
Complexity of Counting

Lecture 21
#P: Toda’s Theorem

1

Last Time

2

Last Time
#P: counting problems of the form #R(x) = |{w: R(x,w)=1}|,
where R is a polynomial time relation

2

Last Time
#P: counting problems of the form #R(x) = |{w: R(x,w)=1}|,
where R is a polynomial time relation

Can be hard: even #CYCLE is not in FP (unless P = NP)

2

Last Time
#P: counting problems of the form #R(x) = |{w: R(x,w)=1}|,
where R is a polynomial time relation

Can be hard: even #CYCLE is not in FP (unless P = NP)

#P ⊆ FPPP (and PP ⊆ P#P)

2

Last Time
#P: counting problems of the form #R(x) = |{w: R(x,w)=1}|,
where R is a polynomial time relation

Can be hard: even #CYCLE is not in FP (unless P = NP)

#P ⊆ FPPP (and PP ⊆ P#P)

#P complete problems

2

Last Time
#P: counting problems of the form #R(x) = |{w: R(x,w)=1}|,
where R is a polynomial time relation

Can be hard: even #CYCLE is not in FP (unless P = NP)

#P ⊆ FPPP (and PP ⊆ P#P)

#P complete problems

#SAT

2

Last Time
#P: counting problems of the form #R(x) = |{w: R(x,w)=1}|,
where R is a polynomial time relation

Can be hard: even #CYCLE is not in FP (unless P = NP)

#P ⊆ FPPP (and PP ⊆ P#P)

#P complete problems

#SAT

Permanent

2

Last Time
#P: counting problems of the form #R(x) = |{w: R(x,w)=1}|,
where R is a polynomial time relation

Can be hard: even #CYCLE is not in FP (unless P = NP)

#P ⊆ FPPP (and PP ⊆ P#P)

#P complete problems

#SAT

Permanent

Next: Toda’s Theorem: PH ⊆ P#P = PPP

2

♁P

3

♁P
⊕P: parity of the number of witnesses

3

♁P
⊕P: parity of the number of witnesses

e.g. ⊕SAT. Least significant bit of #SAT.

3

♁P
⊕P: parity of the number of witnesses

e.g. ⊕SAT. Least significant bit of #SAT.

May not be as powerful as PP (or #P)

3

♁P
⊕P: parity of the number of witnesses

e.g. ⊕SAT. Least significant bit of #SAT.

May not be as powerful as PP (or #P)

⊕P ⊆ P may not imply NP = P

3

♁P
⊕P: parity of the number of witnesses

e.g. ⊕SAT. Least significant bit of #SAT.

May not be as powerful as PP (or #P)

⊕P ⊆ P may not imply NP = P

But it does imply NP ⊆ RP (even if only ⊕P ⊆ RP)

3

♁P
⊕P: parity of the number of witnesses

e.g. ⊕SAT. Least significant bit of #SAT.

May not be as powerful as PP (or #P)

⊕P ⊆ P may not imply NP = P

But it does imply NP ⊆ RP (even if only ⊕P ⊆ RP)

Randomized reduction of NP to ⊕P

3

♁P
⊕P: parity of the number of witnesses

e.g. ⊕SAT. Least significant bit of #SAT.

May not be as powerful as PP (or #P)

⊕P ⊆ P may not imply NP = P

But it does imply NP ⊆ RP (even if only ⊕P ⊆ RP)

Randomized reduction of NP to ⊕P

i.e., ⊕P oracle is quite useful to randomized algorithms

3

♁P
⊕P: parity of the number of witnesses

e.g. ⊕SAT. Least significant bit of #SAT.

May not be as powerful as PP (or #P)

⊕P ⊆ P may not imply NP = P

But it does imply NP ⊆ RP (even if only ⊕P ⊆ RP)

Randomized reduction of NP to ⊕P

i.e., ⊕P oracle is quite useful to randomized algorithms

3

♁P ⊆ RP ⇒ NP=RP

4

♁P ⊆ RP ⇒ NP=RP
Randomized reduction of NP to ⊕P

4

♁P ⊆ RP ⇒ NP=RP
Randomized reduction of NP to ⊕P

A probabilistic polynomial time algorithm A such that

4

♁P ⊆ RP ⇒ NP=RP
Randomized reduction of NP to ⊕P

A probabilistic polynomial time algorithm A such that

φ ∉ SAT ⇒ Pr[A(φ) ∈ ⊕SAT] = 0

4

♁P ⊆ RP ⇒ NP=RP
Randomized reduction of NP to ⊕P

A probabilistic polynomial time algorithm A such that

φ ∉ SAT ⇒ Pr[A(φ) ∈ ⊕SAT] = 0

In fact A(φ) will have no satisfying assignment

4

♁P ⊆ RP ⇒ NP=RP
Randomized reduction of NP to ⊕P

A probabilistic polynomial time algorithm A such that

φ ∉ SAT ⇒ Pr[A(φ) ∈ ⊕SAT] = 0

In fact A(φ) will have no satisfying assignment

φ ∈ SAT ⇒ Pr[A(φ) ∈ ⊕SAT] ≥ ε(n)

