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Complexity

Setting

Alice wants to compute f(x,y)

Alice is given only x. Her friend Bob gets y.

Least amount of communication to achieve this

Compare with decision tree complexity

Trivial upper-bound of |x|

Interested in proving lower bounds for various f
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Examples

PARITY(x,y) = ⊕i (xi⊕yi)
CC(PARITY) = 1

EQ(x,y) = 1 iff x=y

Lower-bound?

DISJ(x,y)=1 if x∧y=0n
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Motivation

Distributed computing

Lower-bounds for Circuit complexity

Amount of communication across a cut in the circuit

Proving optimality of algorithms and data-structures
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Protocol

We’ll consider deterministic protocols

Fixed number of rounds (Alice to Bob, then Bob to Alice), 
each party sends a fixed number of bits in each round

Can even consider protocol to have Alice and Bob 
alternately exchanging single bits (since not 
considering number of rounds)

At most doubles the communication complexity
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Protocol Execution

ith message from Alice is a function of her input and 
previous messages

Her output is a function of the final “transcript” and 
her own input (her “view”)

Similarly for Bob. His view = transcript + his input

#transcripts ≤ 2CC. i.e. CC ≥ log(#transcripts)
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Transcript Table

Consider the transcript table

If on (a1,b1) and (a2,b2) 
same transcript

Then same transcript 
on (a1,b2) also!

Alice and Bob never 
realize the difference 
through out the 
protocol
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Fooling Set
If on (a1,b1) and (a2,b2) same 
transcript, then same 
transcript on (a1,b2) also

Showing a set S of input-pairs 
that must have distinct 
transcripts

All pairs have same output

“Cross” of no two pairs has 
the same output

If S is a set of such pairs,     
CC ≥ log(|S|) 
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Fooling Set for EQ
S = set of all pairs (x,x)

CC(EQ) ≥ log(|S|) ≥ n

True for any function in 
which each row and column 
has exactly one 1

Other functions too

e.g.: DISJ(x,y) if x∧y=0n

S = set of complementary 
pairs, (x,¬x)

9



Monochromatic 
Rectangles

10



Monochromatic 
Rectangles

Rectangle: a subset of D1xD2 
of the form S1xS2

10



Monochromatic 
Rectangles

Rectangle: a subset of D1xD2 
of the form S1xS2

Monochromatic: same f-value

10



Monochromatic 
Rectangles

Rectangle: a subset of D1xD2 
of the form S1xS2

Monochromatic: same f-value

Recall: for any protocol, set 
of all input-pairs with the 
same transcript is a rectangle

10



Monochromatic 
Rectangles

Rectangle: a subset of D1xD2 
of the form S1xS2

Monochromatic: same f-value

Recall: for any protocol, set 
of all input-pairs with the 
same transcript is a rectangle

For protocol to be correct, 
the rectangles should be 
monochromatic
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Tiling Lower-Bound
For protocol to be correct, 
same-transcript rectangles 
should be monochromatic

Find the least number of 
monochromatic rectangles 
that can tile the function,   
χ(f)

#transcripts ≥ χ(f)

CC(f) ≥ log(χ(f))

How to lower-bound χ(f)?
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Lower-Bounding χ(f)
If a fooling set of size S, no 
two input-pairs from S can 
be on the same tile in a 
monochromatic tiling

χ(f) ≥ |S| for every fooling 
set S

Rank lower-bound

χ(f) ≥ Rank(Mf)

Discrepancy lower-bound

χ(f) ≥ Discrepancy(f)
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Rank(M)
Rank of a matrix

Maximum number of linearly independent rows (or 
equivalently, columns)

Linear independence: operations in a field

Rank-r matrix: after row & column reductions D(mxn) diagonal, 
with r 1’s, rest 0’s. M = UDV

Rank(M) ≤ r, iff M can be written as sum of ≤ r rank 1 matrices

M = UDV = Σi≤r Dii Ui(mx1) Vi(1xn) = Σi≤r Bi, where Rank(Bi)=1

If M = Σi≤r Bi = UDV, Rank(M) ≤ min{Rank(U),Rank(D),Rank(V)}  
≤ Rank(D) = r
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If M = Σi≤r Bi with Rank(Bi)=1, then Rank(M) ≤ r

Mf = Σi≤χ(f) Tilei, where Tilei has a monochromatic 
rectangle and 0’s elsewhere

Rank(Tilei)=1

Rank(Mf) ≤ χ(f)

CC(f) ≥ log(χ(f)) ≥ log(Rank(Mf))
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Discrepancy

Discrepancy of a 0-1 matrix

max “imbalance” in any rectangle

Imbalance = | #1’s - #0’s |

Disc(M) = 1/(mn) maxrect imbalance(rect)

χ(f) ≥ 1/Disc(Mf)

Disc(Mf) ≥ 1/(mn) (size of largest monochromatic tile)
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Discrepancy

Discrepancy of a 0-1 matrix

max “imbalance” in any rectangle

Imbalance = | #1’s - #0’s |

Disc(M) = 1/(mn) maxrect imbalance(rect)

χ(f) ≥ 1/Disc(Mf)

Disc(Mf) ≥ 1/(mn) (size of largest monochromatic tile)

χ(f) ≥ (mn)/(size of largest monochromatic tile)
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CC Lower-bounds 
Summary

CC(f) ≥ log(#transcripts)

Tiling Lower-bound: #transcripts ≥ χ(f)

Both fairly tight: CC(f) = O( log2(χ(f)) )

To lower-bound χ(f): fooling-set, rank, 1/Disc

χ(f) ≥ |max fooling-set| ≥ (Rank(Mf))2

1/Discrepancy lower-bounds can be very loose

Conjecture: Rank(Mf) (and hence fooling set) is fairly tight

i.e., CC(f) = O(polylog(Rank(Mf))
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Many Variants
Randomized protocols: significant savings in expectation

Non-deterministic: Alice and Bob are non-deterministic. 
“Communication” now includes shared guess

Multi-party: Input split across multiple parties. Broadcast 
channels for communication.

Number on the forehead version

Non-boolean output

Multi-valued functions: agree on one value

Different costs: asymmetric communication, average-case 
complexity
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