial?

@ PARITY is essentially MM to n Xi, for inputs from {+1,-1}"

@ If can calculate Mz ton Xi (for S € {+1,-1}") using degree D,

then can calculate (for S) any polynomial using degree
D+n/2 polynomial (why?)

@ But if S large, too many polynomials, distinct for S

@ Need D = Q(+/n) to have enough degree D+n/2 polys.

PARITY & ACC(q)°

PARITY & ACC(q)°

PARITY & ACC(q)°

@ Using approximate OR polynomials

PARITY & ACC(q)°

@ Using approximate OR polynomials

@ Even if circuit has Modq (boolean) gates: (Xi+...+Xn)3™

PARITY & ACC(q)°

@ Using approximate OR polynomials

@ Even if circuit has Modq (boolean) gates: (Xi+...+Xn)3™

@ PARITY needs degree Q(+/n) polynomial for approximation

PARITY & ACC(q)°

@ Using approximate OR polynomials
@ Even if circuit has Modq (boolean) gates: (Xi+...+Xn)3™

@ PARITY needs degree Q(+/n) polynomial for approximation

@ log(s) = Q(Jn)¥d or s = 22 (W/2d) . j o if depth is constant
then size not poly (in fact exponential)

Monotone Circuits

Monotone Circuits

@ Another restricted class for which strong lower-bounds
are known

Monotone Circuits

@ Another restricted class for which strong lower-bounds
are known

@ Monotone circuits: no NOT gate (and no neg. literal)

Monotone Circuits

@ Another restricted class for which strong lower-bounds
are known

@ Monotone circuits: no NOT gate (and no neg. literal)

® For monotonic functions f

Monotone Circuits

@ Another restricted class for which strong lower-bounds
are known

@ Monotone circuits: no NOT gate (and no neg. literal)

® For monotonic functions f

@ To show that f has no poly-sized monotone circuit
family

Monotone Circuits

@ Another restricted class for which strong lower-bounds
are known

@ Monotone circuits: no NOT gate (and no neg. literal)
@ For monotonic functions f

@ To show that f has no poly-sized monotone circuit
family

@ Still possible that f may have a more efficient non-
monotone circuit family (or even be in P)

CLIQUE

CLIQUE

® CLIQUEk does not have poly-sized monotone circuits

CLIQUE

® CLIQUEk does not have poly-sized monotone circuits

@ A way fo turn a circuit info an approximately correct circuit,
ga'l-e by gafe (AND/OR ga"'e —=5 “approxima.rion ga_'_eu)

CLIQUE

® CLIQUEk does not have poly-sized monotone circuits

@ A way fo turn a circuit info an approximately correct circuit,
ga'l-e by ga"'e (AND/OR ga"'e —=5 “approxima.rion ga_'_eu)

@ WIll consider effect of this change on some Yes examples
and some No examples

CLIQUE

® CLIQUEk does not have poly-sized monotone circuits

@ A way fo turn a circuit info an approximately correct circuit,
ga'l-e by ga"'e (AND/OR ga"'e —=5 “approxima.rion ga_'_eu)

@ WIll consider effect of this change on some Yes examples
and some No examples

@ Converting each gate to approximation makes only a few
extra examples go wrong

CLIQUE

® CLIQUEk does not have poly-sized monotone circuits

@ A way fo turn a circuit info an approximately correct circuit,
ga'l-e by ga"'e (AND/OR ga"'e —=5 “approxima.rion ga_'_eu)

@ WIll consider effect of this change on some Yes examples
and some No examples

@ Converting each gate to approximation makes only a few
extra examples go wrong

@ A circuit with only approximation gates errs on a large
number of the examples

CLIQUE

® CLIQUEk does not have poly-sized monotone circuits

@ A way fo turn a circuit info an approximately correct circuit,
ga'l-e by ga"'e (AND/OR ga"'e —=5 “approxima.rion ga_'_eu)

