
Complexity of Counting

Lecture 20
#P

1

FP

2

FP

Turing Machines computing a (not necessarily
Boolean) function of the input

2

FP

Turing Machines computing a (not necessarily
Boolean) function of the input

Writes the output on an output tape

2

FP

Turing Machines computing a (not necessarily
Boolean) function of the input

Writes the output on an output tape

FP: class of efficiently computable functions

2

FP

Turing Machines computing a (not necessarily
Boolean) function of the input

Writes the output on an output tape

FP: class of efficiently computable functions

Computed by a TM running in polynomial time

2

Counting Problems

3

Counting Problems
Counting: Functions of the form “number of witnesses”

3

Counting Problems
Counting: Functions of the form “number of witnesses”

#R(x) = |{w: R(x,w)=1}|

3

Counting Problems
Counting: Functions of the form “number of witnesses”

#R(x) = |{w: R(x,w)=1}|

e.g: Number of subgraphs of a given graph with
some property (trees, cycles, spanning trees, cycle
covers, etc.)

3

Counting Problems
Counting: Functions of the form “number of witnesses”

#R(x) = |{w: R(x,w)=1}|

e.g: Number of subgraphs of a given graph with
some property (trees, cycles, spanning trees, cycle
covers, etc.)

e.g.: Number of satisfying assignments to a boolean
formula

3

Counting Problems
Counting: Functions of the form “number of witnesses”

#R(x) = |{w: R(x,w)=1}|

e.g: Number of subgraphs of a given graph with
some property (trees, cycles, spanning trees, cycle
covers, etc.)

e.g.: Number of satisfying assignments to a boolean
formula

e.g.: Number of inputs less than x (lexicographically)
that are in a language L

3

#P

4

#P
Class of functions of the form number of witnesses for an NP
language

4

#P
Class of functions of the form number of witnesses for an NP
language

#R(x) = |{w: R(x,w)=1}|, where R is a polynomial time relation

4

#P
Class of functions of the form number of witnesses for an NP
language

#R(x) = |{w: R(x,w)=1}|, where R is a polynomial time relation

e.g.: #SPANTREE(G) = number of spanning trees in a
graph G

4

#P
Class of functions of the form number of witnesses for an NP
language

#R(x) = |{w: R(x,w)=1}|, where R is a polynomial time relation

e.g.: #SPANTREE(G) = number of spanning trees in a
graph G

e.g.: #CYCLE(G) = number of simple cycles in a directed
graph G

4

#P
Class of functions of the form number of witnesses for an NP
language

#R(x) = |{w: R(x,w)=1}|, where R is a polynomial time relation

e.g.: #SPANTREE(G) = number of spanning trees in a
graph G

e.g.: #CYCLE(G) = number of simple cycles in a directed
graph G

e.g.: #SAT(φ) = number of satisfying assignments of φ

4

#P
Class of functions of the form number of witnesses for an NP
language

#R(x) = |{w: R(x,w)=1}|, where R is a polynomial time relation

e.g.: #SPANTREE(G) = number of spanning trees in a
graph G

e.g.: #CYCLE(G) = number of simple cycles in a directed
graph G

e.g.: #SAT(φ) = number of satisfying assignments of φ

Easy to see: FP ⊆ #P [Exercise]

4

#P vs. NP

5

#P vs. NP

#R(x) = |{w: R(x,w)=1}|, were R is a polynomial time
relation

5

#P vs. NP

#R(x) = |{w: R(x,w)=1}|, were R is a polynomial time
relation

To compute a function in #P: compute #R(x)

5

#P vs. NP

#R(x) = |{w: R(x,w)=1}|, were R is a polynomial time
relation

To compute a function in #P: compute #R(x)

To decide a language in NP: check if #R(x) > 0

5

#P vs. NP

#R(x) = |{w: R(x,w)=1}|, were R is a polynomial time
relation

To compute a function in #P: compute #R(x)

To decide a language in NP: check if #R(x) > 0

#P “harder” than NP

5

#P vs. NP

#R(x) = |{w: R(x,w)=1}|, were R is a polynomial time
relation

To compute a function in #P: compute #R(x)

To decide a language in NP: check if #R(x) > 0

#P “harder” than NP

If #P = FP, then P = NP

5

#P vs. NP

#R(x) = |{w: R(x,w)=1}|, were R is a polynomial time
relation

To compute a function in #P: compute #R(x)

To decide a language in NP: check if #R(x) > 0

#P “harder” than NP

If #P = FP, then P = NP

How much harder?

