Complexity of Counting

Lecture 21
P: Toda’s Theorem

Last Time

Last Time

@ #P: counting problems of the form #R(x) = |[{w: R(x,w)=1}|,
where R is a polynomial time relation

Last Time

@ #P: counting problems of the form #R(x) = |[{w: R(x,w)=1}|,
where R is a polynomial time relation

@ Can be hard: even #CYCLE is not in FP (unless P = NP)

Last Time

@ #P: counting problems of the form #R(x) = |[{w: R(x,w)=1}|,
where R is a polynomial time relation

@ Can be hard: even #CYCLE is not in FP (unless P = NP)

@ #P C FP"® (and PP c P#P)

Last Time

@ #P: counting problems of the form #R(x) = |[{w: R(x,w)=1}|,
where R is a polynomial time relation

@ Can be hard: even #CYCLE is not in FP (unless P = NP)

@ #P C FP"® (and PP c P#P)

@ #P complete problems

Last Time

@ #P: counting problems of the form #R(x) = |[{w: R(x,w)=1}|,
where R is a polynomial time relation

@ Can be hard: even #CYCLE is not in FP (unless P = NP)

@ #P C FP"® (and PP c P#P)

@ #P complete problems

@ HSAT

Last Time

@ #P: counting problems of the form #R(x) = |[{w: R(x,w)=1}|,
where R is a polynomial time relation

@ Can be hard: even #CYCLE is not in FP (unless P = NP)

@ #P C FP"® (and PP c P#P)

@ #P complete problems

@ HSAT

® Permanent

Last Time

@ #P: counting problems of the form #R(x) = |[{w: R(x,w)=1}|,
where R is a polynomial time relation

@ Can be hard: even #CYCLE is not in FP (unless P = NP)

@ #P C FP"® (and PP c P#P)

@ #P complete problems
@ HSAT
@ Permanent

@ Next: Toda's Theorem: PH c P#P = pPP

OP

OP

@ DP: parity of the number of witnesses

OP

@ DP: parity of the number of witnesses

@ e.g. DSAT. Least significant bit of #SAT.

OP

@ DP: parity of the number of witnesses

@ e.g. DSAT. Least significant bit of #SAT.

@ May not be as powerful as PP (or #P)

OP

@ DP: parity of the number of witnesses
@ e.g. DSAT. Least significant bit of #SAT.

@ May not be as powerful as PP (or #P)

@ @©P < P may not imply NP = P

OP

@ DP: parity of the number of witnesses
@ e.g. DSAT. Least significant bit of #SAT.

@ May not be as powerful as PP (or #P)

@ @©P < P may not imply NP = P

@ But it does imply NP S RP (even if only ©P < RP)

OP

@ DP: parity of the number of witnesses
@ e.g. DSAT. Least significant bit of #SAT.

@ May not be as powerful as PP (or #P)

@ @©P < P may not imply NP = P

@ But it does imply NP S RP (even if only ©P < RP)

® Randomized reduction of NP to ®P

OP

@ DP: parity of the number of witnesses
@ e.g. DSAT. Least significant bit of #SAT.

@ May not be as powerful as PP (or #P)

@ @©P < P may not imply NP = P

@ But it does imply NP S RP (even if only ©P < RP)

® Randomized reduction of NP to ®P

@ i.e., DP oracle is quite useful to randomized algorithms

OP

@ DP: parity of the number of witnesses
@ e.g. DSAT. Least significant bit of #SAT.

@ May not be as powerful as PP (or #P)

@ @©P < P may not imply NP = P

@ But it does imply NP S RP (even if only ©P < RP)