4

♁P ⊆ RP ⇒ NP=RP
Randomized reduction of NP to ⊕P

A probabilistic polynomial time algorithm A such that

φ ∉ SAT ⇒ Pr[A(φ) ∈ ⊕SAT] = 0

In fact A(φ) will have no satisfying assignment

φ ∈ SAT ⇒ Pr[A(φ) ∈ ⊕SAT] ≥ ε(n)
With prob. ≥ ε(n), A(φ) will have exactly one satisfying
assignment

4

♁P ⊆ RP ⇒ NP=RP
Randomized reduction of NP to ⊕P

A probabilistic polynomial time algorithm A such that

φ ∉ SAT ⇒ Pr[A(φ) ∈ ⊕SAT] = 0

In fact A(φ) will have no satisfying assignment

φ ∈ SAT ⇒ Pr[A(φ) ∈ ⊕SAT] ≥ ε(n)
With prob. ≥ ε(n), A(φ) will have exactly one satisfying
assignment

If an RP algorithm for ⊕SAT, then an RP algorithm for SAT

4

♁P ⊆ RP ⇒ NP=RP

5

♁P ⊆ RP ⇒ NP=RP

Randomized reduction of SAT to Unique-SAT: A probabilistic
polynomial time algorithm A such that

5

♁P ⊆ RP ⇒ NP=RP

Randomized reduction of SAT to Unique-SAT: A probabilistic
polynomial time algorithm A such that

If φ ∈ SAT, with prob. ≥ ε(n), Aφ will have exactly one

satisfying assignment. Else Aφ will have none.

5

♁P ⊆ RP ⇒ NP=RP

Randomized reduction of SAT to Unique-SAT: A probabilistic
polynomial time algorithm A such that

If φ ∈ SAT, with prob. ≥ ε(n), Aφ will have exactly one

satisfying assignment. Else Aφ will have none.

Add a filter which will pass exactly one witness (if any):
Aφ(w) = φ(w) and filter(w)

5

Hashing for unique preimage

6

Let S⊆X be a set of size m. Consider a pair-wise independent

hash-function family H, from X to R, such that |S|/|R| ∈ [1/4,1/2].

Hashing for unique preimage

6

Let S⊆X be a set of size m. Consider a pair-wise independent

hash-function family H, from X to R, such that |S|/|R| ∈ [1/4,1/2].

Prh[h(x)=0] = 1/|R| =: p, and Prh[h(x)=h(y)=0] = p2. |S|p ∈ [1/4,1/2].

Hashing for unique preimage

6

Let S⊆X be a set of size m. Consider a pair-wise independent

hash-function family H, from X to R, such that |S|/|R| ∈ [1/4,1/2].

Prh[h(x)=0] = 1/|R| =: p, and Prh[h(x)=h(y)=0] = p2. |S|p ∈ [1/4,1/2].

Let N := |{x ∈ S| h(x)=0}|. Prh[N=1] = Prh[N≥1] -Prh[N≥2]

Hashing for unique preimage

6

Let S⊆X be a set of size m. Consider a pair-wise independent

hash-function family H, from X to R, such that |S|/|R| ∈ [1/4,1/2].

Prh[h(x)=0] = 1/|R| =: p, and Prh[h(x)=h(y)=0] = p2. |S|p ∈ [1/4,1/2].

Let N := |{x ∈ S| h(x)=0}|. Prh[N=1] = Prh[N≥1] -Prh[N≥2]

By inclusion-exclusion: Prh[N≥1] ≥ Σx Prh[h(x)=0] -Σx>y Prh[h(x)=h(y)=0]

Hashing for unique preimage

6

Let S⊆X be a set of size m. Consider a pair-wise independent

hash-function family H, from X to R, such that |S|/|R| ∈ [1/4,1/2].

Prh[h(x)=0] = 1/|R| =: p, and Prh[h(x)=h(y)=0] = p2. |S|p ∈ [1/4,1/2].

Let N := |{x ∈ S| h(x)=0}|. Prh[N=1] = Prh[N≥1] -Prh[N≥2]

By inclusion-exclusion: Prh[N≥1] ≥ Σx Prh[h(x)=0] -Σx>y Prh[h(x)=h(y)=0]

Hashing for unique preimage

|S|p

6

Let S⊆X be a set of size m. Consider a pair-wise independent

hash-function family H, from X to R, such that |S|/|R| ∈ [1/4,1/2].

Prh[h(x)=0] = 1/|R| =: p, and Prh[h(x)=h(y)=0] = p2. |S|p ∈ [1/4,1/2].