5

How hard is it to count?

6

How hard is it to count?
Not hard for some problems

6

How hard is it to count?
Not hard for some problems

e.g.: #SPANTREE(G) = number of spanning trees in a
graph G

6

How hard is it to count?
Not hard for some problems

e.g.: #SPANTREE(G) = number of spanning trees in a
graph G

Kirchhoff's theorem: evaluating a simple determinant
gives the answer

6

How hard is it to count?
Not hard for some problems

e.g.: #SPANTREE(G) = number of spanning trees in a
graph G

Kirchhoff's theorem: evaluating a simple determinant
gives the answer

Hard for counting witnesses of NP-complete languages:
e.g. #SAT (unless P=NP)

6

How hard is it to count?
Not hard for some problems

e.g.: #SPANTREE(G) = number of spanning trees in a
graph G

Kirchhoff's theorem: evaluating a simple determinant
gives the answer

Hard for counting witnesses of NP-complete languages:
e.g. #SAT (unless P=NP)

Hard for some other problems too

6

How hard is it to count?
Not hard for some problems

e.g.: #SPANTREE(G) = number of spanning trees in a
graph G

Kirchhoff's theorem: evaluating a simple determinant
gives the answer

Hard for counting witnesses of NP-complete languages:
e.g. #SAT (unless P=NP)

Hard for some other problems too

If #CYCLE ∈ FP, then P=NP

6

#CYCLE ∈ FP ⇒ P=NP

7

#CYCLE ∈ FP ⇒ P=NP
Reduce HAMILTONICITY to #CYCLE: Given G, to construct G’
such that #CYCLE(G’) is “large” iff G has a Hamiltonian cycle

7

#CYCLE ∈ FP ⇒ P=NP
Reduce HAMILTONICITY to #CYCLE: Given G, to construct G’
such that #CYCLE(G’) is “large” iff G has a Hamiltonian cycle

Replace each edge in G by a gadget such that each cycle in
G becomes “many” cycles in G’

7

#CYCLE ∈ FP ⇒ P=NP
Reduce HAMILTONICITY to #CYCLE: Given G, to construct G’
such that #CYCLE(G’) is “large” iff G has a Hamiltonian cycle

Replace each edge in G by a gadget such that each cycle in
G becomes “many” cycles in G’

Longer the cycle in G, more the cycles in G’ it results in

7

#CYCLE ∈ FP ⇒ P=NP
Reduce HAMILTONICITY to #CYCLE: Given G, to construct G’
such that #CYCLE(G’) is “large” iff G has a Hamiltonian cycle

Replace each edge in G by a gadget such that each cycle in
G becomes “many” cycles in G’

Longer the cycle in G, more the cycles in G’ it results in

A single n-long cycle in G will result in more cycles in G’
than produced by all shorter cycles in G put together

7

#CYCLE ∈ FP ⇒ P=NP
Reduce HAMILTONICITY to #CYCLE: Given G, to construct G’
such that #CYCLE(G’) is “large” iff G has a Hamiltonian cycle

Replace each edge in G by a gadget such that each cycle in
G becomes “many” cycles in G’

Longer the cycle in G, more the cycles in G’ it results in

A single n-long cycle in G will result in more cycles in G’
than produced by all shorter cycles in G put together

At most nn-1 shorter cycles in G

7

#CYCLE ∈ FP ⇒ P=NP
Reduce HAMILTONICITY to #CYCLE: Given G, to construct G’
such that #CYCLE(G’) is “large” iff G has a Hamiltonian cycle

Replace each edge in G by a gadget such that each cycle in
G becomes “many” cycles in G’

Longer the cycle in G, more the cycles in G’ it results in

A single n-long cycle in G will result in more cycles in G’
than produced by all shorter cycles in G put together

At most nn-1 shorter cycles in G

t-long cycle in G → (2m)t = nnt cycles in G’ (m := n log n)

7

#CYCLE ∈ FP ⇒ P=NP
Reduce HAMILTONICITY to #CYCLE: Given G, to construct G’
such that #CYCLE(G’) is “large” iff G has a Hamiltonian cycle

