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Decision Trees

A different complexity measure

Number of bits of input read

For simpler problems

Interested in lower-bounds

So even allow unbounded computational power

Simpler combinatorial structure (need not 
understand P vs. NP etc.)
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Decision Trees

Configuration graph of a 
computation, as it reads each 
bit

For n-bit input, depth at 
most n

Some paths may be shorter

DTree(L) = minalg A maxinput x TA,x 
where TA,x is the number of 
bits of x read by A
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Examples

Simpler problems

OR(x)=1 if at least one bit of x is 1

PARITY(x)=1 if odd number of bits of x are 1

SATC(x) if x is a satisfying assignment for circuit 
(or circuit family) C

CONNECTED(G) = 1 if G is the adjacency matrix 
of a connected graph

We are interested in showing DTree lower-bounds 
for these problems
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Adversary Argument
Identifying one input which will cause a shallow decision tree to 
go wrong: Given a decision tree find inputs which lead it to the 
same leaf but must have different outputs

e.g.: DTree(OR) = n (i.e., any correct decision tree will need to 
read all bits in the worst case)

Start with all inputs

At first node restrict to inputs which answer 0, and 
consider the tree’s behavior on such inputs

On second node, further restrict to inputs which answer 0

Before n nodes, set of inputs contain 0n and another input, 
no matter what bits where queried at the nodes
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Graph Connectivity
DTree(CONNECTED) = n(n-1)/2  (i.e., all possible edges)

If possible, answer “No,” but maintain the invariant that 
edges answered “Yes” plus unqueried edges form a 
connected graph.

Yes edges by themselves are connected only if set of 
unqueried edges is empty

Otherwise some Yes edge was unforced: consider the 
cycle formed by an unqueried edge and the connected 
Yes graph

Until then, graph can be connected or disconnected: by 
setting all unqueried edges to Yes or all to No
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Elusive Languages

Languages which require the decision tree to read 
all the bits in the worst case

e.g.: OR, PARITY, CONNECTED

Argued using adversary strategies

Maj(x) = 1 iff #1s in x > #0s (assume |x| odd)

Adversary strategy: alternately answer 0 and 1
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Monotonic Tree Circuits

Tree of AND gates and OR gates (monotonic)

Each variable (leaf) used only once

Is elusive

Answer so that each gate kept undetermined 
until all its leaf-descendants are queried

Exercise
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1-certificate

For x s.t. L(x)=1, a subset of the bits of x which proves 
that L(x)=1 : c s.t. x|c⇒x∈L (i.e., no x’ s.t. L(x’)=0 and 
has the same values at those positions)

0-certificate: similarly for x∉L, c s.t. x|c⇒x∉L
Can be much lower than DTree(L) because for different 
x’s different sets of bits can be used

Produced by someone who has seen all bits of x

1-Cert(L): maxx∈L minc: x|c⇒x∈L |c|   (e.g. 1-Cert(OR) = 1)

0-Cert(L): maxx∉L minc: x|c⇒x∉L |c|  (e.g. 0-Cert(OR) = n)
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DTree(L) ≤ 0Cert(L) x 1Cert(L)
A Decision tree algorithm

Start with a pool of all 0-certificates and all 1-certificates 
(for various x)

While both pools non-empty

Pick a 0-certificate, and query all (remaining) bits in it

If a good 0-certificate, terminate with 0. Else, remove all 
0 and 1 certificates inconsistent with the bits revealed

One pool must be non-empty. Output the corresponding 
answer

Clearly correct. Number of bits read?
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DTree(L) ≤ 0Cert(L) x 1Cert(L)
An undetermined 0-certificate has at least one unrevealed 
conflicting bit with each undetermined 1-certificate

Otherwise it is possible to have an x consistent with both 
those certificates!

