Interactive Proofs

Lecture 19
And Beyond




So far




So far

o IP = PSPACE = AM[poly]




So far

o IP = PSPACE = AM[poly]
® PSPACE enough to calculate max Pr(yes]




So far

o IP = PSPACE = AM[poly]
® PSPACE enough to calculate max Pr(yes]
@ AM[poly] protocol for TQBF using arithmetization




So far

o IP = PSPACE = AM[poly]
® PSPACE enough to calculate max Pr(yes]
@ AM[poly] protocol for TQBF using arithmetization

@ In fact IP[k] € AM[k+2] for all k(n)




So far

o IP = PSPACE = AM[poly]
® PSPACE enough to calculate max Pr(yes]
@ AM[poly] protocol for TQBF using arithmetization

@ In fact IP[k] € AM[k+2] for all k(n)
@ Using a public-coin set lower-bound proof




So far

o IP = PSPACE = AM[poly]
® PSPACE enough to calculate max Pr(yes]
@ AM[poly] protocol for TQBF using arithmetization

@ In fact IP[k] € AM[k+2] for all k(n)
@ Using a public-coin set lower-bound proof

@ AMI[k] = AM for constant k > 2




So far

o IP = PSPACE = AM[poly]
® PSPACE enough to calculate max Pr(yes]
@ AM[poly] protocol for TQBF using arithmetization

@ In fact IP[k] € AM[k+2] for all k(n)
@ Using a public-coin set lower-bound proof

@ AM[K] = AM for constant k > 2
@ Using MA € AM and alternate characterization in
terms of pairs of complementary ATTMs




So far

o IP = PSPACE = AM[poly]
® PSPACE enough to calculate max Pr(yes]
@ AM[poly] protocol for TQBF using arithmetization

@ In fact IP[k] € AM[k+2] for all k(n)
@ Using a public-coin set lower-bound proof

@ AM[K] = AM for constant k > 2
@ Using MA € AM and alternate characterization in
terms of pairs of complementary ATTMs

@ Perfect completeness: One-sided-error-AM = AM




So far

o IP = PSPACE = AM[poly]
® PSPACE enough to calculate max Pr(yes]
@ AM[poly] protocol for TQBF using arithmetization

@ In fact IP[k] € AM[k+2] for all k(n)
@ Using a public-coin set lower-bound proof

@ AM[K] = AM for constant k > 2
@ Using MA € AM and alternate characterization in
terms of pairs of complementary ATTMs

@ Perfect completeness: One-sided-error-AM = AM
@ Similar to BPP € 2,° (yields MAM protocol; MAM=AM)



AM c 1P




AM c 1P

@ Consider any L with an AM protocol




AM c 1P

@ Consider any L with an AM protocol

@ By perfect completeness:




AM c 1P

@ Consider any L with an AM protocol

@ By perfect completeness:

@ xeL = V YArthur 3 Zmerlin R(X,YAr’rhur,ZMerlin) = 1




AM c 1P

@ Consider any L with an AM protocol
@ By perfect completeness:

@ xeL = V YArthur 3 Zmerlin R(X,YAr’rhur,ZMerlin) = 1

@ And by (any positive) soundness:




AM c 1P

@ Consider any L with an AM protocol
@ By perfect completeness:

@ xeL = V YArthur 3 Zmerlin R(XIYAr’rhur,ZMerlin) = 1

@ And by (any positive) soundness:

o x¢L = 4 YArthur V' Zmerlin R(X,YAr’rhur,ZMerlin) =0




AM c 1P

@ Consider any L with an AM protocol
@ By perfect completeness:

@ xeL = V YArthur 3 Zmerlin R(XIYAr’rhur,ZMerlin) = 1

@ And by (any positive) soundness:

o x¢L = 4 YArthur V' Zmerlin R(X,YAr’rhur,ZMerlin) =0

@ i.e, xeL & Vy dz R(x,y,z) = 1




AM c 1P

@ Consider any L with an AM protocol
@ By perfect completeness:

@ xeL = V YArthur 3 Zmerlin R(XIYAr’rhur,ZMerlin) = 1

@ And by (any positive) soundness:

o x¢L = 4 YArthur V' ZMerlin R(X,YAr’rhur,ZMerlin) =0
@ i.e, xeL & Vy dz R(x,y,z) = 1

