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Decision Trees

@ A different complexity measure
@ Number of bits of input read
@ For simpler problems
@ Interested in lower-bounds
@ So even allow unbounded computational power

@ Simpler combinatorial structure (need not
understand P vs. NP etc.)



Decision Trees




Decision Trees

@ Configuration graph of a
computation, as it reads each
bit




Decision Trees

@ Configuration graph of a /
computation, as it reads each E

bit

\

\
O




Decision Trees

@ Configuration graph of a
computation, as it reads each

(9
@ For n-bit input, depth at / \
most n e

é@ o

3




Decision Trees

@ Configuration graph of a /
computation, as it reads each

©

@ For n-bit inpuf, depth at /
most n @

@ Some paths may be shorter

© O

3

\




Decision Trees

@ Configuration graph of a
computation, as it reads each
bit

@ For n-bit inpuf, depth at
most n

@ Some paths may be shorter

@ DTree(lL) = MiNalg A MAXinput x T A,x
where Tax is the number of
bits of x read by A
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Examples

@ Simpler problems
® OR(x)=1 if at least one bit of x is 1
@ PARITY(x)=1 if odd number of bits of x are 1

@ SATc(x) if x is a satisfying assignment for circuit
(or circuit family) C

® CONNECTED(G) =1 if G is the adjacency matrix
of a connected graph

® We are interested in showing DTree lower-bounds
for these problems



Adversary Argument




Adversary Argument

@ Identifying one input which will cause a shallow decision tree to
go wrong: Given a decision free find inputs which lead it to the
same leaf but must have different outputs




Adversary Argument

@ Identifying one input which will cause a shallow decision tree to
go wrong: Given a decision free find inputs which lead it to the
same leaf but must have different outputs

@ e.g.: DTree(OR) = n (i.e., any correct decision tree will need to
read all bits in the worst case)




Adversary Argument

@ Identifying one input which will cause a shallow decision tree to
go wrong: Given a decision free find inputs which lead it to the
same leaf but must have different outputs

@ e.g.: DTree(OR) = n (i.e., any correct decision tree will need to
read all bits in the worst case)

@ Start with all inputs




Adversary Argument

@ Identifying one input which will cause a shallow decision tree to
go wrong: Given a decision free find inputs which lead it to the
same leaf but must have different outputs

@ e.g.: DTree(OR) = n (i.e., any correct decision tree will need to
read all bits in the worst case)

@ Start with all inputs

@ At first node restrict to inputs which answer O, and
consider the trees behavior on such inputs




Adversary Argument

@ Identifying one input which will cause a shallow decision tree to
go wrong: Given a decision free find inputs which lead it to the
same leaf but must have different outputs

@ e.g.: DTree(OR) = n (i.e., any correct decision tree will need to
read all bits in the worst case)

@ Start with all inputs

@ At first node restrict to inputs which answer O, and
consider the trees behavior on such inputs

@ On second node, further restrict to inputs which answer O




Adversary Argument

@ Identifying one input which will cause a shallow decision tree to
go wrong: Given a decision free find inputs which lead it to the
same leaf but must have different outputs

@ e.g.: DTree(OR) = n (i.e., any correct decision tree will need to
read all bits in the worst case)

@ Start with all inputs

@ At first node restrict to inputs which answer O, and
consider the trees behavior on such inputs

@ On second node, further restrict to inputs which answer O

@ Before n nodes, set of inputs contain 0" and another input,
no matter what bits where queried at the nodes
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Graph Connectivity

@ DTree(CONNECTED) = n(n-1)/2 (i.e., all possible edges)

@ If possible, answer "No,” but maintain the invariant that
edges answered "Yes” plus unqueried edges form a
connected graph.

@ Yes edges by themselves are connected only if set of
unqueried edges is empty

@ Otherwise some Yes edge was unforced: consider the
cycle formed by an unqueried edge and the connected
Yes graph

@ Unftil then, graph can be connected or disconnected: by
setting all unqueried edges to Yes or all o No
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Elusive Languages

@ Languages which require the decision tree to read
all the bits in the worst case

@ e.g.: OR, PARITY, CONNECTED
@ Argued using adversary strategies

@ Maj(x) =1 iff #l1s in x > #0s (assume |x| odd)

@ Adversary strategy: alternately answer O and 1
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Monotonic Tree Circuits

@ Tree of AND gates and OR gates (monotonic)
@ Each variable (leaf) used only once
@ Is elusive

