
Decision Trees

Lecture 22
To left or to right

1

Decision Trees

2

Decision Trees

A different complexity measure

2

Decision Trees

A different complexity measure

Number of bits of input read

2

Decision Trees

A different complexity measure

Number of bits of input read

For simpler problems

2

Decision Trees

A different complexity measure

Number of bits of input read

For simpler problems

Interested in lower-bounds

2

Decision Trees

A different complexity measure

Number of bits of input read

For simpler problems

Interested in lower-bounds

So even allow unbounded computational power

2

Decision Trees

A different complexity measure

Number of bits of input read

For simpler problems

Interested in lower-bounds

So even allow unbounded computational power

Simpler combinatorial structure (need not
understand P vs. NP etc.)

2

Decision Trees

3

Decision Trees

Configuration graph of a
computation, as it reads each
bit

3

Decision Trees

Configuration graph of a
computation, as it reads each
bit x5

x2

x0

x2

x1 x5

3

Decision Trees

Configuration graph of a
computation, as it reads each
bit

For n-bit input, depth at
most n

x5

x2

x0

x2

x1 x5

3

Decision Trees

Configuration graph of a
computation, as it reads each
bit

For n-bit input, depth at
most n

Some paths may be shorter

x5

x2

x0

x2

x1 x5

3

Decision Trees

Configuration graph of a
computation, as it reads each
bit

For n-bit input, depth at
most n

Some paths may be shorter

DTree(L) = minalg A maxinput x TA,x
where TA,x is the number of
bits of x read by A

x5

x2

x0

x2

x1 x5

3

Examples

4

Examples

Simpler problems

4

Examples

Simpler problems

OR(x)=1 if at least one bit of x is 1

4

Examples

Simpler problems

OR(x)=1 if at least one bit of x is 1

PARITY(x)=1 if odd number of bits of x are 1

4

Examples

Simpler problems

OR(x)=1 if at least one bit of x is 1

PARITY(x)=1 if odd number of bits of x are 1

SATC(x) if x is a satisfying assignment for circuit
(or circuit family) C

4

Examples

Simpler problems

OR(x)=1 if at least one bit of x is 1

PARITY(x)=1 if odd number of bits of x are 1

SATC(x) if x is a satisfying assignment for circuit
(or circuit family) C

CONNECTED(G) = 1 if G is the adjacency matrix
of a connected graph

4

Examples

Simpler problems

OR(x)=1 if at least one bit of x is 1

PARITY(x)=1 if odd number of bits of x are 1

SATC(x) if x is a satisfying assignment for circuit
(or circuit family) C

CONNECTED(G) = 1 if G is the adjacency matrix
of a connected graph

We are interested in showing DTree lower-bounds
for these problems

4

Adversary Argument

5

Adversary Argument
Identifying one input which will cause a shallow decision tree to
go wrong: Given a decision tree find inputs which lead it to the
same leaf but must have different outputs

5

Adversary Argument
Identifying one input which will cause a shallow decision tree to
go wrong: Given a decision tree find inputs which lead it to the
same leaf but must have different outputs

e.g.: DTree(OR) = n (i.e., any correct decision tree will need to
read all bits in the worst case)

5

Adversary Argument
Identifying one input which will cause a shallow decision tree to
go wrong: Given a decision tree find inputs which lead it to the
same leaf but must have different outputs

e.g.: DTree(OR) = n (i.e., any correct decision tree will need to
read all bits in the worst case)

Start with all inputs

5

Adversary Argument
Identifying one input which will cause a shallow decision tree to
go wrong: Given a decision tree find inputs which lead it to the
same leaf but must have different outputs

e.g.: DTree(OR) = n (i.e., any correct decision tree will need to
read all bits in the worst case)

Start with all inputs

At first node restrict to inputs which answer 0, and
consider the tree’s behavior on such inputs

5

Adversary Argument
Identifying one input which will cause a shallow decision tree to
go wrong: Given a decision tree find inputs which lead it to the
same leaf but must have different outputs

e.g.: DTree(OR) = n (i.e., any correct decision tree will need to
read all bits in the worst case)