Replace each edge in G by a gadget such that each cycle in
G becomes “many” cycles in G’

Longer the cycle in G, more the cycles in G’ it results in

A single n-long cycle in G will result in more cycles in G’
than produced by all shorter cycles in G put together

At most nn-1 shorter cycles in G

t-long cycle in G → (2m)t = nnt cycles in G’ (m := n log n)

HAMILTONICITY(G) ⇔ #CYCLES(G) ≥ nn^2

7

#P vs. PP

8

#P vs. PP
Recall PP: x in L if for at least half the strings w (of some
length) we have R(x,w)=1

8

#P vs. PP
Recall PP: x in L if for at least half the strings w (of some
length) we have R(x,w)=1

i.e., checking the most significant bits of #R

8

#P vs. PP
Recall PP: x in L if for at least half the strings w (of some
length) we have R(x,w)=1

i.e., checking the most significant bits of #R

Recall: We already saw NP ⊆ PP

8

#P vs. PP
Recall PP: x in L if for at least half the strings w (of some
length) we have R(x,w)=1

i.e., checking the most significant bits of #R

Recall: We already saw NP ⊆ PP

PP as powerful as #P (and vice versa)

8

#P vs. PP
Recall PP: x in L if for at least half the strings w (of some
length) we have R(x,w)=1

i.e., checking the most significant bits of #R

Recall: We already saw NP ⊆ PP

PP as powerful as #P (and vice versa)

#P ⊆ FPPP [exercise] (and PP ⊆ P#P [why?])

8

#P vs. PP
Recall PP: x in L if for at least half the strings w (of some
length) we have R(x,w)=1

i.e., checking the most significant bits of #R

Recall: We already saw NP ⊆ PP

PP as powerful as #P (and vice versa)

#P ⊆ FPPP [exercise] (and PP ⊆ P#P [why?])

So if PP = P, then #P = FP (and vice versa)

8

#P completeness

9

#P completeness
f ∈ #P is #P-complete if any g ∈ #P can be Cook-reduced

to f

9

#P completeness
f ∈ #P is #P-complete if any g ∈ #P can be Cook-reduced

to f

Allows multipl
e

oracle
 calls

.

Alterna
tely,

allow

only
one c

all

9

#P completeness
f ∈ #P is #P-complete if any g ∈ #P can be Cook-reduced

to f

From parsimonious reduction of g’s NP problem to an
NP-complete problem (w.r.t Karp-reductions)

Allows multipl
e

oracle
 calls

.

Alterna
tely,

allow

only
one c

all

9

#P completeness
f ∈ #P is #P-complete if any g ∈ #P can be Cook-reduced

to f

From parsimonious reduction of g’s NP problem to an
NP-complete problem (w.r.t Karp-reductions)

#SAT is #P-complete

Allows multipl
e

oracle
 calls

.

Alterna
tely,

allow

only
one c

all

9

#P completeness
f ∈ #P is #P-complete if any g ∈ #P can be Cook-reduced

to f

From parsimonious reduction of g’s NP problem to an
NP-complete problem (w.r.t Karp-reductions)

#SAT is #P-complete

Other #P-complete problems whose decision problems
are in P

Allows multipl
e

oracle
 calls

.

Alterna
tely,

allow

only
one c

all

9

#P completeness
f ∈ #P is #P-complete if any g ∈ #P can be Cook-reduced

to f

From parsimonious reduction of g’s NP problem to an
NP-complete problem (w.r.t Karp-reductions)

#SAT is #P-complete

Other #P-complete problems whose decision problems
are in P

Permanent (for binary matrices) is #P-complete

Allows multipl
e

oracle
 calls

.

