
Interactive Proofs

Lecture 19
And Beyond

1

So far

2

So far
IP = PSPACE = AM[poly]

2

So far
IP = PSPACE = AM[poly]

PSPACE enough to calculate max Pr[yes]

2

So far
IP = PSPACE = AM[poly]

PSPACE enough to calculate max Pr[yes]
AM[poly] protocol for TQBF using arithmetization

2

So far
IP = PSPACE = AM[poly]

PSPACE enough to calculate max Pr[yes]
AM[poly] protocol for TQBF using arithmetization

In fact IP[k] ⊆ AM[k+2] for all k(n)

2

So far
IP = PSPACE = AM[poly]

PSPACE enough to calculate max Pr[yes]
AM[poly] protocol for TQBF using arithmetization

In fact IP[k] ⊆ AM[k+2] for all k(n)
Using a public-coin set lower-bound proof

2

So far
IP = PSPACE = AM[poly]

PSPACE enough to calculate max Pr[yes]
AM[poly] protocol for TQBF using arithmetization

In fact IP[k] ⊆ AM[k+2] for all k(n)
Using a public-coin set lower-bound proof

AM[k] = AM for constant k ≥ 2

2

So far
IP = PSPACE = AM[poly]

PSPACE enough to calculate max Pr[yes]
AM[poly] protocol for TQBF using arithmetization

In fact IP[k] ⊆ AM[k+2] for all k(n)
Using a public-coin set lower-bound proof

AM[k] = AM for constant k ≥ 2
Using MA ⊆ AM and alternate characterization in
terms of pairs of complementary ATTMs

2

So far
IP = PSPACE = AM[poly]

PSPACE enough to calculate max Pr[yes]
AM[poly] protocol for TQBF using arithmetization

In fact IP[k] ⊆ AM[k+2] for all k(n)
Using a public-coin set lower-bound proof

AM[k] = AM for constant k ≥ 2
Using MA ⊆ AM and alternate characterization in
terms of pairs of complementary ATTMs

Perfect completeness: One-sided-error-AM = AM

2

So far
IP = PSPACE = AM[poly]

PSPACE enough to calculate max Pr[yes]
AM[poly] protocol for TQBF using arithmetization

In fact IP[k] ⊆ AM[k+2] for all k(n)
Using a public-coin set lower-bound proof

AM[k] = AM for constant k ≥ 2
Using MA ⊆ AM and alternate characterization in
terms of pairs of complementary ATTMs

Perfect completeness: One-sided-error-AM = AM
Similar to BPP ⊆ Σ2P (yields MAM protocol; MAM=AM)

2

AM ⊆ Π2P

3

AM ⊆ Π2P

Consider any L with an AM protocol

3

AM ⊆ Π2P

Consider any L with an AM protocol

By perfect completeness:

3

AM ⊆ Π2P

Consider any L with an AM protocol

By perfect completeness:

x∈L ⇒ ∀ yArthur ∃ zMerlin R(x,yArthur,zMerlin) = 1

3

AM ⊆ Π2P

Consider any L with an AM protocol

By perfect completeness:

x∈L ⇒ ∀ yArthur ∃ zMerlin R(x,yArthur,zMerlin) = 1

And by (any positive) soundness:

3

AM ⊆ Π2P

Consider any L with an AM protocol

By perfect completeness:

x∈L ⇒ ∀ yArthur ∃ zMerlin R(x,yArthur,zMerlin) = 1

And by (any positive) soundness:

x∉L ⇒ ∃ yArthur ∀ zMerlin R(x,yArthur,zMerlin) = 0

3

AM ⊆ Π2P

Consider any L with an AM protocol

By perfect completeness:

x∈L ⇒ ∀ yArthur ∃ zMerlin R(x,yArthur,zMerlin) = 1

And by (any positive) soundness:

x∉L ⇒ ∃ yArthur ∀ zMerlin R(x,yArthur,zMerlin) = 0

i.e., x∈L ⇔ ∀y ∃z R(x,y,z) = 1

3

AM ⊆ Π2P

Consider any L with an AM protocol

By perfect completeness:

x∈L ⇒ ∀ yArthur ∃ zMerlin R(x,yArthur,zMerlin) = 1

And by (any positive) soundness:

x∉L ⇒ ∃ yArthur ∀ zMerlin R(x,yArthur,zMerlin) = 0

i.e., x∈L ⇔ ∀y ∃z R(x,y,z) = 1

Similarly, MA ⊆ Σ2P

3

AM and coNP

4

AM and coNP
If coNP ⊆ AM, then PH collapses to level 2

4

AM and coNP
If coNP ⊆ AM, then PH collapses to level 2

Will show coNP ⊆ AM ⇒ Σ2P ⊆ AM ⊆ Π2P

4

AM and coNP
If coNP ⊆ AM, then PH collapses to level 2

Will show coNP ⊆ AM ⇒ Σ2P ⊆ AM ⊆ Π2P

L ∈ Σ2P: { x| ∃y (x,y) ∈ L’} where L’ ∈ coNP

4

AM and coNP
If coNP ⊆ AM, then PH collapses to level 2

Will show coNP ⊆ AM ⇒ Σ2P ⊆ AM ⊆ Π2P

L ∈ Σ2P: { x| ∃y (x,y) ∈ L’} where L’ ∈ coNP

MAM protocol for L: Merlin sends y, and then they run an
AM protocol for (x,y) ∈ L’

4

AM and coNP
If coNP ⊆ AM, then PH collapses to level 2

Will show coNP ⊆ AM ⇒ Σ2P ⊆ AM ⊆ Π2P

L ∈ Σ2P: { x| ∃y (x,y) ∈ L’} where L’ ∈ coNP

MAM protocol for L: Merlin sends y, and then they run an
AM protocol for (x,y) ∈ L’

But MAM = AM

4

AM and coNP
If coNP ⊆ AM, then PH collapses to level 2

Will show coNP ⊆ AM ⇒ Σ2P ⊆ AM ⊆ Π2P

L ∈ Σ2P: { x| ∃y (x,y) ∈ L’} where L’ ∈ coNP

MAM protocol for L: Merlin sends y, and then they run an
AM protocol for (x,y) ∈ L’

But MAM = AM

Corollary: If GI is NP-complete, PH collapses (recall GNI ∈ AM)

4

AM and coNP
If coNP ⊆ AM, then PH collapses to level 2

Will show coNP ⊆ AM ⇒ Σ2P ⊆ AM ⊆ Π2P

L ∈ Σ2P: { x| ∃y (x,y) ∈ L’} where L’ ∈ coNP

MAM protocol for L: Merlin sends y, and then they run an
AM protocol for (x,y) ∈ L’

But MAM = AM

Corollary: If GI is NP-complete, PH collapses (recall GNI ∈ AM)

P

BPP

coNPNP

4

AM and coNP
If coNP ⊆ AM, then PH collapses to level 2

Will show coNP ⊆ AM ⇒ Σ2P ⊆ AM ⊆ Π2P

L ∈ Σ2P: { x| ∃y (x,y) ∈ L’} where L’ ∈ coNP

MAM protocol for L: Merlin sends y, and then they run an
AM protocol for (x,y) ∈ L’

But MAM = AM

Corollary: If GI is NP-complete, PH collapses (recall GNI ∈ AM)

P

BPP

coNPNP

AM

4

BPPRP

Zoo

P

PSPACE
EXP

NP

NEXP

L

Σ2P

MA AM

Π2P

IP

5

Program Checking

6

Program Checking
Suppose a special computer (using nano-bio-quantum technology!)
is being sold for solving Graph Non-Isomorphism (GNI) efficiently

6

Program Checking
Suppose a special computer (using nano-bio-quantum technology!)
is being sold for solving Graph Non-Isomorphism (GNI) efficiently

How do we trust this?

6

Program Checking
Suppose a special computer (using nano-bio-quantum technology!)
is being sold for solving Graph Non-Isomorphism (GNI) efficiently

How do we trust this?

Vendor: Trust me, this always works

6

Program Checking
Suppose a special computer (using nano-bio-quantum technology!)
is being sold for solving Graph Non-Isomorphism (GNI) efficiently

How do we trust this?