Start with all inputs

At first node restrict to inputs which answer 0, and
consider the tree’s behavior on such inputs

On second node, further restrict to inputs which answer 0

5

Adversary Argument
Identifying one input which will cause a shallow decision tree to
go wrong: Given a decision tree find inputs which lead it to the
same leaf but must have different outputs

e.g.: DTree(OR) = n (i.e., any correct decision tree will need to
read all bits in the worst case)

Start with all inputs

At first node restrict to inputs which answer 0, and
consider the tree’s behavior on such inputs

On second node, further restrict to inputs which answer 0

Before n nodes, set of inputs contain 0n and another input,
no matter what bits where queried at the nodes

5

Graph Connectivity

6

Graph Connectivity
DTree(CONNECTED) = n(n-1)/2 (i.e., all possible edges)

6

Graph Connectivity
DTree(CONNECTED) = n(n-1)/2 (i.e., all possible edges)

If possible, answer “No,” but maintain the invariant that
edges answered “Yes” plus unqueried edges form a
connected graph.

6

Graph Connectivity
DTree(CONNECTED) = n(n-1)/2 (i.e., all possible edges)

If possible, answer “No,” but maintain the invariant that
edges answered “Yes” plus unqueried edges form a
connected graph.

Yes edges by themselves are connected only if set of
unqueried edges is empty

6

Graph Connectivity
DTree(CONNECTED) = n(n-1)/2 (i.e., all possible edges)

If possible, answer “No,” but maintain the invariant that
edges answered “Yes” plus unqueried edges form a
connected graph.

Yes edges by themselves are connected only if set of
unqueried edges is empty

Otherwise some Yes edge was unforced: consider the
cycle formed by an unqueried edge and the connected
Yes graph

6

Graph Connectivity
DTree(CONNECTED) = n(n-1)/2 (i.e., all possible edges)

If possible, answer “No,” but maintain the invariant that
edges answered “Yes” plus unqueried edges form a
connected graph.

Yes edges by themselves are connected only if set of
unqueried edges is empty

Otherwise some Yes edge was unforced: consider the
cycle formed by an unqueried edge and the connected
Yes graph

Until then, graph can be connected or disconnected: by
setting all unqueried edges to Yes or all to No

6

Elusive Languages

7

Elusive Languages

Languages which require the decision tree to read
all the bits in the worst case

7

Elusive Languages

Languages which require the decision tree to read
all the bits in the worst case

e.g.: OR, PARITY, CONNECTED

7

Elusive Languages

Languages which require the decision tree to read
all the bits in the worst case

e.g.: OR, PARITY, CONNECTED

Argued using adversary strategies

7

Elusive Languages

Languages which require the decision tree to read
all the bits in the worst case

e.g.: OR, PARITY, CONNECTED

Argued using adversary strategies

Maj(x) = 1 iff #1s in x > #0s (assume |x| odd)

7

Elusive Languages

Languages which require the decision tree to read
all the bits in the worst case

e.g.: OR, PARITY, CONNECTED

Argued using adversary strategies

Maj(x) = 1 iff #1s in x > #0s (assume |x| odd)

Adversary strategy: alternately answer 0 and 1

7

Monotonic Tree Circuits

8

Monotonic Tree Circuits

Tree of AND gates and OR gates (monotonic)

8

Monotonic Tree Circuits

Tree of AND gates and OR gates (monotonic)

Each variable (leaf) used only once

8

Monotonic Tree Circuits

Tree of AND gates and OR gates (monotonic)

Each variable (leaf) used only once

Is elusive

8

Monotonic Tree Circuits

Tree of AND gates and OR gates (monotonic)

Each variable (leaf) used only once

Is elusive

Answer so that each gate kept undetermined
until all its leaf-descendants are queried

8

Monotonic Tree Circuits

Tree of AND gates and OR gates (monotonic)