® Randomized reduction of NP to ®P

@ i.e., DP oracle is quite useful to randomized algorithms

©P € RP = NP=RP

®P € RP = NP=RP

® Randomized reduction of NP to ®©P

@®P C RP = NP=RP

® Randomized reduction of NP to ®©P

@ A probabilistic polynomial fime algorithm A such that

®P € RP = NP=RP

® Randomized reduction of NP to ®©P

@ A probabilistic polynomial fime algorithm A such that

@ P & SAT = Pr[A(p) € DSAT] =0

©P € RP = NP=RP

® Randomized reduction of NP to ®©P

@ A probabilistic polynomial fime algorithm A such that

@ P & SAT = Pr[A(p) € DSAT] =0

@ In fact A(¢p) will have no satisfying assignment

©P € RP = NP=RP

® Randomized reduction of NP to ®©P

@ A probabilistic polynomial fime algorithm A such that

@ P & SAT = Pr[A(p) € DSAT] =0

@ In fact A(¢p) will have no satisfying assignment

@ p € SAT = Pr[A(p) € DSAT] 2 €(n)

©P € RP = NP=RP

® Randomized reduction of NP to ®©P

@ A probabilistic polynomial fime algorithm A such that

@ P & SAT = Pr[A(p) € DSAT] =0

@ In fact A(¢p) will have no satisfying assignment

@ p € SAT = Pr[A(p) € DSAT] 2 €(n)

@ With prob. > €(n), A(¢p) will have exactly one satisfying
assignment

©P € RP = NP=RP

® Randomized reduction of NP to ®©P

@ A probabilistic polynomial fime algorithm A such that

@ P & SAT = Pr[A(p) € DSAT] =0

@ In fact A(¢p) will have no satisfying assignment

@ p € SAT = Pr[A(p) € DSAT] 2 €(n)

@ With prob. > €(n), A(¢p) will have exactly one satisfying
assignment

@ If an RP algorithm for @SAT, then an RP algorithm for SAT

©P € RP = NP=RP

@®P C RP = NP=RP

@ Randomized reduction of SAT fo Unique-SAT: A probabilistic
polynomial time algorithm A such that

@®P C RP = NP=RP

@ Randomized reduction of SAT fo Unique-SAT: A probabilistic
polynomial time algorithm A such that

o If ¢ € SAT, with prob. > €(n), Ap will have exactly one

satisfying assignment. Else Ay will have none.

©P € RP = NP=RP

@ Randomized reduction of SAT fo Unique-SAT: A probabilistic
polynomial time algorithm A such that

o If ¢ € SAT, with prob. > €(n), Ap will have exactly one

satisfying assignment. Else Ay will have none.

@ Add a filter which will pass exactly one witness (if any):
Ao(w) = @(w) and filter(w)

Hashing for unique preimage

Hashing for unique preimage

@ Let SCX be a set of size m. Consider a pair-wise independent

hash-function family H, from X to R, such that |SI/IR| € [1/4,1/2].

Hashing for unique preimage

@ Let SCX be a set of size m. Consider a pair-wise independent

hash-function family H, from X to R, such that |SI/IR| € [1/4,1/2].

@ Pri[h(x)=0] = 1/IR| =: p, and Prn[h(x)=h(y)=0] = p2. |Slp € [1/4,1/2].

Hashing for unique preimage

@ Let SCX be a set of size m. Consider a pair-wise independent

hash-function family H, from X to R, such that |SI/IR| € [1/4,1/2].

@ Pri[h(x)=0] = 1/IR| =: p, and Prn[h(x)=h(y)=0] = p2. |Slp € [1/4,1/2].

@ Let N := |[{x € S| h(x)=0}|. Pri[N=1] = Prn[N21] -Prn[N2>2]

Hashing for unique preimage

@ Let SCX be a set of size m. Consider a pair-wise independent
hash-function family H, from X to R, such that |SI/IR| € [1/4,1/2].
@ Pri[h(x)=0] = 1/IR| =: p, and Prn[h(x)=h(y)=0] = p2. |Slp € [1/4,1/2].