Let N := |{x ∈ S| h(x)=0}|. Prh[N=1] = Prh[N≥1] -Prh[N≥2]

By inclusion-exclusion: Prh[N≥1] ≥ Σx Prh[h(x)=0] -Σx>y Prh[h(x)=h(y)=0]

Hashing for unique preimage

|S|p
(|S| choose 2)p

6

Let S⊆X be a set of size m. Consider a pair-wise independent

hash-function family H, from X to R, such that |S|/|R| ∈ [1/4,1/2].

Prh[h(x)=0] = 1/|R| =: p, and Prh[h(x)=h(y)=0] = p2. |S|p ∈ [1/4,1/2].

Let N := |{x ∈ S| h(x)=0}|. Prh[N=1] = Prh[N≥1] -Prh[N≥2]

By inclusion-exclusion: Prh[N≥1] ≥ Σx Prh[h(x)=0] -Σx>y Prh[h(x)=h(y)=0]

By Union-bound: Prh[N≥2] ≤ Σx>y Prh[h(x)=h(y)=0]

Hashing for unique preimage

|S|p
(|S| choose 2)p

6

Let S⊆X be a set of size m. Consider a pair-wise independent

hash-function family H, from X to R, such that |S|/|R| ∈ [1/4,1/2].

Prh[h(x)=0] = 1/|R| =: p, and Prh[h(x)=h(y)=0] = p2. |S|p ∈ [1/4,1/2].

Let N := |{x ∈ S| h(x)=0}|. Prh[N=1] = Prh[N≥1] -Prh[N≥2]

By inclusion-exclusion: Prh[N≥1] ≥ Σx Prh[h(x)=0] -Σx>y Prh[h(x)=h(y)=0]

By Union-bound: Prh[N≥2] ≤ Σx>y Prh[h(x)=h(y)=0]

Hashing for unique preimage

|S|p
(|S| choose 2)p

6

Let S⊆X be a set of size m. Consider a pair-wise independent

hash-function family H, from X to R, such that |S|/|R| ∈ [1/4,1/2].

Prh[h(x)=0] = 1/|R| =: p, and Prh[h(x)=h(y)=0] = p2. |S|p ∈ [1/4,1/2].

Let N := |{x ∈ S| h(x)=0}|. Prh[N=1] = Prh[N≥1] -Prh[N≥2]

By inclusion-exclusion: Prh[N≥1] ≥ Σx Prh[h(x)=0] -Σx>y Prh[h(x)=h(y)=0]

By Union-bound: Prh[N≥2] ≤ Σx>y Prh[h(x)=h(y)=0]

Prh[N=1] ≥ |S| p - 2 (|S| choose 2) p2 ≥ |S|p - (|S|p)2 ≥ 3/16

Hashing for unique preimage

|S|p
(|S| choose 2)p

6

♁P ⊆ RP ⇒ NP=RP
Randomized reduction of SAT to Unique-SAT: A probabilistic
polynomial time algorithm A such that

If φ ∈ SAT, with prob. ≥ ε(n), Aφ will have exactly one

satisfying assignment. Else Aφ will have none.

Add a filter which will pass exactly one witness (if any):
Aφ(w) = φ(w) and filter(w)

7

♁P ⊆ RP ⇒ NP=RP
Randomized reduction of SAT to Unique-SAT: A probabilistic
polynomial time algorithm A such that

If φ ∈ SAT, with prob. ≥ ε(n), Aφ will have exactly one

satisfying assignment. Else Aφ will have none.

Add a filter which will pass exactly one witness (if any):
Aφ(w) = φ(w) and filter(w)

filter(w): a Boolean formula saying h(w)=0. (If using auxiliary
variables, i.e., ∃z filter(w,z), use a parsimonious reduction.)

7

♁P ⊆ RP ⇒ NP=RP
Randomized reduction of SAT to Unique-SAT: A probabilistic
polynomial time algorithm A such that

If φ ∈ SAT, with prob. ≥ ε(n), Aφ will have exactly one

satisfying assignment. Else Aφ will have none.

Add a filter which will pass exactly one witness (if any):
Aφ(w) = φ(w) and filter(w)

filter(w): a Boolean formula saying h(w)=0. (If using auxiliary
variables, i.e., ∃z filter(w,z), use a parsimonious reduction.)

If witness n-bit long (|X|={0,1}n), pick R={0,1}k, with k random
in the range [1,n]

7

Reducing PH to P#P

8

Reducing PH to P#P

Two steps

8

Reducing PH to P#P

Two steps

Randomized reduction of PH to P⊕P

8

Reducing PH to P#P

Two steps

Randomized reduction of PH to P⊕P

Converting the probabilistic guarantee to a
deterministic #P statement

8

Quantifier Gallery!

9

Quantifier Gallery!