Each variable (leaf) used only once

Is elusive

Answer so that each gate kept undetermined
until all its leaf-descendants are queried

Exercise

8

Certificate Complexity

9

Certificate Complexity
1-certificate

9

Certificate Complexity
1-certificate

For x s.t. L(x)=1, a subset of the bits of x which proves
that L(x)=1 : c s.t. x|c⇒x∈L (i.e., no x’ s.t. L(x’)=0 and
has the same values at those positions)

9

Certificate Complexity
1-certificate

For x s.t. L(x)=1, a subset of the bits of x which proves
that L(x)=1 : c s.t. x|c⇒x∈L (i.e., no x’ s.t. L(x’)=0 and
has the same values at those positions)

0-certificate: similarly for x∉L, c s.t. x|c⇒x∉L

9

Certificate Complexity
1-certificate

For x s.t. L(x)=1, a subset of the bits of x which proves
that L(x)=1 : c s.t. x|c⇒x∈L (i.e., no x’ s.t. L(x’)=0 and
has the same values at those positions)

0-certificate: similarly for x∉L, c s.t. x|c⇒x∉L
Can be much lower than DTree(L) because for different
x’s different sets of bits can be used

9

Certificate Complexity
1-certificate

For x s.t. L(x)=1, a subset of the bits of x which proves
that L(x)=1 : c s.t. x|c⇒x∈L (i.e., no x’ s.t. L(x’)=0 and
has the same values at those positions)

0-certificate: similarly for x∉L, c s.t. x|c⇒x∉L
Can be much lower than DTree(L) because for different
x’s different sets of bits can be used

Produced by someone who has seen all bits of x

9

Certificate Complexity
1-certificate

For x s.t. L(x)=1, a subset of the bits of x which proves
that L(x)=1 : c s.t. x|c⇒x∈L (i.e., no x’ s.t. L(x’)=0 and
has the same values at those positions)

0-certificate: similarly for x∉L, c s.t. x|c⇒x∉L
Can be much lower than DTree(L) because for different
x’s different sets of bits can be used

Produced by someone who has seen all bits of x

1-Cert(L): maxx∈L minc: x|c⇒x∈L |c| (e.g. 1-Cert(OR) = 1)

9

Certificate Complexity
1-certificate

For x s.t. L(x)=1, a subset of the bits of x which proves
that L(x)=1 : c s.t. x|c⇒x∈L (i.e., no x’ s.t. L(x’)=0 and
has the same values at those positions)

0-certificate: similarly for x∉L, c s.t. x|c⇒x∉L
Can be much lower than DTree(L) because for different
x’s different sets of bits can be used

Produced by someone who has seen all bits of x

1-Cert(L): maxx∈L minc: x|c⇒x∈L |c| (e.g. 1-Cert(OR) = 1)

0-Cert(L): maxx∉L minc: x|c⇒x∉L |c| (e.g. 0-Cert(OR) = n)
9

DTree(L) ≤ 0Cert(L) x 1Cert(L)

10

DTree(L) ≤ 0Cert(L) x 1Cert(L)
A Decision tree algorithm

10

DTree(L) ≤ 0Cert(L) x 1Cert(L)
A Decision tree algorithm

Start with a pool of all 0-certificates and all 1-certificates
(for various x)

10

DTree(L) ≤ 0Cert(L) x 1Cert(L)
A Decision tree algorithm

Start with a pool of all 0-certificates and all 1-certificates
(for various x)

While both pools non-empty

10

DTree(L) ≤ 0Cert(L) x 1Cert(L)
A Decision tree algorithm

Start with a pool of all 0-certificates and all 1-certificates
(for various x)

While both pools non-empty

Pick a 0-certificate, and query all (remaining) bits in it

10

DTree(L) ≤ 0Cert(L) x 1Cert(L)
A Decision tree algorithm

Start with a pool of all 0-certificates and all 1-certificates
(for various x)