@ Let N := |[{x € S| h(x)=0}|. Pri[N=1] = Prn[N21] -Prn[N2>2]

@ By inclusion-exclusion: Pra[N21] > 24 Priu[h(x)=0] -2y Pra[h(x)=h(y)=0]

Hashing for unique preimage

@ Let SCX be a set of size m. Consider a pair-wise independent
hash-function family H, from X to R, such that |SI/IR| € [1/4,1/2].
@ Pri[h(x)=0] = 1/IR| =: p, and Prn[h(x)=h(y)=0] = p2. |Slp € [1/4,1/2].
@ Let N := |[{x € S| h(x)=0}|. Pri[N=1] = Prn[N21] -Prn[N2>2]

@ By inclusion-exclusion: Pra[N21] > 24 Priu[h(x)=0] -2y Pra[h(x)=h(y)=0]

T glp

Hashing for unique preimage

@ Let SCX be a set of size m. Consider a pair-wise independent
hash-function family H, from X to R, such that |SI/IR| € [1/4,1/2].
@ Pri[h(x)=0] = 1/IR| =: p, and Prn[h(x)=h(y)=0] = p2. |Slp € [1/4,1/2].
@ Let N := |[{x € S| h(x)=0}|. Pri[N=1] = Prn[N21] -Prn[N2>2]

@ By inclusion-exclusion: Pra[N21] > 24 Priu[h(x)=0] -2y Pra[h(x)=h(y)=0]

i A
(ISl choose 2)p

Hashing for unique preimage

@ Let SCX be a set of size m. Consider a pair-wise independent
hash-function family H, from X to R, such that |SI/IR| € [1/4,1/2].
@ Pri[h(x)=0] = 1/IR| =: p, and Prn[h(x)=h(y)=0] = p2. |Slp € [1/4,1/2].
@ Let N := |[{x € S| h(x)=0}|. Pri[N=1] = Prn[N21] -Prn[N2>2]

@ By inclusion-exclusion: Pra[N21] > 24 Priu[h(x)=0] -2y Pra[h(x)=h(y)=0]
\ S

N
@ By Union-bound: Pri[N22] < 2.,y Pri[h(x)=h(y)=0] (ISl choose 2)p

Hashing for unique preimage

@ Let SCX be a set of size m. Consider a pair-wise independent
hash-function family H, from X to R, such that |SI/IR| € [1/4,1/2].
@ Pri[h(x)=0] = 1/IR| =: p, and Prn[h(x)=h(y)=0] = p2. |Slp € [1/4,1/2].
@ Let N := |[{x € S| h(x)=0}|. Pri[N=1] = Prn[N21] -Prn[N2>2]

@ By inclusion-exclusion: Pra[N21] > 24 Priu[h(x)=0] -2y Pra[h(x)=h(y)=0]
\ S

N
@ By Union-bound: Pri[N22] < 24,y Pria[h(X)=h(y)= O]/*(ISI choose 2)p

Hashing for

unique preimage

@ Let SCX be a set of size m. Consider a pair-wise independent

hash-function family H, from X to R, such that |SI/IR| € [1/4,1/2].

@ Pri[h(x)=0] = 1/IR| =: p, and Prn[h(x)=h(y)=0] = p2. |Slp € [1/4,1/2].

@ Let N := |[{x € S| h(x)=0}|. Pri[N=1] = Prn[N21] -Prn[N2>2]

@ By inclusion-exclusion: Pra[N21] > 24 Priu[h(x)=0] -2y Pra[h(x)=h(y)=0]

@ By Union-bound: Pri[N22]

@ Pri[N=1] 2 IS| p - 2 (IS

\ S
< 2xsy Pri[h(x)=h(y)= O]/‘*(lSI choose 2)p

choose 2) p2 > [Slp - (ISlp)? > 3/16

©P € RP = NP=RP

@ Randomized reduction of SAT to Unique-SAT: A probabilistic
polynomial time algorithm A such that

o If ¢ € SAT, with prob. > €(n), Ap will have exactly one

satisfying assignment. Else Ay will have none.

@ Add a filter which will pass exactly one witness (if any):
Ao(w) = @(w) and filter(w)

©P € RP = NP=RP

@ Randomized reduction of SAT to Unique-SAT: A probabilistic
polynomial time algorithm A such that

o If ¢ € SAT, with prob. > €(n), Ap will have exactly one

satisfying assignment. Else Ay will have none.

@ Add a filter which will pass exactly one witness (if any):
Ao(w) = @(w) and filter(w)

o filter(w): a Boolean formula saying h(w)=0. (If using auxiliary
variables, i.e., dz filter(w,z), use a parsimonious reduction.)

