
Complexity of Counting

Lecture 21
#P: Toda’s Theorem
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Last Time
#P: counting problems of the form #R(x) = |{w: R(x,w)=1}|, 
where R is a polynomial time relation

Can be hard: even #CYCLE is not in FP (unless P = NP)

#P ⊆ FPPP (and PP ⊆ P#P)

#P complete problems

#SAT

Permanent

Next: Toda’s Theorem: PH ⊆ P#P = PPP
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Randomized reduction of NP to ⊕P

A probabilistic polynomial time algorithm A such that 

φ ∉ SAT ⇒ Pr[A(φ) ∈ ⊕SAT] = 0

In fact A(φ) will have no satisfying assignment

φ ∈ SAT ⇒ Pr[A(φ) ∈ ⊕SAT] ≥ ε(n)
With prob. ≥ ε(n), A(φ) will have exactly one satisfying 
assignment

If an RP algorithm for ⊕SAT, then an RP algorithm for SAT
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Randomized reduction of SAT to Unique-SAT: A probabilistic 
polynomial time algorithm A such that

If φ ∈ SAT, with prob. ≥ ε(n), Aφ will have exactly one 

satisfying assignment. Else Aφ will have none.

Add a filter which will pass exactly one witness (if any):       
Aφ(w) = φ(w) and filter(w)
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By inclusion-exclusion: Prh[N≥1] ≥ Σx Prh[h(x)=0] -Σx>y Prh[h(x)=h(y)=0]

By Union-bound:  Prh[N≥2] ≤ Σx>y Prh[h(x)=h(y)=0]

Prh[N=1] ≥ |S| p - 2 (|S| choose 2) p2 ≥ |S|p - (|S|p)2 ≥ 3/16

Hashing for unique preimage

|S|p
(|S| choose 2)p
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polynomial time algorithm A such that

If φ ∈ SAT, with prob. ≥ ε(n), Aφ will have exactly one 

satisfying assignment. Else Aφ will have none.

Add a filter which will pass exactly one witness (if any):       
Aφ(w) = φ(w) and filter(w)

filter(w): a Boolean formula saying h(w)=0. (If using auxiliary 
variables, i.e., ∃z filter(w,z), use a parsimonious reduction.)

If witness n-bit long (|X|={0,1}n), pick R={0,1}k, with k random 
in the range [1,n]
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Reducing PH to P#P

Two steps

Randomized reduction of PH to P⊕P

Converting the probabilistic guarantee to a 
deterministic #P statement
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For at least r fraction

∃!
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⊕
For an odd number of
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We have a randomized reduction: φ to Aφ such that

∃w φ(w) ⇒ ⊕w Aφ(w) with prob. ≥ ε(n)

∀w not φ(w) ⇒ not ⊕w Aφ(w) (with prob. = 1)

i.e., with prob ≥ ε(n), we have ∃w φ(w) ⇔ ⊕w Aφ(w) (and hence 

also ∀w not φ(w) ⇔ not ⊕w Aφ(w))

Reduction works even if φ(w) is a partially quantified Boolean 
formula

Can all ∃/∀ be removed, by repeating, so that only ⊕ remain?
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Fφ+ψ(x,y,z): (z=0,y=0 and φ(x)) or (z=1,x=0 and ψ(y))

#Fφ+ψ = #φ + #ψ

Fφ+1 := (z=0 and φ(x)) or (z=1 and x=0). #Fφ+1 = #φ + 1

Works even if φ, ψ are partially quantified boolean 
formulas
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⊕x (⊕y φ(x,y)) ⇔ ⊕x,y φ(x,y)

(⊕,∃,∀)-QBF can be converted to the form ⊕z F(z), where F is a 

(∃,∀)-QBF, increasing the size by at most a constant factor, and 

not changing number of ∃,∀
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If we start from ⊕x∃w φ(w,x) we get equivalent (with probability 

1-δ(n)) ⊕x⊕z Bφ(z,x)

By repeating, QBF can be converted to the form ⊕z F(z) 

where F is unquantified, equivalent with prob. close to 1
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