Picking such a 0-certificate and querying reduces number of 
unrevealed bits of each remaining 1-certificate by at least 1

Initially at most 1Cert(L) bits in each 1-certificate

So at most 1Cert(L) iterations 

In each iteration at most 0Cert(L) bits queried
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DTree(L) ≤ 0Cert(L) x 1Cert(L)

Example: AND-OR trees

0-certificate: enough variables so that can evaluate 
just one input wire for AND gates, and  all input wires 
for OR gates

1-certificate: enough variables so that can evaluate 
just one input wire for OR gates, and  all input wires 
for AND gates

If regular AND-OR tree, 0Cert(L) x 1Cert(L) = number 
of leaves = DTree(L)
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Studying DTree(L)
Various techniques

Arithmetization: write the boolean function for L 
as a multi-linear polynomial of n boolean variables. 
Then degree is a lower-bound on DTree(L)

Topological criterion for monotone functions: 
construct a simplicial complex corresponding to the 
monotone boolean function. If the simplicial 
complex “not collapsible” then DTree(L)=n

“Sensitivity” is a lower-bound on DTree(L)

Will explore some in exercises
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Randomized Decision Trees

Recall two views of randomized computation

Randomly decide (based on fresh coin flips, and queries 
and answers so far) what variable to query

Flip all coins up front and then run a deterministic 
computation

i.e., randomly choose a (deterministic) decision tree
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Randomized Decision Trees
Complexity measure

Expected number of bits read, max over all inputs

Note: No error allowed (Las Vegas)

Random decision tree chosen independent of the (adversarial) 
input. i.e., input chosen “before” the random choice

Gets more power over the “adversary” 

Adversary can’t find a single pair of inputs that force 
many reads for all random choices

Question: How to prove lower-bounds against randomization?

15



Yao’s Min-Max

16



Yao’s Min-Max
Interested in expected cost (running time)

16



Yao’s Min-Max
Interested in expected cost (running time)

(Deterministic) Algorithms

Input
s TA,x

16



Yao’s Min-Max
Interested in expected cost (running time)

(Deterministic) Algorithms

Input
s TA,x

0.125 0.25 0.5 0.125

a rand
omized 

algorit
hm

16



Yao’s Min-Max
Interested in expected cost (running time)

Standard setting: Pick your randomized 
algorithm R; input x given adversarially (Deterministic) Algorithms

Input
s TA,x

0.125 0.25 0.5 0.125

a rand
omized 

algorit
hm

16



Yao’s Min-Max
Interested in expected cost (running time)

Standard setting: Pick your randomized 
algorithm R; input x given adversarially

(Or may allow random input: not useful to 
the adversary)

(Deterministic) Algorithms

Input
s TA,x

0.125 0.25 0.5 0.125

a rand
omized 

algorit
hm

16



Yao’s Min-Max
Interested in expected cost (running time)

Standard setting: Pick your randomized 
algorithm R; input x given adversarially

(Or may allow random input: not useful to 
the adversary)

Another setting: Given adversarial input 
distribution X; pick your deterministic 
algorithm A

(Deterministic) Algorithms

Input
s TA,x

0.125 0.25 0.5 0.125

a rand
omized 

algorit
hm

16



Yao’s Min-Max
Interested in expected cost (running time)

Standard setting: Pick your randomized 
algorithm R; input x given adversarially

(Or may allow random input: not useful to 
the adversary)

Another setting: Given adversarial input 
distribution X; pick your deterministic 
algorithm A

(Allowing randomized algorithm no better)

(Deterministic) Algorithms

Input
s TA,x

0.125 0.25 0.5 0.125

a rand
omized 

algorit
hm

16



Yao’s Min-Max
Interested in expected cost (running time)

Standard setting: Pick your randomized 
algorithm R; input x given adversarially

(Or may allow random input: not useful to 
the adversary)

Another setting: Given adversarial input 
distribution X; pick your deterministic 
algorithm A

(Allowing randomized algorithm no better)

Both have the same expected cost!! (not 
obvious: follows from LP duality)

(Deterministic) Algorithms

Input
s TA,x
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algorit
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Simpler, but useful direction: for any randomized alg R and any 
input-distribution X, maxinput x EA←R[TA,x] ≥ minalg A Ex←X[TA,x]

If every algorithm A performs badly on an input-distribution X, 
then a randomized combination of those algorithms also perform 
badly on X. If R does badly on X, on some x in its support it 
does at least as badly (x depends on R)

Useful: Can show lower-bound for randomized algorithms via 
lower-bound on distributional complexity for deterministic 
algorithms

Yao’s Min-Max
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