©P € RP = NP=RP

@ Randomized reduction of SAT to Unique-SAT: A probabilistic
polynomial time algorithm A such that

o If ¢ € SAT, with prob. > €(n), Ap will have exactly one

satisfying assignment. Else Ay will have none.

@ Add a filter which will pass exactly one witness (if any):
Ao(w) = @(w) and filter(w)

o filter(w): a Boolean formula saying h(w)=0. (If using auxiliary
variables, i.e., dz filter(w,z), use a parsimonious reduction.)

o If witness n-bit long (IX|=10,1}"), pick R={0,1}¥, with k random
in the range [1,n]

Reducing PH to P#*

Reducing PH to P#*

@ Two steps

Reducing PH to P#*

@ Two steps

Randomized reduction of PH to PP

Reducing PH to P#*

@ Two steps

Randomized reduction of PH to PP

@ Converting the probabilistic guarantee to a
deterministic #P statement

Quantifier Gallery!

Quantifier Gallery!

=

For at least one

Quantifier Gallery!

= \4

For at least one For all

Quantifier Gallery!

= \4

For at least one For all

=P

For at least r fraction

Quantifier Gallery!

= \4

For at least one For all

=P

For at least r fraction

=1

For exactly one

Quantifier Gallery!

= \4

For at least one For all

=P

For at least r fraction

=1 S

For exactly one For an odd number of

QBF to @ BF

QBF to @ BF

® We have a randomized reduction: @ to Ay such that

QBF to @ BF

® We have a randomized reduction: @ to Ay such that

o dw p(w) = Dy As(w) with prob. > €(n)

QBF to @ BF

® We have a randomized reduction: @ to Ay such that

o dw p(w) = Dy As(w) with prob. > €(n)

@ V. not @(w) = not ®w Ae(w) (with prob. = 1)

QBF to @ BF

® We have a randomized reduction: @ to Ay such that

o dw p(w) = Dy As(w) with prob. > €(n)

@ V. not @(w) = not ®w Ae(w) (with prob. = 1)

@ i.e., with prob > €(n), we have (and hence

also)

QBF to @ BF

® We have a randomized reduction: @ to Ay such that

o dw p(w) = Dy As(w) with prob. > €(n)

@ V. not @(w) = not ®w Ae(w) (with prob. = 1)

@ i.e., with prob > €(n), we have (and hence

also)

@ Reduction works even if @(w) is a partially quantified Boolean
formula

QBF to @ BF

® We have a randomized reduction: @ to Ay such that

o dw p(w) = Dy As(w) with prob. > €(n)

@ V. not @(w) = not ®w Ae(w) (with prob. = 1)

@ i.e., with prob > €(n), we have (and hence

also)

@ Reduction works even if @(w) is a partially quantified Boolean
formula

@ Can all 3/V be removed, by repeating, so that only © remain?

Some H# arithmetic

Some H# arithmetic

@ Given two boolean formulas ®(x) and W(y), define

Some H# arithmetic

@ Given two boolean formulas ®(x) and W(y), define

@ Fo.ulxy): ©(x) and Y(y)

Some H# arithmetic

@ Given two boolean formulas ®(x) and W(y), define

@ Fo.ulxy): ©(x) and Y(y)

@ HFpyp=HQ . #Y

Some H# arithmetic

@ Given two boolean formulas ®(x) and W(y), define

o Fo.p(x,y): @©(x) and W(y)
o HFoyp=HP . HYP

@ Fosp(x,y,2): (z=0,y=0 and ©(x)) or (z=1,x=0 and Y(y))

Some H# arithmetic

@ Given two boolean formulas ®(x) and W(y), define
@ Fo.u(x,y): @(x) and Y(y)
o #Fpy= HQ . #Y