Alterna
tely,

allow

only
one c

all

9

Permanent

10

Permanent
Permanent of a square matrix A

10

Permanent
Permanent of a square matrix A

If A is binary (0,1 entries): perm(A) = number of perfect
matchings in a bipartite graph BA whose adjacency matrix is A

10

Permanent
Permanent of a square matrix A

If A is binary (0,1 entries): perm(A) = number of perfect
matchings in a bipartite graph BA whose adjacency matrix is A

Note: finding if there exists a perfect matching is in P
(using network flow)

10

Permanent
Permanent of a square matrix A

If A is binary (0,1 entries): perm(A) = number of perfect
matchings in a bipartite graph BA whose adjacency matrix is A

Note: finding if there exists a perfect matching is in P
(using network flow)

Algebraically: perm(A) = Σσ Πi Ai,σ(i) where σ are permutations

10

Permanent
Permanent of a square matrix A

If A is binary (0,1 entries): perm(A) = number of perfect
matchings in a bipartite graph BA whose adjacency matrix is A

Note: finding if there exists a perfect matching is in P
(using network flow)

Algebraically: perm(A) = Σσ Πi Ai,σ(i) where σ are permutations

Note: Similar to determinant (which is in FP)

10

Permanent
Permanent of a square matrix A

If A is binary (0,1 entries): perm(A) = number of perfect
matchings in a bipartite graph BA whose adjacency matrix is A

Note: finding if there exists a perfect matching is in P
(using network flow)

Algebraically: perm(A) = Σσ Πi Ai,σ(i) where σ are permutations

Note: Similar to determinant (which is in FP)

Permutations are cycle covers of complete directed graph

10

Permanent
Permanent of a square matrix A

If A is binary (0,1 entries): perm(A) = number of perfect
matchings in a bipartite graph BA whose adjacency matrix is A

Note: finding if there exists a perfect matching is in P
(using network flow)

Algebraically: perm(A) = Σσ Πi Ai,σ(i) where σ are permutations

Note: Similar to determinant (which is in FP)

Permutations are cycle covers of complete directed graph

Weight of a cycle cover σ, W(σ) = Πi Ai,σ(i)

10

Permanent
Permanent of a square matrix A

If A is binary (0,1 entries): perm(A) = number of perfect
matchings in a bipartite graph BA whose adjacency matrix is A

Note: finding if there exists a perfect matching is in P
(using network flow)

Algebraically: perm(A) = Σσ Πi Ai,σ(i) where σ are permutations

Note: Similar to determinant (which is in FP)

Permutations are cycle covers of complete directed graph

Weight of a cycle cover σ, W(σ) = Πi Ai,σ(i)

Perm(A) = Σσ W(σ) over all cycle covers σ of directed
graph GA (with edge-weights from A)

10

Permanent is #P-complete

11

First will reduce #SAT to permanent of an integer (not
binary) matrix

Permanent is #P-complete

11

First will reduce #SAT to permanent of an integer (not
binary) matrix

Plan: Given a SAT instance φ with m clauses, build an
integer-weighted directed graph Aφ such that
perm(Aφ) = 43m . #φ

Permanent is #P-complete

11

First will reduce #SAT to permanent of an integer (not
binary) matrix

Plan: Given a SAT instance φ with m clauses, build an
integer-weighted directed graph Aφ such that
perm(Aφ) = 43m . #φ

Almost Karp-reduction (need to rescale)

Permanent is #P-complete

11

Permanent is #P-complete

12

Permanent is #P-complete
For each variable add a
“variable gadget” and for
each clause a “clause
gadget”

12

Permanent is #P-complete
For each variable add a
“variable gadget” and for
each clause a “clause
gadget”

DRAFT

9.2. #P COMPLETENESS. p9.7 (177)

variable gadget:

....

False edge

external (true) edges - one per clause

Symbolic description:

...

Gadget:

clause gadget:

external edges - one per variable

external edges

variable gadget

clause gadget

XOR gadget:

u u’

v’ v

-1

-1

-1
2

3

u u’

vv’ `

The overall construction:

external edges

...

variable gadget

clause gadget

......

............

variable gadget
for every variable

clause gadget
for every clause

connect via XOR external
edges of gadgets for
variables that appear in clauses.

Figure 9.3: The gadgets used in the proof of Valiant’s Theorem.

Web draft 2007-01-08 21:59

[Figures from the textbook]

12

Permanent is #P-complete
For each variable add a
“variable gadget” and for
each clause a “clause
gadget”

Variable: two possible
cycle covers of weight 1
-- uses either all the
true-edges or the
false-edge

DRAFT

9.2. #P COMPLETENESS. p9.7 (177)

variable gadget:

....

False edge

external (true) edges - one per clause

Symbolic description:

...