Vendor: Trust me, this always works

User: In fact I just care if it works correctly on the inputs I
want to solve. Maybe for each input I have, your machine could
prove correctness using an IP protocol?

6

Program Checking
Suppose a special computer (using nano-bio-quantum technology!)
is being sold for solving Graph Non-Isomorphism (GNI) efficiently

How do we trust this?

Vendor: Trust me, this always works

User: In fact I just care if it works correctly on the inputs I
want to solve. Maybe for each input I have, your machine could
prove correctness using an IP protocol?

Vendor: But I don’t have a (nano-bio-quantum) implementation of
the prover’s program...

6

Program Checking

7

Program Checking
Program checker

7

Program Checking
Program checker

User

7

Program Checking
Program checker

UserP

7

Program Checking
Program checker

User
checkerP

x

7

Program Checking
Program checker

User
checkerP

x

7

Program Checking
Program checker

User
checkerP

x

7

Program Checking
Program checker

User
checkerP

x

f(x) or P≠f

7

Program Checking
Program checker

On each input, either ensures
(w.h.p) that P’s output is correct,
or finds out that P≠f, efficiently

User
checkerP

x

f(x) or P≠f

7

Program Checking
Program checker

On each input, either ensures
(w.h.p) that P’s output is correct,
or finds out that P≠f, efficiently

Completeness: Vendor need not
fear being falsely accused User

checkerP
x

f(x) or P≠f

7

Program Checking
Program checker

On each input, either ensures
(w.h.p) that P’s output is correct,
or finds out that P≠f, efficiently

Completeness: Vendor need not
fear being falsely accused

Soundness: User need not fear
using a wrong value as f(x)

User
checkerP

x

f(x) or P≠f

7

Program Checking
Program checker

On each input, either ensures
(w.h.p) that P’s output is correct,
or finds out that P≠f, efficiently

Completeness: Vendor need not
fear being falsely accused

Soundness: User need not fear
using a wrong value as f(x)

Will consider boolean f
(i.e., a language L)

User
checkerP

x

f(x) or P≠f

7

Program Checking and IP

User
f(x) or P≠f

P
x

8

Program Checking and IP
PC for L from IP protocols (for L and Lc)

User
f(x) or P≠f

P
x

8

Prover

Program Checking and IP
PC for L from IP protocols (for L and Lc)

User
f(x) or P≠f

Verifier

P
x

8

Prover

Program Checking and IP
PC for L from IP protocols (for L and Lc)

PC must be efficient. Provers may
not be

User
f(x) or P≠f

Verifier

P
x

8

Prover

Program Checking and IP
PC for L from IP protocols (for L and Lc)

PC must be efficient. Provers may
not be

If provers (for L and Lc) are efficient
given L-oracle, can construct PC!

User
f(x) or P≠f

Verifier

P
x

8

Prover

Program Checking and IP
PC for L from IP protocols (for L and Lc)

PC must be efficient. Provers may
not be

If provers (for L and Lc) are efficient
given L-oracle, can construct PC!

User
f(x) or P≠f

L

Verifier

P
x

8

Prover

Program Checking and IP
PC for L from IP protocols (for L and Lc)

PC must be efficient. Provers may
not be

If provers (for L and Lc) are efficient
given L-oracle, can construct PC!

User
f(x) or P≠f

L

Verifier

P
x

8

Prover

Program Checking and IP
PC for L from IP protocols (for L and Lc)

PC must be efficient. Provers may
not be

If provers (for L and Lc) are efficient
given L-oracle, can construct PC!

User
f(x) or P≠f

L

Verifier

P
x

8

Prover

Program Checking and IP
PC for L from IP protocols (for L and Lc)

PC must be efficient. Provers may
not be

If provers (for L and Lc) are efficient
given L-oracle, can construct PC!

User
f(x) or P≠f

L

Verifier

P
x

8

Prover

Program Checking and IP
PC for L from IP protocols (for L and Lc)

PC must be efficient. Provers may
not be

If provers (for L and Lc) are efficient
given L-oracle, can construct PC!