@ Similarly, MA € 3,°



AM and coNP




AM and coNP

@ If coNP € AM, then PH collapses to level 2




AM and coNP

@ If coNP € AM, then PH collapses to level 2

& Will show coNP € AM = X,° € AM c [P




AM and coNP

@ If coNP € AM, then PH collapses to level 2

& Will show coNP € AM = X,° € AM c [P

o L e 2" {x| dy (x,y) € L'} where L' € coNP




AM and coNP

@ If coNP € AM, then PH collapses to level 2
@ Will show coNP € AM = 3P € AM c I1,°

o L e 2" {x| dy (x,y) € L'} where L' € coNP

@ MAM protocol for L: Merlin sends vy, and then they run an
AM protocol for (x,y) € L




AM and coNP

@ If coNP € AM, then PH collapses to level 2
@ Will show coNP € AM = 3,°P € AM C IM,°
o L e 2" {x| dy (x,y) € L'} where L' € coNP

@ MAM protocol for L: Merlin sends vy, and then they run an
AM protocol for (x,y) € L

@ But MAM = AM




AM and coNP

@ If coNP € AM, then PH collapses to level 2
@ Will show coNP € AM = 3,°P € AM C IM,°
o L e 2" {x| dy (x,y) € L'} where L' € coNP

@ MAM protocol for L: Merlin sends vy, and then they run an
AM protocol for (x,y) € L

@ But MAM = AM

@ Corollary: If GI is NP-complete, PH collapses (recall GNI € AM)



AM and coNP

@ If coNP € AM, then PH collapses to level 2
@ Will show coNP € AM = 3,° € AM c T1,°

o L e 2" {x| dy (x,y) € L'} where L' € coNP

@ MAM protocol for L: Merlin sends vy, and then they run an
AM protocol for (x,y) € L

& But MAM = AM

@ Corollary: If GI is NP-complete, PH collapses (recall GNI € AM)




AM and coNP

@ If coNP € AM, then PH collapses to level 2
@ Will show coNP € AM = 3,° € AM c T1,°

o L e 2" {x| dy (x,y) € L'} where L' € coNP

@ MAM protocol for L: Merlin sends vy, and then they run an
AM protocol for (x,y) € L

& But MAM = AM

@ Corollary: If GI is NP-complete, PH collapses (recall GNI € AM)




- Cromor
iIII
_-IIIII—




Program Checking




Program Checking

@ Suppose a special computer (using nano-bio-quantum technology!)
is being sold for solving Graph Non-Isomorphism (GNI) efficiently




Program Checking

@ Suppose a special computer (using nano-bio-quantum technology!)
is being sold for solving Graph Non-Isomorphism (GNI) efficiently

® How do we trust this?




Program Checking

@ Suppose a special computer (using nano-bio-quantum technology!)
is being sold for solving Graph Non-Isomorphism (GNI) efficiently

® How do we trust this?

o : Trust me, this always works




Program Checking

@ Suppose a special computer (using nano-bio-quantum technology!)
is being sold for solving Graph Non-Isomorphism (GNI) efficiently

® How do we trust this?

o : Trust me, this always works

@ User: In fact I just care if it works correctly on the inputs I
want to solve. Maybe for each input I have, your machine could
prove correctness using an IP protocol?




Program Checking

@ Suppose a special computer (using nano-bio-quantum technology!)
is being sold for solving Graph Non-Isomorphism (GNI) efficiently

@ How do we trust this?
o : Trust me, this always works

@ User: In fact I just care if it works correctly on the inputs I
want to solve. Maybe for each input I have, your machine could
prove correctness using an IP protocol?

o : But I dont have a (nano-bio-quantum) implementation of
the prover's program...



Program Checking




Program Checking

@ Program checker




Program Checking

@ Program checker




Program Checking

@ Program checker




Program Checking

@ Program checker




Program Checking

@ Program checker




Program Checking

@ Program checker




Program Checking

@ Program checker




Program Checking

@ Program checker

@ On each input, either ensures
(w.h.p) that P's output is correct,
or finds out that P#f, efficiently




Program Checking

@ Program checker

@ On each input, either ensures
(w.h.p) that P's output is correct,
or finds out that P#f, efficiently

@ Completeness: Vendor need not
fear being falsely accused




Program Checking

@ Program checker

@ On each input, either ensures
(w.h.p) that P's output is correct,
or finds out that P#f, efficiently

@ Completeness: Vendor need not
fear being falsely accused

@ Soundness: User need not fear
using a wrong value as f(x)




Program Checking

@ Program checker

@ On each input, either ensures
(w.h.p) that P's output is correct,
or finds out that P#f, efficiently

@ Completeness: Vendor need not
fear being falsely accused

@ Soundness: User need not fear
using a wrong value as f(x)

@ W.ill consider boolean f
(i.e., a language L)




Program Checking and IP




Program Checking and IP

@ PC for L from IP protocols (for L and L°)