Gadget:

clause gadget:

external edges - one per variable

external edges

variable gadget

clause gadget

XOR gadget:

u u’

v’ v

-1

-1

-1
2

3

u u’

vv’ `

The overall construction:

external edges

...

variable gadget

clause gadget

......

............

variable gadget
for every variable

clause gadget
for every clause

connect via XOR external
edges of gadgets for
variables that appear in clauses.

Figure 9.3: The gadgets used in the proof of Valiant’s Theorem.

Web draft 2007-01-08 21:59

[Figures from the textbook]

12

Permanent is #P-complete
For each variable add a
“variable gadget” and for
each clause a “clause
gadget”

Variable: two possible
cycle covers of weight 1
-- uses either all the
true-edges or the
false-edge

Clause: any cycle cover
has to leave at least
one variable-edge free

DRAFT

9.2. #P COMPLETENESS. p9.7 (177)

variable gadget:

....

False edge

external (true) edges - one per clause

Symbolic description:

...

Gadget:

clause gadget:

external edges - one per variable

external edges

variable gadget

clause gadget

XOR gadget:

u u’

v’ v

-1

-1

-1
2

3

u u’

vv’ `

The overall construction:

external edges

...

variable gadget

clause gadget

......

............

variable gadget
for every variable

clause gadget
for every clause

connect via XOR external
edges of gadgets for
variables that appear in clauses.

Figure 9.3: The gadgets used in the proof of Valiant’s Theorem.

Web draft 2007-01-08 21:59

[Figures from the textbook]

12

Permanent is #P-complete

13

Permanent is #P-complete
XOR gadget (with negative edge weights):

13

Permanent is #P-complete
XOR gadget (with negative edge weights):

DRAFT

9.2. #P COMPLETENESS. p9.7 (177)

variable gadget:

....

False edge

external (true) edges - one per clause

Symbolic description:

...

Gadget:

clause gadget:

external edges - one per variable

external edges

variable gadget

clause gadget

XOR gadget:

u u’

v’ v

-1

-1

-1
2

3

u u’

vv’ `

The overall construction:

external edges

...

variable gadget

clause gadget

......

............

variable gadget
for every variable

clause gadget
for every clause

connect via XOR external
edges of gadgets for
variables that appear in clauses.

Figure 9.3: The gadgets used in the proof of Valiant’s Theorem.

Web draft 2007-01-08 21:59

13

Permanent is #P-complete
XOR gadget (with negative edge weights):

Replacing a pair of edges by an XOR
gadget changes total weight of cycle
covers using neither or both the edges
to 0, and scales total weight of cycle
covers using exactly one of them by 4.

DRAFT

9.2. #P COMPLETENESS. p9.7 (177)

variable gadget:

....

False edge

external (true) edges - one per clause

Symbolic description:

...

Gadget:

clause gadget:

external edges - one per variable

external edges

variable gadget

clause gadget

XOR gadget:

u u’

v’ v

-1

-1

-1
2

3

u u’

vv’ `

The overall construction:

external edges

...

variable gadget

clause gadget

......

............

variable gadget
for every variable

clause gadget
for every clause

connect via XOR external
edges of gadgets for
variables that appear in clauses.

Figure 9.3: The gadgets used in the proof of Valiant’s Theorem.

Web draft 2007-01-08 21:59

13

Permanent is #P-complete
XOR gadget (with negative edge weights):

Replacing a pair of edges by an XOR
gadget changes total weight of cycle
covers using neither or both the edges
to 0, and scales total weight of cycle
covers using exactly one of them by 4.

Final graph

DRAFT

9.2. #P COMPLETENESS. p9.7 (177)

variable gadget:

....

False edge

external (true) edges - one per clause

Symbolic description:

...

Gadget:

clause gadget:

external edges - one per variable

external edges

variable gadget

clause gadget

XOR gadget:

u u’

v’ v

-1

-1

-1
2

3

u u’

vv’ `

The overall construction:

external edges

...

variable gadget

clause gadget

......

............

variable gadget
for every variable

clause gadget
for every clause

connect via XOR external
edges of gadgets for
variables that appear in clauses.

Figure 9.3: The gadgets used in the proof of Valiant’s Theorem.