While both pools non-empty

Pick a 0-certificate, and query all (remaining) bits in it

If a good 0-certificate, terminate with 0. Else, remove all
0 and 1 certificates inconsistent with the bits revealed

10

DTree(L) ≤ 0Cert(L) x 1Cert(L)
A Decision tree algorithm

Start with a pool of all 0-certificates and all 1-certificates
(for various x)

While both pools non-empty

Pick a 0-certificate, and query all (remaining) bits in it

If a good 0-certificate, terminate with 0. Else, remove all
0 and 1 certificates inconsistent with the bits revealed

One pool must be non-empty. Output the corresponding
answer

10

DTree(L) ≤ 0Cert(L) x 1Cert(L)
A Decision tree algorithm

Start with a pool of all 0-certificates and all 1-certificates
(for various x)

While both pools non-empty

Pick a 0-certificate, and query all (remaining) bits in it

If a good 0-certificate, terminate with 0. Else, remove all
0 and 1 certificates inconsistent with the bits revealed

One pool must be non-empty. Output the corresponding
answer

Clearly correct. Number of bits read?
10

DTree(L) ≤ 0Cert(L) x 1Cert(L)

11

DTree(L) ≤ 0Cert(L) x 1Cert(L)
An undetermined 0-certificate has at least one unrevealed
conflicting bit with each undetermined 1-certificate

11

DTree(L) ≤ 0Cert(L) x 1Cert(L)
An undetermined 0-certificate has at least one unrevealed
conflicting bit with each undetermined 1-certificate

Otherwise it is possible to have an x consistent with both
those certificates!

11

DTree(L) ≤ 0Cert(L) x 1Cert(L)
An undetermined 0-certificate has at least one unrevealed
conflicting bit with each undetermined 1-certificate

Otherwise it is possible to have an x consistent with both
those certificates!

Picking such a 0-certificate and querying reduces number of
unrevealed bits of each remaining 1-certificate by at least 1

11

DTree(L) ≤ 0Cert(L) x 1Cert(L)
An undetermined 0-certificate has at least one unrevealed
conflicting bit with each undetermined 1-certificate

Otherwise it is possible to have an x consistent with both
those certificates!

Picking such a 0-certificate and querying reduces number of
unrevealed bits of each remaining 1-certificate by at least 1

Initially at most 1Cert(L) bits in each 1-certificate

11

DTree(L) ≤ 0Cert(L) x 1Cert(L)
An undetermined 0-certificate has at least one unrevealed
conflicting bit with each undetermined 1-certificate

Otherwise it is possible to have an x consistent with both
those certificates!

Picking such a 0-certificate and querying reduces number of
unrevealed bits of each remaining 1-certificate by at least 1

Initially at most 1Cert(L) bits in each 1-certificate

So at most 1Cert(L) iterations

11

DTree(L) ≤ 0Cert(L) x 1Cert(L)
An undetermined 0-certificate has at least one unrevealed
conflicting bit with each undetermined 1-certificate

Otherwise it is possible to have an x consistent with both
those certificates!

Picking such a 0-certificate and querying reduces number of
unrevealed bits of each remaining 1-certificate by at least 1

Initially at most 1Cert(L) bits in each 1-certificate

So at most 1Cert(L) iterations

In each iteration at most 0Cert(L) bits queried

11

DTree(L) ≤ 0Cert(L) x 1Cert(L)

12

DTree(L) ≤ 0Cert(L) x 1Cert(L)

Example: AND-OR trees

12

DTree(L) ≤ 0Cert(L) x 1Cert(L)

Example: AND-OR trees

0-certificate: enough variables so that can evaluate
just one input wire for AND gates, and all input wires
for OR gates

12

DTree(L) ≤ 0Cert(L) x 1Cert(L)

Example: AND-OR trees

0-certificate: enough variables so that can evaluate
just one input wire for AND gates, and all input wires
for OR gates

1-certificate: enough variables so that can evaluate
just one input wire for OR gates, and all input wires
for AND gates

12

DTree(L) ≤ 0Cert(L) x 1Cert(L)

