Complexity of Counting

Lecture 21
P: Toda’s Theorem




Last Time




Last Time

@ #P: counting problems of the form #R(x) = |[{w: R(x,w)=1}|,
where R is a polynomial time relation




Last Time

@ #P: counting problems of the form #R(x) = |[{w: R(x,w)=1}|,
where R is a polynomial time relation

@ Can be hard: even #CYCLE is not in FP (unless P = NP)




Last Time

@ #P: counting problems of the form #R(x) = |[{w: R(x,w)=1}|,
where R is a polynomial time relation

@ Can be hard: even #CYCLE is not in FP (unless P = NP)

@ #P C FP"® (and PP c P#P)




Last Time

@ #P: counting problems of the form #R(x) = |[{w: R(x,w)=1}|,
where R is a polynomial time relation

@ Can be hard: even #CYCLE is not in FP (unless P = NP)

@ #P C FP"® (and PP c P#P)

@ #P complete problems




Last Time

@ #P: counting problems of the form #R(x) = |[{w: R(x,w)=1}|,
where R is a polynomial time relation

@ Can be hard: even #CYCLE is not in FP (unless P = NP)

@ #P C FP"® (and PP c P#P)

@ #P complete problems

@ HSAT




Last Time

@ #P: counting problems of the form #R(x) = |[{w: R(x,w)=1}|,
where R is a polynomial time relation

@ Can be hard: even #CYCLE is not in FP (unless P = NP)

@ #P C FP"® (and PP c P#P)

@ #P complete problems

@ HSAT

® Permanent




Last Time

@ #P: counting problems of the form #R(x) = |[{w: R(x,w)=1}|,
where R is a polynomial time relation

@ Can be hard: even #CYCLE is not in FP (unless P = NP)

@ #P C FP"® (and PP c P#P)

@ #P complete problems
@ HSAT
@ Permanent

@ Next: Toda's Theorem: PH c P#P = pPP
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® Randomized reduction of NP to ®©P

@ A probabilistic polynomial fime algorithm A such that

@ P & SAT = Pr[A(p) € DSAT] =0

@ In fact A(¢p) will have no satisfying assignment

@ p € SAT = Pr[A(p) € DSAT] 2 €(n)

@ With prob. > €(n), A(¢p) will have exactly one satisfying
assignment

@ If an RP algorithm for @SAT, then an RP algorithm for SAT
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@ Randomized reduction of SAT fo Unique-SAT: A probabilistic
polynomial time algorithm A such that

o If ¢ € SAT, with prob. > €(n), Ap will have exactly one

satisfying assignment. Else Ay will have none.

@ Add a filter which will pass exactly one witness (if any):
Ao(w) = @(w) and filter(w)
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Hashing for

unique preimage

@ Let SCX be a set of size m. Consider a pair-wise independent

hash-function family H, from X to R, such that |SI/IR| € [1/4,1/2].

@ Pri[h(x)=0] = 1/IR| =: p, and Prn[h(x)=h(y)=0] = p2. |Slp € [1/4,1/2].

@ Let N := |[{x € S| h(x)=0}|. Pri[N=1] = Prn[N21] -Prn[N2>2]

@ By inclusion-exclusion: Pra[N21] > 24 Priu[h(x)=0] -2y Pra[h(x)=h(y)=0]

@ By Union-bound: Pri[N22]

@ Pri[N=1] 2 IS| p - 2 (IS

\ S
< 2xsy Pri[h(x)=h(y)= O]/‘*(lSI choose 2)p

choose 2) p2 > [Slp - (ISlp)? > 3/16
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@ Randomized reduction of SAT to Unique-SAT: A probabilistic
polynomial time algorithm A such that

o If ¢ € SAT, with prob. > €(n), Ap will have exactly one

satisfying assignment. Else Ay will have none.

