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Turing Machines computing a (not necessarily 
Boolean) function of the input 

Writes the output on an output tape

FP: class of efficiently computable functions

Computed by a TM running in polynomial time
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#R(x) = |{w: R(x,w)=1}|

e.g: Number of subgraphs of a given graph with 
some property (trees, cycles, spanning trees, cycle 
covers, etc.)

e.g.: Number of satisfying assignments to a boolean 
formula
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#P
Class of functions of the form number of witnesses for an NP 
language

#R(x) = |{w: R(x,w)=1}|, where R is a polynomial time relation

e.g.: #SPANTREE(G) = number of spanning trees in a 
graph G

e.g.: #CYCLE(G) = number of simple cycles in a directed 
graph G

e.g.: #SAT(φ) = number of satisfying assignments of φ

Easy to see: FP ⊆ #P [Exercise]
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#P vs. NP

#R(x) = |{w: R(x,w)=1}|, were R is a polynomial time 
relation

To compute a function in #P: compute #R(x)

To decide a language in NP: check if #R(x) > 0

#P “harder” than NP

If #P = FP, then P = NP

How much harder? 
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How hard is it to count?
Not hard for some problems

e.g.: #SPANTREE(G) = number of spanning trees in a 
graph G

Kirchhoff's theorem: evaluating a simple determinant 
gives the answer

Hard for counting witnesses of NP-complete languages: 
e.g. #SAT (unless P=NP)

Hard for some other problems too

If #CYCLE ∈ FP, then P=NP
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#CYCLE ∈ FP ⇒ P=NP
Reduce HAMILTONICITY to #CYCLE: Given G, to construct G’ 
such that #CYCLE(G’) is “large” iff G has a Hamiltonian cycle

Replace each edge in G by a gadget such that each cycle in 
G becomes “many” cycles in G’

Longer the cycle in G, more the cycles in G’ it results in

A single n-long cycle in G will result in more cycles in G’ 
than produced by all shorter cycles in G put together

At most nn-1 shorter cycles in G

t-long cycle in G → (2m)t = nnt cycles in G’ (m := n log n)

HAMILTONICITY(G) ⇔ #CYCLES(G) ≥ nn^2
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#P vs. PP
Recall PP: x in L if for at least half the strings w (of some 
length) we have R(x,w)=1

i.e., checking the most significant bits of #R

Recall: We already saw NP ⊆ PP

PP as powerful as #P (and vice versa)

#P ⊆ FPPP [exercise] (and PP ⊆ P#P [why?])

So if PP = P, then #P = FP (and vice versa)
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f ∈ #P is #P-complete if any g ∈ #P can be Cook-reduced 

to f

From parsimonious reduction of g’s NP problem to an   
NP-complete problem (w.r.t Karp-reductions)

#SAT is #P-complete

Other #P-complete problems whose decision problems 
are in P

Permanent (for binary matrices) is #P-complete

Allows multipl
e 

oracle
 calls
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Alterna
tely, 
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If A is binary (0,1 entries): perm(A) = number of perfect 
matchings in a bipartite graph BA whose adjacency matrix is A

Note: finding if there exists a perfect matching is in P 
(using network flow)

Algebraically: perm(A) = Σσ Πi Ai,σ(i) where σ are permutations

Note: Similar to determinant (which is in FP)

Permutations are cycle covers of complete directed graph 

Weight of a cycle cover σ, W(σ) = Πi Ai,σ(i)

Perm(A) = Σσ W(σ) over all cycle covers σ of directed 
graph GA (with edge-weights from A)

10



Permanent is #P-complete

11



First will reduce #SAT to permanent of an integer (not 
binary) matrix

Permanent is #P-complete

11



First will reduce #SAT to permanent of an integer (not 
binary) matrix

Plan: Given a SAT instance φ with m clauses, build an 
integer-weighted directed graph Aφ such that        
perm(Aφ) = 43m . #φ

Permanent is #P-complete

11



First will reduce #SAT to permanent of an integer (not 
binary) matrix

Plan: Given a SAT instance φ with m clauses, build an 
integer-weighted directed graph Aφ such that        
perm(Aφ) = 43m . #φ

Almost Karp-reduction (need to rescale)

Permanent is #P-complete
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Replacing a pair of edges by an XOR 
gadget changes total weight of cycle 
covers using neither or both the edges 
to 0, and scales total weight of cycle 
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Final graph
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edge” with the corresponding edge in 
a variable-gadget: 3m XOR gadgets
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Permanent is #P-complete
XOR gadget (with negative edge weights):

Replacing a pair of edges by an XOR 
gadget changes total weight of cycle 
covers using neither or both the edges 
to 0, and scales total weight of cycle 
covers using exactly one of them by 4.

Final graph

“XOR” each clause-gadget’s “variable-
edge” with the corresponding edge in 
a variable-gadget: 3m XOR gadgets

Each satisfying assignment gives a 
cycle cover of weight 43m
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Next: Toda’s Theorem: PH ⊆ P#P = PPP
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