Retains completeness and
soundness User

f(x) or P≠f

L

Verifier

P
x

8

Prover

Program Checking and IP
PC for L from IP protocols (for L and Lc)

PC must be efficient. Provers may
not be

If provers (for L and Lc) are efficient
given L-oracle, can construct PC!

Retains completeness and
soundness

e.g. For PSPACE-complete L (why?)

User
f(x) or P≠f

L

Verifier

P
x

8

Prover

Program Checking and IP
PC for L from IP protocols (for L and Lc)

PC must be efficient. Provers may
not be

If provers (for L and Lc) are efficient
given L-oracle, can construct PC!

Retains completeness and
soundness

e.g. For PSPACE-complete L (why?)

How about Graph Isomorphism?

User
f(x) or P≠f

L

Verifier

P
x

8

Program Checking for GI

9

Program Checking for GI

If P(G0,G1) says G0 ≡ G1, try to extract the isomorphism

9

Program Checking for GI

If P(G0,G1) says G0 ≡ G1, try to extract the isomorphism

Pick a node v in G0. For each node u in G1 and ask
for isomorphism of (G0\v, G1\u)

9

Program Checking for GI

If P(G0,G1) says G0 ≡ G1, try to extract the isomorphism

Pick a node v in G0. For each node u in G1 and ask
for isomorphism of (G0\v, G1\u)

If P says no for all u in G1, report “P bad”

9

Program Checking for GI

If P(G0,G1) says G0 ≡ G1, try to extract the isomorphism

Pick a node v in G0. For each node u in G1 and ask
for isomorphism of (G0\v, G1\u)

If P says no for all u in G1, report “P bad”

Else remember v↦u, and recurse on (G0\v, G1\u)

9

Program Checking for GI

If P(G0,G1) says G0 ≡ G1, try to extract the isomorphism

Pick a node v in G0. For each node u in G1 and ask
for isomorphism of (G0\v, G1\u)

If P says no for all u in G1, report “P bad”

Else remember v↦u, and recurse on (G0\v, G1\u)

On finding isomorphism, verify and output G0 ≡ G1

9

Program Checking for GI

If P(G0,G1) says G0 ≡ G1, try to extract the isomorphism

Pick a node v in G0. For each node u in G1 and ask
for isomorphism of (G0\v, G1\u)

If P says no for all u in G1, report “P bad”

Else remember v↦u, and recurse on (G0\v, G1\u)

On finding isomorphism, verify and output G0 ≡ G1

Note: An IP protocol (i.e., an NP proof) for GI, where
prover is in PGI

9

Program Checking for GI

10

Program Checking for GI
If P(G0,G1) says G0 ≢ G1, test P similar to in IP protocol

for GNI (coke from can/bottle)

10

Program Checking for GI
If P(G0,G1) says G0 ≢ G1, test P similar to in IP protocol

for GNI (coke from can/bottle)

Let H = π(Gb) where π is a random permutation and
b = 0 or 1 at random

10

Program Checking for GI
If P(G0,G1) says G0 ≢ G1, test P similar to in IP protocol

for GNI (coke from can/bottle)

Let H = π(Gb) where π is a random permutation and
b = 0 or 1 at random

Run P(G0,H) many times

10

Program Checking for GI
If P(G0,G1) says G0 ≢ G1, test P similar to in IP protocol

for GNI (coke from can/bottle)

Let H = π(Gb) where π is a random permutation and
b = 0 or 1 at random

Run P(G0,H) many times

If P says G0 ≡ H exactly whenever b=0, output G0 ≢ G1

10

Program Checking for GI
If P(G0,G1) says G0 ≢ G1, test P similar to in IP protocol

for GNI (coke from can/bottle)

Let H = π(Gb) where π is a random permutation and
b = 0 or 1 at random

Run P(G0,H) many times

If P says G0 ≡ H exactly whenever b=0, output G0 ≢ G1

Else output “Bad P”

10

Program Checking for GI
If P(G0,G1) says G0 ≢ G1, test P similar to in IP protocol

for GNI (coke from can/bottle)