∃
For at least one

9

Quantifier Gallery!

∃
For at least one

∀
For all

9

Quantifier Gallery!

∃
For at least one

∀
For all

∃r

For at least r fraction

9

Quantifier Gallery!

∃
For at least one

∀
For all

∃r

For at least r fraction

∃!

For exactly one

9

Quantifier Gallery!

∃
For at least one

∀
For all

∃r

For at least r fraction

∃!

For exactly one

⊕
For an odd number of

9

QBF to ♁BF

10

QBF to ♁BF
We have a randomized reduction: φ to Aφ such that

10

QBF to ♁BF
We have a randomized reduction: φ to Aφ such that

∃w φ(w) ⇒ ⊕w Aφ(w) with prob. ≥ ε(n)

10

QBF to ♁BF
We have a randomized reduction: φ to Aφ such that

∃w φ(w) ⇒ ⊕w Aφ(w) with prob. ≥ ε(n)

∀w not φ(w) ⇒ not ⊕w Aφ(w) (with prob. = 1)

10

QBF to ♁BF
We have a randomized reduction: φ to Aφ such that

∃w φ(w) ⇒ ⊕w Aφ(w) with prob. ≥ ε(n)

∀w not φ(w) ⇒ not ⊕w Aφ(w) (with prob. = 1)

i.e., with prob ≥ ε(n), we have ∃w φ(w) ⇔ ⊕w Aφ(w) (and hence

also ∀w not φ(w) ⇔ not ⊕w Aφ(w))

10

QBF to ♁BF
We have a randomized reduction: φ to Aφ such that

∃w φ(w) ⇒ ⊕w Aφ(w) with prob. ≥ ε(n)

∀w not φ(w) ⇒ not ⊕w Aφ(w) (with prob. = 1)

i.e., with prob ≥ ε(n), we have ∃w φ(w) ⇔ ⊕w Aφ(w) (and hence

also ∀w not φ(w) ⇔ not ⊕w Aφ(w))

Reduction works even if φ(w) is a partially quantified Boolean
formula

10

QBF to ♁BF
We have a randomized reduction: φ to Aφ such that

∃w φ(w) ⇒ ⊕w Aφ(w) with prob. ≥ ε(n)

∀w not φ(w) ⇒ not ⊕w Aφ(w) (with prob. = 1)

i.e., with prob ≥ ε(n), we have ∃w φ(w) ⇔ ⊕w Aφ(w) (and hence

also ∀w not φ(w) ⇔ not ⊕w Aφ(w))

Reduction works even if φ(w) is a partially quantified Boolean
formula

Can all ∃/∀ be removed, by repeating, so that only ⊕ remain?

10

Some # arithmetic

11

Some # arithmetic
Given two boolean formulas φ(x) and ψ(y), define

11

Some # arithmetic
Given two boolean formulas φ(x) and ψ(y), define

Fφ.ψ(x,y): φ(x) and ψ(y)

11

Some # arithmetic
Given two boolean formulas φ(x) and ψ(y), define

Fφ.ψ(x,y): φ(x) and ψ(y)

#Fφ.ψ = #φ . #ψ

11

Some # arithmetic
Given two boolean formulas φ(x) and ψ(y), define

Fφ.ψ(x,y): φ(x) and ψ(y)

#Fφ.ψ = #φ . #ψ

Fφ+ψ(x,y,z): (z=0,y=0 and φ(x)) or (z=1,x=0 and ψ(y))

11

Some # arithmetic
Given two boolean formulas φ(x) and ψ(y), define

Fφ.ψ(x,y): φ(x) and ψ(y)

#Fφ.ψ = #φ . #ψ

Fφ+ψ(x,y,z): (z=0,y=0 and φ(x)) or (z=1,x=0 and ψ(y))

#Fφ+ψ = #φ + #ψ

11

Some # arithmetic
Given two boolean formulas φ(x) and ψ(y), define

Fφ.ψ(x,y): φ(x) and ψ(y)

#Fφ.ψ = #φ . #ψ

Fφ+ψ(x,y,z): (z=0,y=0 and φ(x)) or (z=1,x=0 and ψ(y))

#Fφ+ψ = #φ + #ψ

Fφ+1 := (z=0 and φ(x)) or (z=1 and x=0). #Fφ+1 = #φ + 1

11

Some # arithmetic
Given two boolean formulas φ(x) and ψ(y), define

Fφ.ψ(x,y): φ(x) and ψ(y)

#Fφ.ψ = #φ . #ψ

Fφ+ψ(x,y,z): (z=0,y=0 and φ(x)) or (z=1,x=0 and ψ(y))