Program Checking and IP

@ PC for L from IP protocols (for L and L°) O

Prover




Program Checking and IP

@ PC for L from IP protocols (for L and L°) O

@ PC must be efficient. Provers may
not be

Prover




Program Checking and IP

@ PC for L from IP protocols (for L and L°)

@ PC must be efficient. Provers may

Proer
@ If provers (for L and L¢) are efficient

given L-oracle, can construct PC!
—
P=
—




Program Checking and IP

@ PC for L from IP protocols (for L and LCI

@ PC must be efficient. Provers may

not be :
Prover

@ If provers (for L and L¢) are efficient

given L-oracle, can construct PC!
—
Pl=
—




Program Checking and IP

@ PC for L from IP protocols (for L and Lci

@ PC must be efficient. Provers may

not be o
Prover
@ If provers (for L and L¢) are efficient

given L-oracle, can construct PC!
—
Pl=
—




Program Checking and IP

@ PC for L from IP protocols (for L and Lci

® PC must be efficient. Provers may |

not be s
Prover
@ If provers (for L and L¢) are efficient

given L-oracle, can construct PC!
—
B=
—




Program Checking and IP

@ PC for L from IP protocols (for L and Lci

@ PC must be efficient. Provers may
not be

@ If provers (for L and L¢) are efficient
given L-oracle, can construct PC!




Program Checking and IP

@ PC for L from IP protocols (for L and Lci

@ PC must be efficient. Provers may
not be

@ If provers (for L and L¢) are efficient
given L-oracle, can construct PC!

@ Retains completeness and
soundness




Program Checking and IP

@ PC for L from IP protocols (for L and Lci

@ PC must be efficient. Provers may
not be

@ If provers (for L and L¢) are efficient
given L-oracle, can construct PC!

@ Retains completeness and
soundness

@ e.g. For PSPACE-complete L (why?)




Program Checking and IP

@ PC for L from IP protocols (for L and L€

@ PC must be efficient. Provers may
not be

@ If provers (for L and L¢) are efficient
given L-oracle, can construct PC!

@ Retains completeness and
soundness

@ e.g. For PSPACE-complete L (why?)

@ How about Graph Isomorphism?




Program Checking for GI




Program Checking for GI

@ If P(Go,G1) says Go = Gi, try to extract the isomorphism




Program Checking for GI

@ If P(Go,G1) says Go = Gi, try to extract the isomorphism

@ Pick a node v in Gq. For each node u in G; and ask
for isomorphism of (Go\v, Gi\u)




Program Checking for GI

@ If P(Go,G1) says Go = Gi, try to extract the isomorphism

@ Pick a node v in Gq. For each node u in G; and ask
for isomorphism of (Go\v, Gi\u)

@ If P says no for all u in Gy, report "P bad”




Program Checking for GI

@ If P(Go,G1) says Go = Gi, try to extract the isomorphism

@ Pick a node v in Gq. For each node u in G; and ask
for isomorphism of (Go\v, Gi\u)

@ If P says no for all u in Gy, report "P bad”

@ Else remember v-u, and recurse on (Go\v, Gi\u)




Program Checking for GI

@ If P(Go,G1) says Go = Gi, try to extract the isomorphism

@ Pick a node v in Gq. For each node u in G; and ask
for isomorphism of (Go\v, Gi\u)

@ If P says no for all u in Gy, report "P bad”

@ Else remember v-u, and recurse on (Go\v, Gi\u)

@ On finding isomorphism, verify and output Go = G;




Program Checking for GI

@ If P(Go,G1) says Go = Gi, try to extract the isomorphism

@ Pick a node v in Gq. For each node u in G; and ask
for isomorphism of (Go\v, Gi\u)

@ If P says no for all u in Gy, report "P bad”

@ Else remember v-u, and recurse on (Go\v, Gi\u)

@ On finding isomorphism, verify and output Go = G;

@ Note: An IP protocol (i.e., an NP proof) for GI, where
prover is in P®!



Program Checking for GI




Program Checking for GI

o If P(Go,G1) says Go # Gi, test P similar to in IP protocol
for GNI (coke from can/bottle)




Program Checking for GI

o If P(Go,G1) says Go # Gi, test P similar to in IP protocol
for GNI (coke from can/bottle)

@ Let H = T1(Gpb) where TT is a random permutation and
b =0 or 1 at random




Program Checking for GI

o If P(Go,G1) says Go # Gi, test P similar to in IP protocol
for GNI (coke from can/bottle)

@ Let H = T1(Gpb) where TT is a random permutation and
b =0 or 1 at random

@ Run P(Go,H) many times




Program Checking for GI

o If P(Go,G1) says Go # Gi, test P similar to in IP protocol
for GNI (coke from can/bottle)