@ Fosp(x,y,2): (z=0,y=0 and ©(x)) or (z=1,x=0 and Y(y))

o HFpw = #Q + H#Y

Some H# arithmetic

@ Given two boolean formulas ®(x) and W(y), define
@ Foulxy): @(x) and Y(y)
@ HFpyp=HQ . HY
@ Fowp(X,y,2): (z=0,y=0 and @(x)) or (z=1,x=0 and Y(y))

o HFoww=HP + #Y

® Fops := (z=0 and @(x)) or (z=1 and x=0). #Fp,1 = H#P + 1

Some H# arithmetic

@ Given two boolean formulas ®(x) and W(y), define
@ Foulxy): @(x) and Y(y)
@ HFoy=H#Q . H#Y
@ Fowp(X,Y,2): (z=0,y=0 and @(x)) or (z=1,x=0 and Y(y))
o #Fopu = #O + HP
@ Fou = (z=0 and @(x)) or (z=1 and x=0). #Fp. = H#P + 1

@ Works even if @, Y are partially quantified boolean
formulas

Some @ arithmetic

Some @ arithmetic

@ Boolean combinations of QBFs with © quantifiers

Some @ arithmetic

@ Boolean combinations of QBFs with © quantifiers

@ Dy p(x) and Dy YY) & Dy Fo.u(x,y), i.e. Dy ©(x) and Y(y)

Some @ arithmetic

@ Boolean combinations of QBFs with © quantifiers

@ Dy p(x) and Dy YY) & Dy Fo.u(x,y), i.e. Dy ©(x) and Y(y)

@ not ®x P(x) & Dy Fpu(Xx,2). i.e. Dy (z=1,x=0) or (z=0,p(x))

Some @ arithmetic

@ Boolean combinations of QBFs with © quantifiers

@ Dy p(x) and Dy YY) & Dy Fo.u(x,y), i.e. Dy ©(x) and Y(y)

@ not ®x P(x) & Dy Fpu(Xx,2). i.e. Dy (z=1,x=0) or (z=0,p(x))

o B (By @(xy)) & D,y ©(x.y)

Some @ arithmetic

@ Boolean combinations of QBFs with © quantifiers

o Dx @(x) and Dy Y(y) & Dy Fo.uw(X.y), i.e. Dyxy ©(x) and W(y)

@ not ®x P(x) & Dy Fpu(Xx,2). i.e. Dy (z=1,x=0) or (z=0,p(x))

o B (By @(xy)) & D,y ©(x.y)

) can be converted to the form , Where F is a
(4,V)-QBF, increasing the size by at most a constant factor, and

not changing number of 3,V

QBF to @ BF

QBF to @ BF

@ Recall: with prob > €(n), we have (and

)

QBF to @ BF

@ Recall: with prob > €(n), we have (and

)

@ Boosting the probability: €(n) to 1-0(n)

QBF to @ BF

@ Recall: with prob > €(n), we have (and

)

@ Boosting the probability: €(n) to 1-0(n)

8 Dw Alp(w) or Dy Asp(w) or ... or Dy Afp(w)

QBF to @ BF

@ Recall: with prob > €(n), we have (and

)

@ Boosting the probability: €(n) to 1-0(n)

8 Dw Alp(w) or Dy Asp(w) or ... or Dy Afp(w)

@ Can rewrite in the form @, By(z) where By has no @

QBF to @ BF

@ Recall: with prob > €(n), we have (and

)

@ Boosting the probability: €(n) to 1-0(n)

8 Dw Alp(w) or Dy Asp(w) or ... or Dy Afp(w)

@ Can rewrite in the form @, By(z) where By has no @

@ In prenex form @, By(z) has one less 3/V than Jw @(w)

QBF to @ BF

@ Recall: with prob > €(n), we have (and

)

@ Boosting the probability: €(n) to 1-0(n)

8 Dw Alp(w) or Dy Asp(w) or ... or Dy Afp(w)

@ Can rewrite in the form @, By(z) where By has no @

@ In prenex form @, By(z) has one less 3/V than Jw @(w)

o If we start from we get equivalent (with probability

1-0(n))

QBF to @ BF

@ Recall: with prob > €(n), we have (and

)

@ Boosting the probability: €(n) to 1-0(n)