@ Answer so that each gate kept undetermined
until all its leaf-descendants are queried

@ Exercise
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@ l-certificate

@ For x s.t. L(x)=1, a subset of the bits of x which proves
that L(x)=1 : ¢ s.t. xlc=xeL (i.e., no x’ s.t. L(x")=0 and

has the same values at those positions)

@ O-certificate: similarly for xé¢L, ¢ s.t. x|c=xe&L

@ Can be much lower than DTree(L) because for different
x's different sets of bits can be used

@ Produced by someone who has seen all bits of x

D l—Cel"‘l'(L)t MAaXxeL mlnc x|c=xeL ICl (e.g. l-Cer.l'(OR) - 1)

@ 0-Cert(L): maxxeL Minc: xic=xeL Icl (e.g. 0-Cert(OR) = n)
g
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@ A Decision tree algorithm

@ Start with a pool of all O-certificates and all 1-certificates
(for various x)

@ While both pools non-empty
@ Pick a O-certificate, and query all (remaining) bits in it

@ If a good O-certificate, terminate with O. Else, remove all
O and 1 certificates inconsistent with the bits revealed

@ One pool must be non-empty. Output the corresponding
answer

@ Clearly correct. Number of bits read?
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@ Otherwise it is possible to have an x consistent with both
those certificates!

@ Picking such a O-certificate and querying reduces number of
unrevealed bits of each remaining 1-certificate by at least 1

@ Initially at most 1Cert(L) bits in each l-certificate
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DTree(L) < OCert(L) x 1Cert(L)

® An undetermined O-certificate has at least one unrevealed
conflicting bit with each undetermined 1-certificate

@ Otherwise it is possible to have an x consistent with both
those certificates!

@ Picking such a O-certificate and querying reduces number of
unrevealed bits of each remaining 1-certificate by at least 1

@ Initially at most 1Cert(L) bits in each l-certificate
@ So at most 1Cert(L) iterations

@ In each iteration at most OCert(L) bits queried
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@ Example: AND-OR frees

@ O-certificate: enough variables so that can evaluate
just one input wire for AND gates, and all input wires
for OR gates

@ l-certificate: enough variables so that can evaluate

just one input wire for OR gates, and all input wires
for AND gates

@ If reqular AND-OR tree, OCert(L) x 1Cert(L) = number
of leaves = DTree(L)
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Studying DTree(L)

@ Various techniques

@ Arithmetization: write the boolean function for L
as a multi-linear polynomial of n boolean variables.
Then degree is a lower-bound on DTree(L)

@ Topological criterion for monotone functions:
construct a simplicial complex corresponding to the
monotone boolean function. If the simplicial
complex “not collapsible” then DTree(L)=n

@ “Sensitivity” is a lower-bound on DTree(L)

@ Will explore some in exercises
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Randomized Decision Trees

@ Recall two views of randomized computation

@ Randomly decide (based on fresh coin flips, and queries
and answers so far) what variable to query

@ Flip all coins up front and then run a deterministic
computation

@ i.e., randomly choose a (deterministic) decision tree
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Randomized Decision Trees

@ Complexity measure
@ Expected number of bits read, max over all inputs
@ Note: No error allowed (Las Vegas)

@ Random decision tree chosen independent of the (adversarial)
input. i.e., input chosen "before” the random choice

@ Gets more power over the “"adversary”

@ Adversary cant find a single pair of inputs that force
many reads for all random choices

® Question: How to prove lower-bounds against randomization?
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Yaos Min-Max

@ Interested in expected cost (running time)

0,125/ 180:2504.90.5 %1 0:125

@ Standard setting: Pick your randomized
algorithm R; input x given adversarially

@ (Or may allow random input: not useful to
the adversary)

@ Another setting: Given adversarial input
distribution X; pick your deterministic
algorithm A

@ (Allowing randomized algorithm no better)

@ Both have the same expected cost!! (not
obvious: follows from LP duality)
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® MiNrand-alg R MAXinput x EA—R[TAx] = MaXinp-distr x MiNaig o Exex[Tax]

@ Simpler, but useful direction: for any randomized alg R and any
input-distribution X, maxinput x EA—r[Tax] 2 MiNaga Exex[Tax]

@ If every algorithm A performs badly on an input-distribution X,

. If R does badly on X, on some X in its support it
does at least as badly (x depends on R)

@ Useful: Can show lower-bound for randomized algorithms via

lower-bound on distributional complexity for deterministic
algorithms