#Fφ+ψ = #φ + #ψ

Fφ+1 := (z=0 and φ(x)) or (z=1 and x=0). #Fφ+1 = #φ + 1

Works even if φ, ψ are partially quantified boolean
formulas

11

Some ⊕ arithmetic

12

Some ⊕ arithmetic
Boolean combinations of QBFs with ⊕ quantifiers

12

Some ⊕ arithmetic
Boolean combinations of QBFs with ⊕ quantifiers

⊕x φ(x) and ⊕y ψ(y) ⇔ ⊕x,y Fφ.ψ(x,y), i.e. ⊕x,y φ(x) and ψ(y)

12

Some ⊕ arithmetic
Boolean combinations of QBFs with ⊕ quantifiers

⊕x φ(x) and ⊕y ψ(y) ⇔ ⊕x,y Fφ.ψ(x,y), i.e. ⊕x,y φ(x) and ψ(y)

not ⊕x φ(x) ⇔ ⊕x,z Fφ+1(x,z). i.e. ⊕x,z (z=1,x=0) or (z=0,φ(x))

12

Some ⊕ arithmetic
Boolean combinations of QBFs with ⊕ quantifiers

⊕x φ(x) and ⊕y ψ(y) ⇔ ⊕x,y Fφ.ψ(x,y), i.e. ⊕x,y φ(x) and ψ(y)

not ⊕x φ(x) ⇔ ⊕x,z Fφ+1(x,z). i.e. ⊕x,z (z=1,x=0) or (z=0,φ(x))

⊕x (⊕y φ(x,y)) ⇔ ⊕x,y φ(x,y)

12

Some ⊕ arithmetic
Boolean combinations of QBFs with ⊕ quantifiers

⊕x φ(x) and ⊕y ψ(y) ⇔ ⊕x,y Fφ.ψ(x,y), i.e. ⊕x,y φ(x) and ψ(y)

not ⊕x φ(x) ⇔ ⊕x,z Fφ+1(x,z). i.e. ⊕x,z (z=1,x=0) or (z=0,φ(x))

⊕x (⊕y φ(x,y)) ⇔ ⊕x,y φ(x,y)

(⊕,∃,∀)-QBF can be converted to the form ⊕z F(z), where F is a

(∃,∀)-QBF, increasing the size by at most a constant factor, and

not changing number of ∃,∀

12

QBF to ♁BF

13

QBF to ♁BF
Recall: with prob ≥ ε(n), we have ∃w φ(w) ⇔ ⊕w Aφ(w) (and

∀w not φ(w) ⇔ not ⊕w Aφ(w))

13

QBF to ♁BF
Recall: with prob ≥ ε(n), we have ∃w φ(w) ⇔ ⊕w Aφ(w) (and

∀w not φ(w) ⇔ not ⊕w Aφ(w))

Boosting the probability: ε(n) to 1-δ(n)

13

QBF to ♁BF
Recall: with prob ≥ ε(n), we have ∃w φ(w) ⇔ ⊕w Aφ(w) (and

∀w not φ(w) ⇔ not ⊕w Aφ(w))

Boosting the probability: ε(n) to 1-δ(n)

⊕w A1φ(w) or ⊕w A2φ(w) or ... or ⊕w Atφ(w)

13

QBF to ♁BF
Recall: with prob ≥ ε(n), we have ∃w φ(w) ⇔ ⊕w Aφ(w) (and

∀w not φ(w) ⇔ not ⊕w Aφ(w))

Boosting the probability: ε(n) to 1-δ(n)

⊕w A1φ(w) or ⊕w A2φ(w) or ... or ⊕w Atφ(w)

Can rewrite in the form ⊕z Bφ(z) where Bφ has no ⊕

13

QBF to ♁BF
Recall: with prob ≥ ε(n), we have ∃w φ(w) ⇔ ⊕w Aφ(w) (and

∀w not φ(w) ⇔ not ⊕w Aφ(w))

Boosting the probability: ε(n) to 1-δ(n)

⊕w A1φ(w) or ⊕w A2φ(w) or ... or ⊕w Atφ(w)

Can rewrite in the form ⊕z Bφ(z) where Bφ has no ⊕

In prenex form ⊕z Bφ(z) has one less ∃/∀ than ∃w φ(w)

13

QBF to ♁BF
Recall: with prob ≥ ε(n), we have ∃w φ(w) ⇔ ⊕w Aφ(w) (and

∀w not φ(w) ⇔ not ⊕w Aφ(w))

Boosting the probability: ε(n) to 1-δ(n)

⊕w A1φ(w) or ⊕w A2φ(w) or ... or ⊕w Atφ(w)

Can rewrite in the form ⊕z Bφ(z) where Bφ has no ⊕

In prenex form ⊕z Bφ(z) has one less ∃/∀ than ∃w φ(w)

If we start from ⊕x∃w φ(w,x) we get equivalent (with probability

1-δ(n)) ⊕x⊕z Bφ(z,x)