@ Let H = T1(Gpb) where TT is a random permutation and
b =0 or 1 at random

@ Run P(Go,H) many times

@ If P says Go = H exactly whenever b=0, output Go # G,




Program Checking for GI

o If P(Go,G1) says Go # Gi, test P similar to in IP protocol
for GNI (coke from can/bottle)

@ Let H = T1(Gpb) where TT is a random permutation and
b =0 or 1 at random

@ Run P(Go,H) many times

@ If P says Go = H exactly whenever b=0, output Go # G,

@ Else output “Bad P”




Program Checking for GI

o If P(Go,G1) says Go # Gi, test P similar to in IP protocol
for GNI (coke from can/bottle)

@ Let H = T1(Gpb) where TT is a random permutation and
b =0 or 1 at random

@ Run P(Go,H) many times

@ If P says Go = H exactly whenever b=0, output Go # G,

@ Else output “Bad P”

@ Note: Prover in the IP protocol for GNI is in P¢!



Multi-Prover
Interactive Proofs




Multi-Prover
Interactive Proofs

@ Interrogate multiple provers separately




Multi-Prover
Interactive Proofs

@ Interrogate multiple provers separately

@ Provers cant talk to each other during the
interrogation (but can agree on a strategy a priori)




Multi-Prover
Interactive Proofs

@ Interrogate multiple provers separately

@ Provers cant talk to each other during the
interrogation (but can agree on a strategy a priori)

@ Verifier cross-checks answers from the provers




Multi-Prover
Interactive Proofs

@ Interrogate multiple provers separately

@ Provers cant talk to each other during the
interrogation (but can agree on a strategy a priori)

@ Verifier cross-checks answers from the provers

@ 2 provers as good as Kk provers




Multi-Prover
Interactive Proofs

@ Interrogate multiple provers separately

@ Provers cant talk to each other during the
interrogation (but can agree on a strategy a priori)

@ Verifier cross-checks answers from the provers

@ 2 provers as good as Kk provers




Multi-Prover
Interactive Proofs

@ Interrogate multiple provers separately

@ Provers cant talk to each other during the
interrogation (but can agree on a strategy a priori)

@ Verifier cross-checks answers from the provers
@ 2 provers as good as Kk provers

@ Parallel repetition theorem highly non-trivial!



Probabilistically
Checkable Proofs (PCPs)




Probabilistically
Checkable Proofs (PCPs)

@ Prover submits a (very long) written proof




Probabilistically
Checkable Proofs (PCPs)

@ Prover submits a (very long) written proof

@ Verifier reads some positions (probabilistically chosen) from
the proof and decides to accept or reject




Probabilistically
Checkable Proofs (PCPs)

@ Prover submits a (very long) written proof

@ Verifier reads some positions (probabilistically chosen) from
the proof and decides to accept or reject

@ PCPIr,q]: length of proof 27, number of queries g




Probabilistically
Checkable Proofs (PCPs)

@ Prover submits a (very long) written proof

@ Verifier reads some positions (probabilistically chosen) from
the proof and decides to accept or reject

@ PCPIr,q]: length of proof 27, number of queries g

@ Intuitively, in MIP, the provers cannot change their strategy
(because one does not know what the other sees), so must
stick tfo a prior agreed up on strategy




Probabilistically
Checkable Proofs (PCPs)

@ Prover submits a (very long) written proof

@ Verifier reads some positions (probabilistically chosen) from
the proof and decides to accept or reject

@ PCPIr,q]: length of proof 27, number of queries g

@ Intuitively, in MIP, the provers cannot change their strategy
(because one does not know what the other sees), so must
stick tfo a prior agreed up on strategy

@ Which will be the written proof




Probabilistically
Checkable Proofs (PCPs)

@ Prover submits a (very long) written proof

@ Verifier reads some positions (probabilistically chosen) from
the proof and decides to accept or reject

@ PCPIr,q]: length of proof 27, number of queries g

@ Intuitively, in MIP, the provers cannot change their strategy
(because one does not know what the other sees), so must
stick tfo a prior agreed up on strategy

@ Which will be the written proof

@ PCP[poly,poly] = MIP = NEXP



PCP Theorem




PCP Theorem

@ NP = PCP[log,const]




PCP Theorem

@ NP = PCP[log,const]

@ PCP is only poly long (just like usual NP certificate)




PCP Theorem

@ NP = PCP[log,const]

@ PCP is only poly long (just like usual NP certificate)

@ But verifier reads only constantly many bits!




PCP Theorem

@ NP = PCP[log,const]
@ PCP is only poly long (just like usual NP certificate)

@ But verifier reads only constantly many bits!

