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@ Setting

@ Alice wants to compute f(x,y)

@ Alice is given only x. Her friend Bob gets v.

@ Least amount of communication to achieve this
@ Compare with decision tfree complexity

@ Trivial upper-bound of [x|

@ Interested in proving lower bounds for various f
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Examples

o PARITY(x,Y) = DB; (xi®yi)
o CC(PARITY) = 1

o EQ(x,y) = 1 iff x=y

® Lower-bound?

@ DISJ(x,y)=1l if xAy=0"
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Motivation

@ Distributed computing
@ Lower-bounds for Circuit complexity

@ Amount of communication across a cut in the circuit

@ Proving optimality of algorithms and data-structures
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Protocol

@ We'll consider deterministic protocols

@ Fixed number of rounds (Alice to Bob, then Bob to Alice),
each party sends a fixed number of bits in each round

@ Can even consider protocol to have Alice and Bob
alternately exchanging single bits (since not
considering number of rounds)

@ At most doubles the communication complexity
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Protocol Execution

@ i message from Alice is a function of her input and
previous messages

@ Her output is a function of the final “transcript” and
her own input (her “view")

@ Similarly for Bob. His view = franscript + his input

@ #transcripts < 2¢C. i.e. CC > log(#transcripts)
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@ Consider the transcript table

@ If on (a1,b1) and (azbz)
same transcript

@ Then same ftranscript
on (ai,bz) also!

@ Alice and Bob never
realize the difference
through out the
protocol =
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Fooling Set

@ If on (ai;,b)) and (azbz) same
transcript, then same e
transcript on (a1,bz) also

@ Showing a set S of input-pairs |
that must have distinct
transcripts

@ All pairs have same outpuft [

@ "Cross” of no two pairs has []
the same output -

@ If Sis a set of such pairs,
CC 2 log(lSl)
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Fooling Set for EQ

@ S = set of all pairs (x,x) e 53 W )

@ CC(EQ) 2 log(IS]) 2 n -

@ True for any function in
which each row and column
has exactly one 1 =

@ Other functions too

@ e.g.: DISJ(x,y) if xAy=0"

@ S = set of complementary
pairs, (x,~x)
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@ Rectangle: a subset of DixD2
of the form S;xS: i

® Monochromatic: same f-value

@ Recall: for any protocol, set
of all input-pairs with the
same transcript is a rectangle[]

@ For protocol to be correct,
the rectangles should be
monochromatic =
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@ For protocol to be correct,
same-transcript rectangles 7
should be monochromatic b

® Find the least number of
monochromatic rectangles
that can tile the function, L

x(f)

o #transcripts > x(f) -

@ CC(f) 2 log(x(f))

@ How to lower-bound y(f)?
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Lower-Bounding x(f)

@ If a fooling set of size S, no
two input-pairs from S can -~
be on the same tile in a
monochromatic ftiling

o y(f) 2 IS| for every foolingl
set S

@ Rank lower-bound -

o %(f) 2 Rank(My)

@ Discrepancy lower-bound

e %(f) > Discrepancy(f)
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Rank(M)

® Rank of a matrix

® Maximum number of linearly independent rows (or
equivalently, columns)

@ Linear independence: operations in a field

@ Rank-r matrix: after row & column reductions Dmxn) diagonal,
with r 15, rest 0s. M = UDV

@ Rank(M) < 1, iff M can be written as sum of < r rank 1 matrices
@ M = UDV = Zir Dii Uimx1) Viaxn) = Zi<r Bi, where Rank(Bi)=1

@ If M = 2 Bi = UDV, Rank(M) ¢ min{Rank(U),Rank(D),Rank(V )}
< Rank(D) = r
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v(f) > Rank(Mg)

@ If M = 2 B; with Rank(Bi)=1, then Rank(M) < r

@ Ms = 2o Tile;, where Tile; has a monochromatic
rectangle and Os elsewhere

@ Rank(Tilej)=1

@ Rank(Mg) < x(f)

@ CC(f) 2 log(x(f)) 2 log(Rank(M¢))
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Discrepancy

@ Discrepancy of a 0-1 matrix
@ max “imbalance” in any rectangle
@ Imbalance = | #1's - #0ss |
@ Disc(M) = 1/(mn) maxrect imbalance(rect)

o v(f) 2 1/Disc(M¢)

@ Disc(My) 2 1/(mn) (size of largest monochromatic tile)




Discrepancy

@ Discrepancy of a 0-1 matrix
@ max “imbalance” in any rectangle
@ Imbalance = | #1s - #05 |
@ Disc(M) = 1/(mn) maxrect imbalance(rect)
o v(f) 2 1/Disc(M¢)
@ Disc(My) 2 1/(mn) (size of largest monochromatic tile)

e y(f) 2 (mn)/(size of largest monochromatic tile)
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CC Lower-bounds
Summary

@ CC(f) > log(#transcripts)
@ Tiling Lower-bound: #transcripts > y(f)
@ Both fairly tight: CC(f) = O( log(x(f)) )

@ To lower-bound x(f): fooling-set, rank, 1/Disc

e y(f) 2 Imax fooling-set| > (Rank(M¢))?
@ 1/Discrepancy lower-bounds can be very loose

@ Conjecture: Rank(Ms) (and hence fooling set) is fairly tight

@ i.e., CC(f) = O(polylog(Rank(M¢))
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Many Variants

@ Randomized protocols: significant savings in expectation

® Non-deterministic: Alice and Bob are non-deterministic.
"Communication” now includes shared guess

@ Multi-party: Input split across multiple parties. Broadcast
channels for communication.

@ Number on the forehead version
@ Non-boolean output
@ Multi-valued functions: agree on one value

@ Different costs: asymmetric communication, average-case
complexity