Example: AND-OR trees

0-certificate: enough variables so that can evaluate
just one input wire for AND gates, and all input wires
for OR gates

1-certificate: enough variables so that can evaluate
just one input wire for OR gates, and all input wires
for AND gates

If regular AND-OR tree, 0Cert(L) x 1Cert(L) = number
of leaves = DTree(L)

12

Studying DTree(L)

13

Studying DTree(L)
Various techniques

13

Studying DTree(L)
Various techniques

Arithmetization: write the boolean function for L
as a multi-linear polynomial of n boolean variables.
Then degree is a lower-bound on DTree(L)

13

Studying DTree(L)
Various techniques

Arithmetization: write the boolean function for L
as a multi-linear polynomial of n boolean variables.
Then degree is a lower-bound on DTree(L)

Topological criterion for monotone functions:
construct a simplicial complex corresponding to the
monotone boolean function. If the simplicial
complex “not collapsible” then DTree(L)=n

13

Studying DTree(L)
Various techniques

Arithmetization: write the boolean function for L
as a multi-linear polynomial of n boolean variables.
Then degree is a lower-bound on DTree(L)

Topological criterion for monotone functions:
construct a simplicial complex corresponding to the
monotone boolean function. If the simplicial
complex “not collapsible” then DTree(L)=n

“Sensitivity” is a lower-bound on DTree(L)

13

Studying DTree(L)
Various techniques

Arithmetization: write the boolean function for L
as a multi-linear polynomial of n boolean variables.
Then degree is a lower-bound on DTree(L)

Topological criterion for monotone functions:
construct a simplicial complex corresponding to the
monotone boolean function. If the simplicial
complex “not collapsible” then DTree(L)=n

“Sensitivity” is a lower-bound on DTree(L)

Will explore some in exercises

13

Randomized Decision Trees

14

Randomized Decision Trees

Recall two views of randomized computation

14

Randomized Decision Trees

Recall two views of randomized computation

Randomly decide (based on fresh coin flips, and queries
and answers so far) what variable to query

14

Randomized Decision Trees

Recall two views of randomized computation

Randomly decide (based on fresh coin flips, and queries
and answers so far) what variable to query

Flip all coins up front and then run a deterministic
computation

14

Randomized Decision Trees

Recall two views of randomized computation

Randomly decide (based on fresh coin flips, and queries
and answers so far) what variable to query

Flip all coins up front and then run a deterministic
computation

i.e., randomly choose a (deterministic) decision tree

14

Randomized Decision Trees

15

Randomized Decision Trees
Complexity measure

15

Randomized Decision Trees
Complexity measure

Expected number of bits read, max over all inputs

15

Randomized Decision Trees
Complexity measure

Expected number of bits read, max over all inputs

Note: No error allowed (Las Vegas)

15

Randomized Decision Trees
Complexity measure

Expected number of bits read, max over all inputs

Note: No error allowed (Las Vegas)

Random decision tree chosen independent of the (adversarial)
input. i.e., input chosen “before” the random choice

15

Randomized Decision Trees
Complexity measure

Expected number of bits read, max over all inputs

Note: No error allowed (Las Vegas)

Random decision tree chosen independent of the (adversarial)
input. i.e., input chosen “before” the random choice

Gets more power over the “adversary”

15

Randomized Decision Trees
Complexity measure

Expected number of bits read, max over all inputs

Note: No error allowed (Las Vegas)

Random decision tree chosen independent of the (adversarial)
input. i.e., input chosen “before” the random choice

Gets more power over the “adversary”

Adversary can’t find a single pair of inputs that force
many reads for all random choices

15

Randomized Decision Trees
Complexity measure

Expected number of bits read, max over all inputs

Note: No error allowed (Las Vegas)

Random decision tree chosen independent of the (adversarial)
input. i.e., input chosen “before” the random choice

Gets more power over the “adversary”

Adversary can’t find a single pair of inputs that force
many reads for all random choices

Question: How to prove lower-bounds against randomization?