@ WIll consider effect of this change on some Yes examples
and some No examples

@ Converting each gate to approximation makes only a few
extra examples go wrong

@ A circuit with only approximation gates errs on a large
number of the examples

@ Original circuit must have been large

Proof Sketch

Proof Sketch

@ Input sets

Proof Sketch

@ Input sets

@ Yes set: graphs with no edges except a single k-clique.
No set: complete (k-1)-partite graphs

Proof Sketch

@ Input sets

@ Yes set: graphs with no edges except a single k-clique.
No set: complete (k-1)-partite graphs

@ Since monotone circuit, we can label each gate with a set of
subgraphs which will make the gate’s output 1

Proof Sketch

@ Input sets

@ Yes set: graphs with no edges except a single k-clique.
No set: complete (k-1)-partite graphs

@ Since monotone circuit, we can label each gate with a set of
subgraphs which will make the gate’s output 1

@ Input gates: edges

Proof Sketch

@ Input sets

@ Yes set: graphs with no edges except a single k-clique.
No set: complete (k-1)-partite graphs

@ Since monotone circuit, we can label each gate with a set of
subgraphs which will make the gate’s output 1

@ Input gates: edges

@ OR: take union of the two sets of input-subsets

Proof Sketch

@ Input sets

@ Yes set: graphs with no edges except a single k-clique.
No set: complete (k-1)-partite graphs

@ Since monotone circuit, we can label each gate with a set of
subgraphs which will make the gate’s output 1

@ Input gates: edges
@ OR: take union of the two sets of input-subsets

@ AND: take set of pair-wise unions of input-subsefts

Proof Sketch

Proof Sketch

@ Approximation gate: output wire labeled by a sample of M
cliques of at most t vertices. Value 1 if at least one of those
M cliques is present in the input

Proof Sketch

@ Approximation gate: output wire labeled by a sample of M
cliques of at most t vertices. Value 1 if at least one of those
M cliques is present in the input

@ Input gates: edges

Proof Sketch

@ Approximation gate: output wire labeled by a sample of M
cliques of at most t vertices. Value 1 if at least one of those
M cliques is present in the input

@ Input gates: edges

@ OR: take union of the two sets of subsets, and “prune”
to M subsets

Proof Sketch

@ Approximation gate: output wire labeled by a sample of M
cliques of at most t vertices. Value 1 if at least one of those
M cliques is present in the input

@ Input gates: edges

@ OR: take union of the two sets of subsets, and “prune”
to M subsets

@ AND: fake set of pair-wise unions of subsets which are
at most t vertices, and “prune” to M subsets

Proof Sketch

@ Approximation gate: output wire labeled by a sample of M
cliques of at most t vertices. Value 1 if at least one of those
M cliques is present in the input

@ Input gates: edges

@ OR: take union of the two sets of subsets, and “prune”
to M subsets

@ AND: fake set of pair-wise unions of subsets which are
at most t vertices, and “prune” to M subsets

@ Pruning uses "sunflower lemma”: find a sunflower and
replace petals by core

Proof Sketch

Proof Sketch

@ Converting each gate to approximation makes only a few more
examples go wrong

Proof Sketch

@ Converting each gate to approximation makes only a few more
examples go wrong

@ Bounding new false positives among No sets and false
negatives among Yes sets introduced by pruning

Proof Sketch

@ Converting each gate to approximation makes only a few more
examples go wrong

@ Bounding new false positives among No sets and false
negatives among Yes sets introduced by pruning

@ A circuit with only approximation gates errs on a large
number of the examples

Proof Sketch

@ Converting each gate to approximation makes only a few more
examples go wrong

@ Bounding new false positives among No sets and false
negatives among Yes sets introduced by pruning

@ A circuit with only approximation gates errs on a large
number of the examples

@ If output identically "No” then errs on entire Yes set.
Else, output wires label has some subset X, |X| < t = O(J/K),
and then a constant fraction of No-examples get accepted