Web draft 2007-01-08 21:59

13

Permanent is #P-complete
XOR gadget (with negative edge weights):

Replacing a pair of edges by an XOR
gadget changes total weight of cycle
covers using neither or both the edges
to 0, and scales total weight of cycle
covers using exactly one of them by 4.

Final graph

DRAFT

9.2. #P COMPLETENESS. p9.7 (177)

variable gadget:

....

False edge

external (true) edges - one per clause

Symbolic description:

...

Gadget:

clause gadget:

external edges - one per variable

external edges

variable gadget

clause gadget

XOR gadget:

u u’

v’ v

-1

-1

-1
2

3

u u’

vv’ `

The overall construction:

external edges

...

variable gadget

clause gadget

......

............

variable gadget
for every variable

clause gadget
for every clause

connect via XOR external
edges of gadgets for
variables that appear in clauses.

Figure 9.3: The gadgets used in the proof of Valiant’s Theorem.

Web draft 2007-01-08 21:59

DRAFT

9.2. #P COMPLETENESS. p9.7 (177)

variable gadget:

....

False edge

external (true) edges - one per clause

Symbolic description:

...

Gadget:

clause gadget:

external edges - one per variable

external edges

variable gadget

clause gadget

XOR gadget:

u u’

v’ v

-1

-1

-1
2

3

u u’

vv’ `

The overall construction:

external edges

...

variable gadget

clause gadget

......

............

variable gadget
for every variable

clause gadget
for every clause

connect via XOR external
edges of gadgets for
variables that appear in clauses.

Figure 9.3: The gadgets used in the proof of Valiant’s Theorem.

Web draft 2007-01-08 21:59

13

Permanent is #P-complete
XOR gadget (with negative edge weights):

Replacing a pair of edges by an XOR
gadget changes total weight of cycle
covers using neither or both the edges
to 0, and scales total weight of cycle
covers using exactly one of them by 4.

Final graph

“XOR” each clause-gadget’s “variable-
edge” with the corresponding edge in
a variable-gadget: 3m XOR gadgets

DRAFT

9.2. #P COMPLETENESS. p9.7 (177)

variable gadget:

....

False edge

external (true) edges - one per clause

Symbolic description:

...

Gadget:

clause gadget:

external edges - one per variable

external edges

variable gadget

clause gadget

XOR gadget:

u u’

v’ v

-1

-1

-1
2

3

u u’

vv’ `

The overall construction:

external edges

...

variable gadget

clause gadget

......

............

variable gadget
for every variable

clause gadget
for every clause

connect via XOR external
edges of gadgets for
variables that appear in clauses.

Figure 9.3: The gadgets used in the proof of Valiant’s Theorem.

Web draft 2007-01-08 21:59

DRAFT

9.2. #P COMPLETENESS. p9.7 (177)

variable gadget:

....

False edge

external (true) edges - one per clause

Symbolic description:

...

Gadget:

clause gadget:

external edges - one per variable

external edges

variable gadget

clause gadget

XOR gadget:

u u’

v’ v

-1

-1

-1
2

3

u u’

vv’ `

The overall construction:

external edges

...

variable gadget

clause gadget

......

............

variable gadget
for every variable

clause gadget
for every clause

connect via XOR external
edges of gadgets for
variables that appear in clauses.

Figure 9.3: The gadgets used in the proof of Valiant’s Theorem.

Web draft 2007-01-08 21:59

13

Permanent is #P-complete
XOR gadget (with negative edge weights):

Replacing a pair of edges by an XOR
gadget changes total weight of cycle
covers using neither or both the edges
to 0, and scales total weight of cycle
covers using exactly one of them by 4.

Final graph

“XOR” each clause-gadget’s “variable-
edge” with the corresponding edge in
a variable-gadget: 3m XOR gadgets

Each satisfying assignment gives a
cycle cover of weight 43m

DRAFT

9.2. #P COMPLETENESS. p9.7 (177)

variable gadget:

....

False edge

external (true) edges - one per clause

Symbolic description:

...

Gadget:

clause gadget:

external edges - one per variable

external edges

variable gadget

clause gadget

XOR gadget:

u u’

v’ v

-1

-1

-1
2

3

u u’

vv’ `

The overall construction:

external edges

...

variable gadget

clause gadget

......