@ Extensively useful in proving “hardness of approximation”
results for optimization problems




PCP Theorem

@ NP = PCP[log,const]
@ PCP is only poly long (just like usual NP certificate)
@ But verifier reads only constantly many bits!

@ Extensively useful in proving “hardness of approximation”
results for optimization problems

@ Also useful in certain cryptographic protocols




Zero-Knowledge Proofs




Zero-Knowledge Proofs

@ Interactive Proof for membership in L




Zero-Knowledge Proofs

@ Interactive Proof for membership in L

@ Complefte and Sound




Zero-Knowledge Proofs

@ Interactive Proof for membership in L

@ Complefte and Sound

® ZK Property: Verifier “learns
nothing” except that x is in L




Zero-Knowledge Proofs

@ Interactive Proof for membership in L

@ Complefte and Sound

® ZK Property: Verifier “learns
nothing” except that x is in L




Zero-Knowledge Proofs

@ Interactive Proof for membership in L

@ Complefte and Sound

® ZK Property: Verifier "learns
nothing” except that x is in L




Zero-Knowledge Proofs

@ Interactive Proof for membership in L

@ Complefte and Sound

® ZK Property: Verifier "learns
nothing” except that x is in L




Zero-Knowledge Proofs

@ Interactive Proof for membership in L
@ Complefte and Sound

® ZK Property: Verifier "learns
nothing” except that x is in L

Ah, got it!
42




Zero-Knowledge Proofs

@ Interactive Proof for membership in L
@ Complefte and Sound

® ZK Property: Verifier "learns
nothing” except that x is in L

® Verifiers view could have been
“simulated”

Ah, got it!
42




Zero-Knowledge Proofs

@ Interactive Proof for membership in L
@ Complefte and Sound

® ZK Property: Verifier "learns
nothing” except that x is in L

® Verifiers view could have been
“simulated”

Ah, got it!
42




Zero-Knowledge Proofs

@ Interactive Proof for membership in L
@ Complefte and Sound

® ZK Property: Verifier "learns
nothing” except that x is in L

® Verifiers view could have been
“simulated”

Ah, got it!
42




Zero-Knowledge Proofs

@ Interactive Proof for membership in L
@ Complefte and Sound

® ZK Property: Verifier "learns
nothing” except that x is in L

® Verifiers view could have been
“simulated”

Ah, got it!
42




Zero-Knowledge Proofs

@ Interactive Proof for membership in L
@ Complefte and Sound

® ZK Property: Verifier "learns
nothing” except that x is in L

Ah, got it!

42
® Verifiers view could have been
“simulated”

Ah, got it!
42




Zero-Knowledge Proofs

@ Interactive Proof for membership in L
@ Complefte and Sound

® ZK Property: Verifier "learns
nothing” except that x is in L

Ah, got it!

42
® Verifiers view could have been
“simulated”

@ For every adversarial strategy, &% o0\ oS 42

there exists a simulation
strategy




Summary




Summary

® Interactive Protocols




Summary

® Interactive Protocols

@ Public coins, ATTMs, collapse of AM[K], arithmetization,
set lower-bound, perfect completeness




Summary

® Interactive Protocols

@ Public coins, ATTMs, collapse of AM[K], arithmetization,
set lower-bound, perfect completeness

@ Zoo: MA and AM, between 1st and 2nd levels of PH




Summary

® Interactive Protocols

@ Public coins, ATTMs, collapse of AM[K], arithmetization,
set lower-bound, perfect completeness

@ Zoo: MA and AM, between 1st and 2nd levels of PH

® Other related concepts




Summary

® Interactive Protocols

@ Public coins, ATTMs, collapse of AM[K], arithmetization,
set lower-bound, perfect completeness

@ Zoo: MA and AM, between 1st and 2nd levels of PH

® Other related concepts

@ MIP, PCP, ZK proofs




Summary

® Interactive Protocols

@ Public coins, ATTMs, collapse of AM[K], arithmetization,
set lower-bound, perfect completeness

@ Zoo: MA and AM, between 1st and 2nd levels of PH
® Other related concepts

@ MIP, PCP, ZK proofs

@ Understanding power of interaction/non-determinism and
randomness




Summary

® Interactive Protocols

@ Public coins, ATTMs, collapse of AM[K], arithmetization,
set lower-bound, perfect completeness

@ Zoo: MA and AM, between 1st and 2nd levels of PH
® Other related concepts
@ MIP, PCP, ZK proofs

@ Understanding power of interaction/non-determinism and
randomness

@ Useful in “hardness of approximation”, in cryptography, ...