8 Dw Alp(w) or Dy Asp(w) or ... or Dy Afp(w)

@ Can rewrite in the form @, By(z) where By has no @

@ In prenex form @, By(z) has one less 3/V than Jw @(w)

o If we start from we get equivalent (with probability
1-0(n))
@ By repeating, QBF can be converted to the form @, F(z)

where F is unquantified, equivalent with prob. close to 1

Reducing PH to P#*

Reducing PH to P#*

@ Two steps

Reducing PH to P#P

@ Two steps

@ Randomized reduction of PH to P*P

Reducing PH to P#P

@ Two steps

@ Randomized reduction of PH to P*P

@ TQBF instance Y to @SAT instance ¢

Reducing PH to P#P

@ Two steps

@ Randomized reduction of PH to P*P

@ TQBF instance Y to @SAT instance ¢

o P = Dy wp. > 2/3; P = Dy (w.p. 1)

Reducing PH to P#*

@ Two steps

@& Randomized reduction of PH to P*P
@ TQBF instance Y to @SAT instance ¢
o P = Dy wp. > 2/3; P = Dy (w.p. 1)

@ Converting the probabilistic guarantee to a
deterministic #P calculation

Reducing PH to P#*

@ Two steps

@& Randomized reduction of PH to P*P
@ TQBF instance Y to @SAT instance ¢
o P = Dy wp. > 2/3; P = Dy (w.p. 1)

@ Converting the probabilistic guarantee to a
deterministic #P calculation

o Y s.t. -Dpy = #0y = 0 (mod N)

Reducing PH to P#*

@ Two steps

@& Randomized reduction of PH to P*P
@ TQBF instance Y to @SAT instance ¢
o P = Dy wp. > 2/3; P = Dy (w.p. 1)

@ Converting the probabilistic guarantee to a
deterministic #P calculation

o Y s.t. -Dpy = #0y = 0 (mod N)
o P s.t. Doy w.p. > 2/3 = #0y # 0 (mod N)

Reduction to #P

Reduction to #P

@ Converting the probabilistic guarantee to a deterministic #P
calculation

Reduction to #P

@ Converting the probabilistic guarantee to a deterministic #P
calculation
o P s.t. - Doy = #0y =0

Reduction to #P

@ Converting the probabilistic guarantee to a deterministic #P
calculation
o P s.t. - Doy = #0y =0

o P s.t. Doy wp.> 2/3 = #0y 20

Reduction to #P

@ Converting the probabilistic guarantee to a deterministic #P
calculation
o P s.t. - Doy = #0y =0

o P s.t. Doy wp.> 2/3 = #0y 20

@ Attempt 1: let @y" be the formula generated using random
tape r. To determine if P is such that number of random
tapes r for which @@y’ holds is 0 or > (2/3)2"

Reduction to #P

@ Converting the probabilistic guarantee to a deterministic #P
calculation
o P s.t. - Doy = #0y =0

o P s.t. Doy wp.> 2/3 = #0y 20

@ Attempt 1: let @y" be the formula generated using random
tape r. To determine if P is such that number of random
tapes r for which @@y’ holds is 0 or > (2/3)2"

@ Enough to compute #. Dpy"

Reduction to #P

@ Converting the probabilistic guarantee to a deterministic #P
calculation
o P s.t. - Doy = #0y =0

o P s.t. Doy wp.> 2/3 = #0y 20

@ Attempt 1: let @y" be the formula generated using random
tape r. To determine if P is such that number of random
tapes r for which @@y’ holds is 0 or > (2/3)2"

@ Enough to compute #. D"
o But Dy is not in P (though @y"(x) is in P)

Reduction to #P

Reduction to #P

o Attempt 2: If Dypy" = #xPy" then enough to compute the

number of (x,r) such that @y"(x)

Reduction to #P

o Attempt 2: If Dypy" = #xPy" then enough to compute the

number of (x,r) such that @y"(x)

@ But Dy is #@y mod 2

Reduction to #P

o Attempt 2: If Dypy" = #xPy" then enough to compute the

number of (x,r) such that @y"(x)