13

QBF to ♁BF
Recall: with prob ≥ ε(n), we have ∃w φ(w) ⇔ ⊕w Aφ(w) (and

∀w not φ(w) ⇔ not ⊕w Aφ(w))

Boosting the probability: ε(n) to 1-δ(n)

⊕w A1φ(w) or ⊕w A2φ(w) or ... or ⊕w Atφ(w)

Can rewrite in the form ⊕z Bφ(z) where Bφ has no ⊕

In prenex form ⊕z Bφ(z) has one less ∃/∀ than ∃w φ(w)

If we start from ⊕x∃w φ(w,x) we get equivalent (with probability

1-δ(n)) ⊕x⊕z Bφ(z,x)

By repeating, QBF can be converted to the form ⊕z F(z)

where F is unquantified, equivalent with prob. close to 1
13

Reducing PH to P#P

14

Reducing PH to P#P

Two steps

14

Reducing PH to P#P

Two steps

Randomized reduction of PH to P⊕P

14

Reducing PH to P#P

Two steps

Randomized reduction of PH to P⊕P

TQBF instance ψ to ⊕SAT instance φψ

14

Reducing PH to P#P

Two steps

Randomized reduction of PH to P⊕P

TQBF instance ψ to ⊕SAT instance φψ

ψ ⇒ ⊕φψ w.p. > 2/3; ¬ψ ⇒ ¬⊕φψ (w.p. 1)

14

Reducing PH to P#P

Two steps

Randomized reduction of PH to P⊕P

TQBF instance ψ to ⊕SAT instance φψ

ψ ⇒ ⊕φψ w.p. > 2/3; ¬ψ ⇒ ¬⊕φψ (w.p. 1)

Converting the probabilistic guarantee to a
deterministic #P calculation

14

Reducing PH to P#P

Two steps

Randomized reduction of PH to P⊕P

TQBF instance ψ to ⊕SAT instance φψ

ψ ⇒ ⊕φψ w.p. > 2/3; ¬ψ ⇒ ¬⊕φψ (w.p. 1)

Converting the probabilistic guarantee to a
deterministic #P calculation

ψ s.t. ¬⊕φψ ⇒ #θψ = 0 (mod N)

14

Reducing PH to P#P

Two steps

Randomized reduction of PH to P⊕P

TQBF instance ψ to ⊕SAT instance φψ

ψ ⇒ ⊕φψ w.p. > 2/3; ¬ψ ⇒ ¬⊕φψ (w.p. 1)

Converting the probabilistic guarantee to a
deterministic #P calculation

ψ s.t. ¬⊕φψ ⇒ #θψ = 0 (mod N)

ψ s.t. ⊕φψ w.p. > 2/3 ⇒ #θψ ≠ 0 (mod N)

14

Reduction to #P

15

Reduction to #P

Converting the probabilistic guarantee to a deterministic #P
calculation

15

Reduction to #P

Converting the probabilistic guarantee to a deterministic #P
calculation
ψ s.t. ¬⊕φψ ⇒ #θψ = 0 (mod N)

15

Reduction to #P

Converting the probabilistic guarantee to a deterministic #P
calculation
ψ s.t. ¬⊕φψ ⇒ #θψ = 0 (mod N)

ψ s.t. ⊕φψ w.p. > 2/3 ⇒ #θψ ≠ 0 (mod N)

15

Reduction to #P

Converting the probabilistic guarantee to a deterministic #P
calculation
ψ s.t. ¬⊕φψ ⇒ #θψ = 0 (mod N)

ψ s.t. ⊕φψ w.p. > 2/3 ⇒ #θψ ≠ 0 (mod N)

Attempt 1: let φψr be the formula generated using random
tape r. To determine if ψ is such that number of random
tapes r for which ⊕φψr holds is 0 or > (2/3)2m

15

Reduction to #P

Converting the probabilistic guarantee to a deterministic #P
calculation
ψ s.t. ¬⊕φψ ⇒ #θψ = 0 (mod N)

ψ s.t. ⊕φψ w.p. > 2/3 ⇒ #θψ ≠ 0 (mod N)

Attempt 1: let φψr be the formula generated using random
tape r. To determine if ψ is such that number of random
tapes r for which ⊕φψr holds is 0 or > (2/3)2m

Enough to compute #r ⊕φψr

15

Reduction to #P

Converting the probabilistic guarantee to a deterministic #P
calculation
ψ s.t. ¬⊕φψ ⇒ #θψ = 0 (mod N)

ψ s.t. ⊕φψ w.p. > 2/3 ⇒ #θψ ≠ 0 (mod N)

Attempt 1: let φψr be the formula generated using random
tape r. To determine if ψ is such that number of random
tapes r for which ⊕φψr holds is 0 or > (2/3)2m

Enough to compute #r ⊕φψr

But ⊕φψr is not in P (though φψr(x) is in P)