Let H = π(Gb) where π is a random permutation and
b = 0 or 1 at random

Run P(G0,H) many times

If P says G0 ≡ H exactly whenever b=0, output G0 ≢ G1

Else output “Bad P”

Note: Prover in the IP protocol for GNI is in PGI

10

Multi-Prover
Interactive Proofs

11

Multi-Prover
Interactive Proofs

Interrogate multiple provers separately

11

Multi-Prover
Interactive Proofs

Interrogate multiple provers separately

Provers can’t talk to each other during the
interrogation (but can agree on a strategy a priori)

11

Multi-Prover
Interactive Proofs

Interrogate multiple provers separately

Provers can’t talk to each other during the
interrogation (but can agree on a strategy a priori)

Verifier cross-checks answers from the provers

11

Multi-Prover
Interactive Proofs

Interrogate multiple provers separately

Provers can’t talk to each other during the
interrogation (but can agree on a strategy a priori)

Verifier cross-checks answers from the provers

2 provers as good as k provers

11

Multi-Prover
Interactive Proofs

Interrogate multiple provers separately

Provers can’t talk to each other during the
interrogation (but can agree on a strategy a priori)

Verifier cross-checks answers from the provers

2 provers as good as k provers

MIP = NEXP

11

Multi-Prover
Interactive Proofs

Interrogate multiple provers separately

Provers can’t talk to each other during the
interrogation (but can agree on a strategy a priori)

Verifier cross-checks answers from the provers

2 provers as good as k provers

MIP = NEXP

Parallel repetition theorem highly non-trivial!

11

Probabilistically
Checkable Proofs (PCPs)

12

Probabilistically
Checkable Proofs (PCPs)
Prover submits a (very long) written proof

12

Probabilistically
Checkable Proofs (PCPs)
Prover submits a (very long) written proof

Verifier reads some positions (probabilistically chosen) from
the proof and decides to accept or reject

12

Probabilistically
Checkable Proofs (PCPs)
Prover submits a (very long) written proof

Verifier reads some positions (probabilistically chosen) from
the proof and decides to accept or reject

PCP[r,q]: length of proof 2r, number of queries q

12

Probabilistically
Checkable Proofs (PCPs)
Prover submits a (very long) written proof

Verifier reads some positions (probabilistically chosen) from
the proof and decides to accept or reject

PCP[r,q]: length of proof 2r, number of queries q

Intuitively, in MIP, the provers cannot change their strategy
(because one does not know what the other sees), so must
stick to a prior agreed up on strategy

12

Probabilistically
Checkable Proofs (PCPs)
Prover submits a (very long) written proof

Verifier reads some positions (probabilistically chosen) from
the proof and decides to accept or reject

PCP[r,q]: length of proof 2r, number of queries q

Intuitively, in MIP, the provers cannot change their strategy
(because one does not know what the other sees), so must
stick to a prior agreed up on strategy

Which will be the written proof

12

Probabilistically
Checkable Proofs (PCPs)
Prover submits a (very long) written proof

Verifier reads some positions (probabilistically chosen) from
the proof and decides to accept or reject

PCP[r,q]: length of proof 2r, number of queries q

Intuitively, in MIP, the provers cannot change their strategy
(because one does not know what the other sees), so must
stick to a prior agreed up on strategy

Which will be the written proof

PCP[poly,poly] = MIP = NEXP

12

PCP Theorem

13

PCP Theorem

NP = PCP[log,const]

13

PCP Theorem

NP = PCP[log,const]

PCP is only poly long (just like usual NP certificate)

13

PCP Theorem

NP = PCP[log,const]

PCP is only poly long (just like usual NP certificate)

But verifier reads only constantly many bits!

13

PCP Theorem

NP = PCP[log,const]

PCP is only poly long (just like usual NP certificate)

But verifier reads only constantly many bits!

Extensively useful in proving “hardness of approximation”
results for optimization problems

13

PCP Theorem

NP = PCP[log,const]

PCP is only poly long (just like usual NP certificate)

But verifier reads only constantly many bits!

