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o IP = PSPACE = AM[poly]
® PSPACE enough to calculate max Pr(yes]
@ AM[poly] protocol for TQBF using arithmetization

@ In fact IP[k] € AM[k+2] for all k(n)
@ Using a public-coin set lower-bound proof

@ AM[K] = AM for constant k > 2
@ Using MA € AM and alternate characterization in
terms of pairs of complementary ATTMs

@ Perfect completeness: One-sided-error-AM = AM
@ Similar to BPP € 2,° (yields MAM protocol; MAM=AM)
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@ Consider any L with an AM protocol
@ By perfect completeness:

@ xeL = V YArthur 3 Zmerlin R(XIYAr’rhur,ZMerlin) = 1

@ And by (any positive) soundness:

o x¢L = 4 YArthur V' ZMerlin R(X,YAr’rhur,ZMerlin) =0
@ i.e, xeL & Vy dz R(x,y,z) = 1

@ Similarly, MA € 3,°
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Program Checking

@ Suppose a special computer (using nano-bio-quantum technology!)
is being sold for solving Graph Non-Isomorphism (GNI) efficiently

@ How do we trust this?
o : Trust me, this always works

@ User: In fact I just care if it works correctly on the inputs I
want to solve. Maybe for each input I have, your machine could
prove correctness using an IP protocol?

o : But I dont have a (nano-bio-quantum) implementation of
the prover's program...
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Program Checking

@ Program checker

@ On each input, either ensures
(w.h.p) that P's output is correct,
or finds out that P#f, efficiently

@ Completeness: Vendor need not
fear being falsely accused

@ Soundness: User need not fear
using a wrong value as f(x)

@ W.ill consider boolean f
(i.e., a language L)
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Program Checking and IP

@ PC for L from IP protocols (for L and L€

@ PC must be efficient. Provers may
not be

@ If provers (for L and L¢) are efficient
given L-oracle, can construct PC!

@ Retains completeness and
soundness

@ e.g. For PSPACE-complete L (why?)

@ How about Graph Isomorphism?
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@ If P(Go,G1) says Go = Gi, try to extract the isomorphism

@ Pick a node v in Gq. For each node u in G; and ask
for isomorphism of (Go\v, Gi\u)

@ If P says no for all u in Gy, report "P bad”

@ Else remember v-u, and recurse on (Go\v, Gi\u)

@ On finding isomorphism, verify and output Go = G;

@ Note: An IP protocol (i.e., an NP proof) for GI, where
prover is in P®!
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Program Checking for GI

o If P(Go,G1) says Go # Gi, test P similar to in IP protocol
for GNI (coke from can/bottle)

@ Let H = T1(Gpb) where TT is a random permutation and
b =0 or 1 at random

@ Run P(Go,H) many times

@ If P says Go = H exactly whenever b=0, output Go # G,

@ Else output “Bad P”

@ Note: Prover in the IP protocol for GNI is in P¢!
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Multi-Prover
Interactive Proofs

@ Interrogate multiple provers separately

@ Provers cant talk to each other during the
interrogation (but can agree on a strategy a priori)

@ Verifier cross-checks answers from the provers
@ 2 provers as good as Kk provers

@ Parallel repetition theorem highly non-trivial!
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@ Prover submits a (very long) written proof

@ Verifier reads some positions (probabilistically chosen) from
the proof and decides to accept or reject

@ PCPIr,q]: length of proof 27, number of queries g

@ Intuitively, in MIP, the provers cannot change their strategy
(because one does not know what the other sees), so must
stick tfo a prior agreed up on strategy

@ Which will be the written proof

@ PCP[poly,poly] = MIP = NEXP
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PCP Theorem

@ NP = PCP[log,const]
@ PCP is only poly long (just like usual NP certificate)
@ But verifier reads only constantly many bits!

@ Extensively useful in proving “hardness of approximation”
results for optimization problems

@ Also useful in certain cryptographic protocols
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Zero-Knowledge Proofs

@ Interactive Proof for membership in L
@ Complefte and Sound

® ZK Property: Verifier "learns
nothing” except that x is in L

Ah, got it!

42
® Verifiers view could have been
“simulated”

@ For every adversarial strategy, &% o0\ oS 42

there exists a simulation
strategy
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Summary

® Interactive Protocols

@ Public coins, ATTMs, collapse of AM[K], arithmetization,
set lower-bound, perfect completeness

@ Zoo: MA and AM, between 1st and 2nd levels of PH
® Other related concepts
@ MIP, PCP, ZK proofs

@ Understanding power of interaction/non-determinism and
randomness

@ Useful in “hardness of approximation”, in cryptography, ...