15

Yao’s Min-Max

16

Yao’s Min-Max
Interested in expected cost (running time)

16

Yao’s Min-Max
Interested in expected cost (running time)

(Deterministic) Algorithms

Input
s TA,x

16

Yao’s Min-Max
Interested in expected cost (running time)

(Deterministic) Algorithms

Input
s TA,x

0.125 0.25 0.5 0.125

a rand
omized

algorit
hm

16

Yao’s Min-Max
Interested in expected cost (running time)

Standard setting: Pick your randomized
algorithm R; input x given adversarially (Deterministic) Algorithms

Input
s TA,x

0.125 0.25 0.5 0.125

a rand
omized

algorit
hm

16

Yao’s Min-Max
Interested in expected cost (running time)

Standard setting: Pick your randomized
algorithm R; input x given adversarially

(Or may allow random input: not useful to
the adversary)

(Deterministic) Algorithms

Input
s TA,x

0.125 0.25 0.5 0.125

a rand
omized

algorit
hm

16

Yao’s Min-Max
Interested in expected cost (running time)

Standard setting: Pick your randomized
algorithm R; input x given adversarially

(Or may allow random input: not useful to
the adversary)

Another setting: Given adversarial input
distribution X; pick your deterministic
algorithm A

(Deterministic) Algorithms

Input
s TA,x

0.125 0.25 0.5 0.125

a rand
omized

algorit
hm

16

Yao’s Min-Max
Interested in expected cost (running time)

Standard setting: Pick your randomized
algorithm R; input x given adversarially

(Or may allow random input: not useful to
the adversary)

Another setting: Given adversarial input
distribution X; pick your deterministic
algorithm A

(Allowing randomized algorithm no better)

(Deterministic) Algorithms

Input
s TA,x

0.125 0.25 0.5 0.125

a rand
omized

algorit
hm

16

Yao’s Min-Max
Interested in expected cost (running time)

Standard setting: Pick your randomized
algorithm R; input x given adversarially

(Or may allow random input: not useful to
the adversary)

Another setting: Given adversarial input
distribution X; pick your deterministic
algorithm A

(Allowing randomized algorithm no better)

Both have the same expected cost!! (not
obvious: follows from LP duality)

(Deterministic) Algorithms

Input
s TA,x

0.125 0.25 0.5 0.125

a rand
omized

algorit
hm

16

Yao’s Min-Max

17

minrand-alg R maxinput x EA←R[TA,x] = maxinp-distr X minalg A Ex←X[TA,x]

Yao’s Min-Max

17

minrand-alg R maxinput x EA←R[TA,x] = maxinp-distr X minalg A Ex←X[TA,x]

Simpler, but useful direction: for any randomized alg R and any
input-distribution X, maxinput x EA←R[TA,x] ≥ minalg A Ex←X[TA,x]

Yao’s Min-Max

17

minrand-alg R maxinput x EA←R[TA,x] = maxinp-distr X minalg A Ex←X[TA,x]

Simpler, but useful direction: for any randomized alg R and any
input-distribution X, maxinput x EA←R[TA,x] ≥ minalg A Ex←X[TA,x]

If every algorithm A performs badly on an input-distribution X,
then a randomized combination of those algorithms also perform
badly on X. If R does badly on X, on some x in its support it
does at least as badly (x depends on R)

Yao’s Min-Max

17

minrand-alg R maxinput x EA←R[TA,x] = maxinp-distr X minalg A Ex←X[TA,x]

Simpler, but useful direction: for any randomized alg R and any
input-distribution X, maxinput x EA←R[TA,x] ≥ minalg A Ex←X[TA,x]

If every algorithm A performs badly on an input-distribution X,
then a randomized combination of those algorithms also perform
badly on X. If R does badly on X, on some x in its support it
does at least as badly (x depends on R)

Useful: Can show lower-bound for randomized algorithms via
lower-bound on distributional complexity for deterministic
algorithms

Yao’s Min-Max

17