Extensively useful in proving “hardness of approximation”
results for optimization problems

Also useful in certain cryptographic protocols

13

Zero-Knowledge Proofs

14

Zero-Knowledge Proofs

Interactive Proof for membership in L

14

Zero-Knowledge Proofs

Interactive Proof for membership in L

Complete and Sound

14

Zero-Knowledge Proofs

Interactive Proof for membership in L

Complete and Sound

ZK Property: Verifier “learns
nothing” except that x is in L

14

Zero-Knowledge Proofs

Interactive Proof for membership in L

Complete and Sound

ZK Property: Verifier “learns
nothing” except that x is in L

14

Zero-Knowledge Proofs

Interactive Proof for membership in L

Complete and Sound

ZK Property: Verifier “learns
nothing” except that x is in L

14

Zero-Knowledge Proofs

Interactive Proof for membership in L

Complete and Sound

ZK Property: Verifier “learns
nothing” except that x is in L

14

Ah, got it!

42

Zero-Knowledge Proofs

Interactive Proof for membership in L

Complete and Sound

ZK Property: Verifier “learns
nothing” except that x is in L

14

Ah, got it!

42

Zero-Knowledge Proofs

Interactive Proof for membership in L

Complete and Sound

ZK Property: Verifier “learns
nothing” except that x is in L

Verifier’s view could have been
“simulated”

14

Ah, got it!

42

Zero-Knowledge Proofs

Interactive Proof for membership in L

Complete and Sound

ZK Property: Verifier “learns
nothing” except that x is in L

Verifier’s view could have been
“simulated”

14

Ah, got it!

42

Zero-Knowledge Proofs

Interactive Proof for membership in L

Complete and Sound

ZK Property: Verifier “learns
nothing” except that x is in L

Verifier’s view could have been
“simulated”

14

Ah, got it!

42

Zero-Knowledge Proofs

Interactive Proof for membership in L

Complete and Sound

ZK Property: Verifier “learns
nothing” except that x is in L

Verifier’s view could have been
“simulated”

x i
n L

14

Ah, got it!

42

Ah, got it!

42

Zero-Knowledge Proofs

Interactive Proof for membership in L

Complete and Sound

ZK Property: Verifier “learns
nothing” except that x is in L

Verifier’s view could have been
“simulated”

x i
n L

14

Ah, got it!

42

Ah, got it!

42

Zero-Knowledge Proofs

Interactive Proof for membership in L

Complete and Sound

ZK Property: Verifier “learns
nothing” except that x is in L

Verifier’s view could have been
“simulated”

For every adversarial strategy,
there exists a simulation
strategy

x i
n L

14

Summary

15

Summary
Interactive Protocols

15

Summary
Interactive Protocols

Public coins, ATTMs, collapse of AM[k], arithmetization,
set lower-bound, perfect completeness

15

Summary
Interactive Protocols

Public coins, ATTMs, collapse of AM[k], arithmetization,
set lower-bound, perfect completeness

Zoo: MA and AM, between 1st and 2nd levels of PH

15

Summary
Interactive Protocols

Public coins, ATTMs, collapse of AM[k], arithmetization,
set lower-bound, perfect completeness

Zoo: MA and AM, between 1st and 2nd levels of PH

Other related concepts

15

Summary
Interactive Protocols

Public coins, ATTMs, collapse of AM[k], arithmetization,
set lower-bound, perfect completeness

Zoo: MA and AM, between 1st and 2nd levels of PH

Other related concepts

MIP, PCP, ZK proofs

15

Summary
Interactive Protocols

Public coins, ATTMs, collapse of AM[k], arithmetization,
set lower-bound, perfect completeness

Zoo: MA and AM, between 1st and 2nd levels of PH

Other related concepts

MIP, PCP, ZK proofs

Understanding power of interaction/non-determinism and
randomness

15

Summary
Interactive Protocols

Public coins, ATTMs, collapse of AM[k], arithmetization,
set lower-bound, perfect completeness

Zoo: MA and AM, between 1st and 2nd levels of PH

Other related concepts

MIP, PCP, ZK proofs

Understanding power of interaction/non-determinism and
randomness

Useful in “hardness of approximation”, in cryptography, ...

15