@ Add a filter which will pass exactly one witness (if any):
Ao(w) = @(w) and filter(w)

o filter(w): a Boolean formula saying h(w)=0. (If using auxiliary
variables, i.e., dz filter(w,z), use a parsimonious reduction.)

o If witness n-bit long (IX|=10,1}"), pick R={0,1}¥, with k random
in the range [1,n]
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@ Two steps

# Randomized reduction of PH to PP

@ Converting the probabilistic guarantee to a
deterministic #P statement
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® We have a randomized reduction: @ to Ay such that

o dw p(w) = Dy As(w) with prob. > €(n)

@ V. not @(w) = not ®w Ae(w) (with prob. = 1)

@ i.e., with prob > €(n), we have (and hence

also )

@ Reduction works even if @(w) is a partially quantified Boolean
formula

@ Can all 3/V be removed, by repeating, so that only © remain?
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@ Given two boolean formulas ®(x) and W(y), define
@ Foulxy): @(x) and Y(y)
@ HFoy=H#Q . H#Y
@ Fowp(X,Y,2): (z=0,y=0 and @(x)) or (z=1,x=0 and Y(y))
o #Fopu = #O + HP
@ Fou = (z=0 and @(x)) or (z=1 and x=0). #Fp. = H#P + 1

@ Works even if @, Y are partially quantified boolean
formulas
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@ Boolean combinations of QBFs with © quantifiers

o Dx @(x) and Dy Y(y) & Dy Fo.uw(X.y), i.e. Dyxy ©(x) and W(y)

@ not ®x P(x) & Dy Fpu(Xx,2). i.e. Dy (z=1,x=0) or (z=0,p(x))

o B (By @(xy)) & D,y ©(x.y)

) can be converted to the form , Where F is a
(4,V)-QBF, increasing the size by at most a constant factor, and

not changing number of 3,V
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@ Recall: with prob > €(n), we have (and

)

@ Boosting the probability: €(n) to 1-0(n)

8 Dw Alp(w) or Dy Asp(w) or ... or Dy Afp(w)

@ Can rewrite in the form @, By(z) where By has no @

@ In prenex form @, By(z) has one less 3/V than Jw @(w)

o If we start from we get equivalent (with probability
1-0(n))
@ By repeating, QBF can be converted to the form @, F(z)

where F is unquantified, equivalent with prob. close to 1
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@& Randomized reduction of PH to P*P
@ TQBF instance Y to @SAT instance ¢
o P = Dy wp. > 2/3; P = Dy (w.p. 1)

@ Converting the probabilistic guarantee to a
deterministic #P calculation

o Y s.t. -Dpy = #0y = 0 (mod N)
o P s.t. Doy w.p. > 2/3 = #0y # 0 (mod N)
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Reduction to #P

@ Converting the probabilistic guarantee to a deterministic #P
calculation
o P s.t. - Doy = #0y =0

o P s.t. Doy wp.> 2/3 = #0y 20

@ Attempt 1: let @y" be the formula generated using random
tape r. To determine if P is such that number of random
tapes r for which @@y’ holds is 0 or > (2/3)2"

@ Enough to compute #. D"
o But Dy is not in P (though @y"(x) is in P)
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Reduction to #P

o Attempt 2: If Dypy" = #xPy" then enough to compute the

number of (x,r) such that @y"(x)

@ But Dy is #@y mod 2
@ Plan: Create ¢’= T(p), such that

o =P = #@" =0 mod N
@ Dp = #HP' = -1 mod N

@ N> 2™ so that for (2/3).2™ < R < 2™ we have R.(-1) # O mod N

o Let Oy(x,r) = T(py")(x). Use #6y mod N to check if w.h.p. D
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Reduction to #P

® Remains to do: Given ¢, create ¢’ such that for N=22k,
where k = O(log m)

@ D = #P' = 0 mod N
o @ = # = -1 mod N
@ Initially true for N = 2 (277, i=0)
@ ®iy1 = Fa(opi)s + 3(0i) s S0 that #Qi = 4(#HQi)® + 3(#H i)
o #@; = -1 mod 22" implies @i,1 = -1 mod 2% (*) (for i20)
@ Clearly #@; = 0 mod 22" implies i,; = O mod 22 (+)
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PH c P#P

@ Summary:

@ First, randomized reduction of PH to PP
@ TQBF instance Y to @SAT instance ¢
o P = Dy wp. > 2/3; P = Dy (w.p. 1)

@ Converting the probabilistic guarantee to a
deterministic #P calculation

o P s.t. -Ppy = #0y = 0 (mod N)
o P s.t. Dy w.p. > 2/3 = #0y # 0 (mod N)
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