@ But Dy is #@y mod 2

@ Plan: Create ¢’= T(p), such that

Reduction to #P

o Attempt 2: If Dypy" = #xPy" then enough to compute the

number of (x,r) such that @y"(x)

@ But Dy is #@y mod 2
@ Plan: Create ¢’= T(p), such that

@ -Dp = #P' =0 mod N

Reduction to #P

o Attempt 2: If Dypy" = #xPy" then enough to compute the

number of (x,r) such that @y"(x)

@ But Dy is #@y mod 2
@ Plan: Create ¢’= T(p), such that

o =P = #@" =0 mod N

@ Dp = #HP' = -1 mod N

Reduction to #P

o Attempt 2: If Dypy" = #xPy" then enough to compute the

number of (x,r) such that @y"(x)

@ But Dy is #@y mod 2
@ Plan: Create ¢’= T(p), such that

o =P = #@" =0 mod N
@ Dp = #HP' = -1 mod N

@ N> 2™ so that for (2/3).2™ < R < 2™ we have R.(-1) # O mod N

Reduction to #P

o Attempt 2: If Dypy" = #xPy" then enough to compute the

number of (x,r) such that @y"(x)

@ But Dy is #@y mod 2
@ Plan: Create ¢’= T(p), such that

o =P = #@" =0 mod N
@ Dp = #HP' = -1 mod N

@ N> 2™ so that for (2/3).2™ < R < 2™ we have R.(-1) # O mod N

o Let Oy(x,r) = T(py")(x). Use #6y mod N to check if w.h.p. D

Reduction to #P

Reduction to #P

® Remains to do: Given ¢, create ¢’ such that for N=22k,
where k = O(log m)

Reduction to #P

® Remains to do: Given ¢, create ¢’ such that for N=22k,
where k = O(log m)

@ -DP = #@P' =0 mod N

Reduction to #P

® Remains to do: Given ¢, create ¢’ such that for N=22k,
where k = O(log m)

@ -DP = #@P' =0 mod N

o @ = # = -1 mod N

Reduction to #P

® Remains to do: Given ¢, create ¢’ such that for N=22k,
where k = O(log m)

@ DY = #P' = 0 mod N
o @ = # = -1 mod N

@ Initially true for N = 2 (277, i=0)

Reduction to #P

® Remains to do: Given ¢, create ¢’ such that for N=22k,
where k = O(log m)

@ DY = #P' = 0 mod N
o @ = # = -1 mod N

@ Initially true for N = 2 (277, i=0)

@ iy = Fa(pi)s + 3(0i)s SO that #@ig = 4(# Qi) + 3(Hi)*

Reduction to #P

® Remains to do: Given ¢, create ¢’ such that for N=22k,
where k = O(log m)

o -Pp = H#P' =0 mod N
o @ = # = -1 mod N
@ Initially true for N = 2 (277, i=0)

@ iy = Fa(pi)s + 3(0i)s SO that #@ig = 4(# Qi) + 3(Hi)*

o #@; = -1 mod 22" implies @i,1 = -1 mod 2% (*) (for i20)

Reduction to #P

® Remains to do: Given ¢, create ¢’ such that for N=22k,
where k = O(log m)

@ D = #P' = 0 mod N
o @ = # = -1 mod N
@ Initially true for N = 2 (277, i=0)
@ ®iy1 = Fa(opi)s + 3(0i) s S0 that #Qi = 4(#HQi)® + 3(#H i)
o #@; = -1 mod 22" implies @i,1 = -1 mod 2% (*) (for i20)
@ Clearly #@; = 0 mod 22" implies i,; = O mod 22 (+)

PH c P#P

PH C p#P

IN

@ Summary:

PH c P#P

@ Summary:

@ First, randomized reduction of PH to P®P

PH C p#P

@ Summary:

@ First, randomized reduction of PH to P®P

@ TQBF instance Y to @SAT instance ¢

PH C p#P

@ Summary:

@ First, randomized reduction of PH to P®P

@ TQBF instance Y to @SAT instance ¢

o P = Dy wp. > 2/3; P = Dy (w.p. 1)

PH c P#P

@ Summary:

@ First, randomized reduction of PH to PP
@ TQBF instance Y to @SAT instance ¢
o P = Dy wp. > 2/3; P = Dy (w.p. 1)

@ Converting the probabilistic guarantee to a
deterministic #P calculation

PH c P#P

@ Summary:

@ First, randomized reduction of PH to PP
@ TQBF instance Y to @SAT instance ¢
o P = Dy wp. > 2/3; P = Dy (w.p. 1)

@ Converting the probabilistic guarantee to a
deterministic #P calculation

o Y s.t. -Dpy = #0y = 0 (mod N)

PH c P#P

@ Summary:

@ First, randomized reduction of PH to PP
@ TQBF instance Y to @SAT instance ¢
o P = Dy wp. > 2/3; P = Dy (w.p. 1)

@ Converting the probabilistic guarantee to a
deterministic #P calculation

o P s.t. -Ppy = #0y = 0 (mod N)
o P s.t. Dy w.p. > 2/3 = #0y # 0 (mod N)

Approximation for #P

Approximation for #P

@ o-approximation of f: estimate f(x) within a factor «

Approximation for #P

@ o-approximation of f: estimate f(x) within a factor «

@ Randomized approximation ("PAC”): answer is within a factor «
with probability at least 1-0

Approximation for #P

@ o-approximation of f: estimate f(x) within a factor «

@ Randomized approximation ("PAC”): answer is within a factor «
with probability at least 1-0

@ #CYCLE is hard to even approximate unless P=NP

Approximation for #P

@ o-approximation of f: estimate f(x) within a factor «

@ Randomized approximation ("PAC”): answer is within a factor «
with probability at least 1-0

@ #CYCLE is hard to even approximate unless P=NP

@ If P=NP, every problem in #P can be “well approximated”

Approximation for #P

@ o-approximation of f: estimate f(x) within a factor «

@ Randomized approximation ("PAC”): answer is within a factor «
with probability at least 1-0

@ #CYCLE is hard to even approximate unless P=NP

@ If P=NP, every problem in #P can be “well approximated”

® Permanent has an FPRAS

Approximation for #P

@ o-approximation of f: estimate f(x) within a factor «

@ Randomized approximation ("PAC”): answer is within a factor «
with probability at least 1-0

@ #CYCLE is hard to even approximate unless P=NP
@ If P=NP, every problem in #P can be “well approximated”

® Permanent has an FPRAS

@ For any €, d > 0, x-approximation for o = 1-€ in time
poly(n, log 1/€, log 1/0)

Approximation for #P

@ o-approximation of f: estimate f(x) within a factor «

@ Randomized approximation ("PAC”): answer is within a factor «
with probability at least 1-0

@ #CYCLE is hard to even approximate unless P=NP
@ If P=NP, every problem in #P can be “well approximated”
@ Permanent has an FPRAS

@ For any €, d > 0, x-approximation for o = 1-€ in time
poly(n, log 1/€, log 1/0)

@ Technique: Monte Carlo Markov Chain (MCMC)

Approximation for #P

@ o-approximation of f: estimate f(x) within a factor «

@ Randomized approximation ("PAC”): answer is within a factor «
with probability at least 1-0

@ #CYCLE is hard to even approximate unless P=NP
@ If P=NP, every problem in #P can be “well approximated”
@ Permanent has an FPRAS

@ For any €, d > 0, x-approximation for o = 1-€ in time
poly(n, log 1/€, log 1/0)

@ Technique: Monte Carlo Markov Chain (MCMC)
@ Very useful for sampling. Turns out counting = sampling!

Approximation for #P

@ o-approximation of f: estimate f(x) within a factor «

@ Randomized approximation ("PAC”): answer is within a factor «
with probability at least 1-0

@ #CYCLE is hard to even approximate unless P=NP
@ If P=NP, every problem in #P can be “well approximated”
@ Permanent has an FPRAS

@ For any €, d > 0, x-approximation for o = 1-€ in time
poly(n, log 1/€, log 1/0)

@ Technique: Monte Carlo Markov Chain (MCMC)
@ Very useful for sampling. Turns out counting = sampling!