............

variable gadget
for every variable

clause gadget
for every clause

connect via XOR external
edges of gadgets for
variables that appear in clauses.

Figure 9.3: The gadgets used in the proof of Valiant’s Theorem.

Web draft 2007-01-08 21:59

DRAFT

9.2. #P COMPLETENESS. p9.7 (177)

variable gadget:

....

False edge

external (true) edges - one per clause

Symbolic description:

...

Gadget:

clause gadget:

external edges - one per variable

external edges

variable gadget

clause gadget

XOR gadget:

u u’

v’ v

-1

-1

-1
2

3

u u’

vv’ `

The overall construction:

external edges

...

variable gadget

clause gadget

......

............

variable gadget
for every variable

clause gadget
for every clause

connect via XOR external
edges of gadgets for
variables that appear in clauses.

Figure 9.3: The gadgets used in the proof of Valiant’s Theorem.

Web draft 2007-01-08 21:59

13

Permanent is #P-complete

14

Permanent is #P-complete

Can use binary matrix instead of integer
matrix

14

Permanent is #P-complete

Can use binary matrix instead of integer
matrix

First change to +1/-1 weights (adding
vertices)

14

Permanent is #P-complete

Can use binary matrix instead of integer
matrix

First change to +1/-1 weights (adding
vertices)

33

14

Permanent is #P-complete

Can use binary matrix instead of integer
matrix

First change to +1/-1 weights (adding
vertices)

33

14

Permanent is #P-complete

Can use binary matrix instead of integer
matrix

First change to +1/-1 weights (adding
vertices)

33

14

Permanent is #P-complete

Can use binary matrix instead of integer
matrix

First change to +1/-1 weights (adding
vertices)

To replace -1: working modulo M+1 (for say
M=2n log n > n!) does not change positive
values. M = 2k.

33

14

Permanent is #P-complete

Can use binary matrix instead of integer
matrix

First change to +1/-1 weights (adding
vertices)

To replace -1: working modulo M+1 (for say
M=2n log n > n!) does not change positive
values. M = 2k.

-1 is then M. Replace M by log M edges
of weight 2 in series, each further
replaced by +1 weight edges

33

14

Permanent is #P-complete

Can use binary matrix instead of integer
matrix

First change to +1/-1 weights (adding
vertices)

To replace -1: working modulo M+1 (for say
M=2n log n > n!) does not change positive
values. M = 2k.

-1 is then M. Replace M by log M edges
of weight 2 in series, each further
replaced by +1 weight edges

33

4

14

Permanent is #P-complete

Can use binary matrix instead of integer
matrix

First change to +1/-1 weights (adding
vertices)

To replace -1: working modulo M+1 (for say
M=2n log n > n!) does not change positive
values. M = 2k.

-1 is then M. Replace M by log M edges
of weight 2 in series, each further
replaced by +1 weight edges

33

4

14

Permanent is #P-complete

Can use binary matrix instead of integer
matrix

First change to +1/-1 weights (adding
vertices)

To replace -1: working modulo M+1 (for say
M=2n log n > n!) does not change positive
values. M = 2k.

-1 is then M. Replace M by log M edges
of weight 2 in series, each further
replaced by +1 weight edges

33

4

14

Today

15

Today
#P

15

Today
#P

Can be hard: even #CYCLE is not in FP (unless P = NP)

15

Today
#P

Can be hard: even #CYCLE is not in FP (unless P = NP)

#P ⊆ FPPP (and PP ⊆ P#P)

15

Today
#P

Can be hard: even #CYCLE is not in FP (unless P = NP)

#P ⊆ FPPP (and PP ⊆ P#P)

#P complete problems

15

Today
#P

Can be hard: even #CYCLE is not in FP (unless P = NP)

#P ⊆ FPPP (and PP ⊆ P#P)

#P complete problems

#SAT

15

Today
#P

Can be hard: even #CYCLE is not in FP (unless P = NP)

#P ⊆ FPPP (and PP ⊆ P#P)

#P complete problems

#SAT

Permanent

15

Today
#P

Can be hard: even #CYCLE is not in FP (unless P = NP)

#P ⊆ FPPP (and PP ⊆ P#P)

#P complete problems

#SAT

Permanent

Next: Toda’s Theorem: PH ⊆ P#P = PPP

15