15

Reduction to #P

16

Reduction to #P
Attempt 2: If ⊕xφψr = #xφψr then enough to compute the

number of (x,r) such that φψr(x)

16

Reduction to #P
Attempt 2: If ⊕xφψr = #xφψr then enough to compute the

number of (x,r) such that φψr(x)

But ⊕φψ is #φψ mod 2

16

Reduction to #P
Attempt 2: If ⊕xφψr = #xφψr then enough to compute the

number of (x,r) such that φψr(x)

But ⊕φψ is #φψ mod 2

Plan: Create φ’= T(φ), such that

16

Reduction to #P
Attempt 2: If ⊕xφψr = #xφψr then enough to compute the

number of (x,r) such that φψr(x)

But ⊕φψ is #φψ mod 2

Plan: Create φ’= T(φ), such that

¬⊕φ ⇒ #φ’ = 0 mod N

16

Reduction to #P
Attempt 2: If ⊕xφψr = #xφψr then enough to compute the

number of (x,r) such that φψr(x)

But ⊕φψ is #φψ mod 2

Plan: Create φ’= T(φ), such that

¬⊕φ ⇒ #φ’ = 0 mod N

⊕φ ⇒ #φ’ = -1 mod N

16

Reduction to #P
Attempt 2: If ⊕xφψr = #xφψr then enough to compute the

number of (x,r) such that φψr(x)

But ⊕φψ is #φψ mod 2

Plan: Create φ’= T(φ), such that

¬⊕φ ⇒ #φ’ = 0 mod N

⊕φ ⇒ #φ’ = -1 mod N

N > 2m so that for (2/3).2m < R ≤ 2m we have R.(-1) ≠ 0 mod N

16

Reduction to #P
Attempt 2: If ⊕xφψr = #xφψr then enough to compute the

number of (x,r) such that φψr(x)

But ⊕φψ is #φψ mod 2

Plan: Create φ’= T(φ), such that

¬⊕φ ⇒ #φ’ = 0 mod N

⊕φ ⇒ #φ’ = -1 mod N

N > 2m so that for (2/3).2m < R ≤ 2m we have R.(-1) ≠ 0 mod N

Let θψ(x,r) = T(φψr)(x). Use #θψ mod N to check if w.h.p. ⊕φ

16

Reduction to #P

17

Reduction to #P
Remains to do: Given φ, create φ’ such that for N=22^k,
where k = O(log m)

17

Reduction to #P
Remains to do: Given φ, create φ’ such that for N=22^k,
where k = O(log m)

¬⊕φ ⇒ #φ’ = 0 mod N

17

Reduction to #P
Remains to do: Given φ, create φ’ such that for N=22^k,
where k = O(log m)

¬⊕φ ⇒ #φ’ = 0 mod N

⊕φ ⇒ #φ’ = -1 mod N

17

Reduction to #P
Remains to do: Given φ, create φ’ such that for N=22^k,
where k = O(log m)

¬⊕φ ⇒ #φ’ = 0 mod N

⊕φ ⇒ #φ’ = -1 mod N

Initially true for N = 2 (22^i, i=0)

17

Reduction to #P
Remains to do: Given φ, create φ’ such that for N=22^k,
where k = O(log m)

¬⊕φ ⇒ #φ’ = 0 mod N

⊕φ ⇒ #φ’ = -1 mod N

Initially true for N = 2 (22^i, i=0)

φi+1 = F4(φi)^3 + 3(φi)^4 so that #φi+1 = 4(#φi)3 + 3(#φi)4

17

Reduction to #P
Remains to do: Given φ, create φ’ such that for N=22^k,
where k = O(log m)

¬⊕φ ⇒ #φ’ = 0 mod N

⊕φ ⇒ #φ’ = -1 mod N

Initially true for N = 2 (22^i, i=0)

φi+1 = F4(φi)^3 + 3(φi)^4 so that #φi+1 = 4(#φi)3 + 3(#φi)4

#φi = -1 mod 22^i implies φi+1 = -1 mod 22^(i+1) (for i≥0)

17

Reduction to #P
Remains to do: Given φ, create φ’ such that for N=22^k,
where k = O(log m)

¬⊕φ ⇒ #φ’ = 0 mod N

⊕φ ⇒ #φ’ = -1 mod N

Initially true for N = 2 (22^i, i=0)

φi+1 = F4(φi)^3 + 3(φi)^4 so that #φi+1 = 4(#φi)3 + 3(#φi)4

#φi = -1 mod 22^i implies φi+1 = -1 mod 22^(i+1) (for i≥0)

Clearly #φi = 0 mod 22^i implies φi+1 = 0 mod 22^(i+1)

17

PH ⊆ P#P

18

PH ⊆ P#P

Summary:

18

PH ⊆ P#P

Summary:

First, randomized reduction of PH to P⊕P

18

PH ⊆ P#P

Summary:

First, randomized reduction of PH to P⊕P

TQBF instance ψ to ⊕SAT instance φψ

18

PH ⊆ P#P

Summary:

First, randomized reduction of PH to P⊕P

TQBF instance ψ to ⊕SAT instance φψ

ψ ⇒ ⊕φψ w.p. > 2/3; ¬ψ ⇒ ¬⊕φψ (w.p. 1)

18

PH ⊆ P#P

Summary:

First, randomized reduction of PH to P⊕P

TQBF instance ψ to ⊕SAT instance φψ

ψ ⇒ ⊕φψ w.p. > 2/3; ¬ψ ⇒ ¬⊕φψ (w.p. 1)

Converting the probabilistic guarantee to a
deterministic #P calculation

18

PH ⊆ P#P

Summary:

First, randomized reduction of PH to P⊕P

TQBF instance ψ to ⊕SAT instance φψ

ψ ⇒ ⊕φψ w.p. > 2/3; ¬ψ ⇒ ¬⊕φψ (w.p. 1)

Converting the probabilistic guarantee to a
deterministic #P calculation

ψ s.t. ¬⊕φψ ⇒ #θψ = 0 (mod N)

18

PH ⊆ P#P

Summary:

First, randomized reduction of PH to P⊕P

TQBF instance ψ to ⊕SAT instance φψ

ψ ⇒ ⊕φψ w.p. > 2/3; ¬ψ ⇒ ¬⊕φψ (w.p. 1)

Converting the probabilistic guarantee to a
deterministic #P calculation

ψ s.t. ¬⊕φψ ⇒ #θψ = 0 (mod N)

ψ s.t. ⊕φψ w.p. > 2/3 ⇒ #θψ ≠ 0 (mod N)

18

Approximation for #P

19

Approximation for #P
α-approximation of f: estimate f(x) within a factor α

19

Approximation for #P
α-approximation of f: estimate f(x) within a factor α

Randomized approximation (“PAC”): answer is within a factor α
with probability at least 1-δ

19

Approximation for #P
α-approximation of f: estimate f(x) within a factor α

Randomized approximation (“PAC”): answer is within a factor α
with probability at least 1-δ

#CYCLE is hard to even approximate unless P=NP

19

Approximation for #P
α-approximation of f: estimate f(x) within a factor α

Randomized approximation (“PAC”): answer is within a factor α
with probability at least 1-δ

#CYCLE is hard to even approximate unless P=NP

If P=NP, every problem in #P can be “well approximated”

19

Approximation for #P
α-approximation of f: estimate f(x) within a factor α

Randomized approximation (“PAC”): answer is within a factor α
with probability at least 1-δ

#CYCLE is hard to even approximate unless P=NP

If P=NP, every problem in #P can be “well approximated”

Permanent has an FPRAS

19

Approximation for #P
α-approximation of f: estimate f(x) within a factor α

Randomized approximation (“PAC”): answer is within a factor α
with probability at least 1-δ

#CYCLE is hard to even approximate unless P=NP

If P=NP, every problem in #P can be “well approximated”

Permanent has an FPRAS

For any ε, δ > 0, α-approximation for α = 1-ε in time
poly(n, log 1/ε, log 1/δ)

19

Approximation for #P
α-approximation of f: estimate f(x) within a factor α

Randomized approximation (“PAC”): answer is within a factor α
with probability at least 1-δ

#CYCLE is hard to even approximate unless P=NP

If P=NP, every problem in #P can be “well approximated”

Permanent has an FPRAS

For any ε, δ > 0, α-approximation for α = 1-ε in time
poly(n, log 1/ε, log 1/δ)

Technique: Monte Carlo Markov Chain (MCMC)

19

Approximation for #P
α-approximation of f: estimate f(x) within a factor α

Randomized approximation (“PAC”): answer is within a factor α
with probability at least 1-δ

#CYCLE is hard to even approximate unless P=NP

If P=NP, every problem in #P can be “well approximated”

Permanent has an FPRAS

For any ε, δ > 0, α-approximation for α = 1-ε in time
poly(n, log 1/ε, log 1/δ)

Technique: Monte Carlo Markov Chain (MCMC)
Very useful for sampling. Turns out counting ≈ sampling!

19

Approximation for #P
α-approximation of f: estimate f(x) within a factor α

Randomized approximation (“PAC”): answer is within a factor α
with probability at least 1-δ

#CYCLE is hard to even approximate unless P=NP

If P=NP, every problem in #P can be “well approximated”

Permanent has an FPRAS

For any ε, δ > 0, α-approximation for α = 1-ε in time
poly(n, log 1/ε, log 1/δ)

Technique: Monte Carlo Markov Chain (MCMC)
Very useful for sampling. Turns out counting ≈ sampling!

19

