
Interactive Proofs

Lecture 19
And Beyond
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So far
IP = PSPACE = AM[poly]

PSPACE enough to calculate max Pr[yes]
AM[poly] protocol for TQBF using arithmetization

In fact IP[k] ⊆ AM[k+2] for all k(n)
Using a public-coin set lower-bound proof

AM[k] = AM for constant k ≥ 2
Using MA ⊆ AM and alternate characterization in 
terms of pairs of complementary ATTMs

Perfect completeness: One-sided-error-AM = AM
Similar to BPP ⊆ Σ2P (yields MAM protocol; MAM=AM)
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AM ⊆ Π2P

Consider any L with an AM protocol

By perfect completeness:

x∈L ⇒ ∀ yArthur ∃ zMerlin R(x,yArthur,zMerlin) = 1

And by (any positive) soundness:

x∉L ⇒ ∃ yArthur ∀ zMerlin R(x,yArthur,zMerlin) = 0

i.e., x∈L ⇔ ∀y ∃z R(x,y,z) = 1

Similarly, MA ⊆ Σ2P
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L ∈ Σ2P: { x| ∃y (x,y) ∈ L’} where L’ ∈ coNP

MAM protocol for L: Merlin sends y, and then they run an 
AM protocol for (x,y) ∈ L’

But MAM = AM

Corollary: If GI is NP-complete, PH collapses (recall GNI ∈ AM)
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Suppose a special computer (using nano-bio-quantum technology!) 
is being sold for solving Graph Non-Isomorphism (GNI) efficiently

How do we trust this?

Vendor: Trust me, this always works

User: In fact I just care if it works correctly on the inputs I 
want to solve. Maybe for each input I have, your machine could 
prove correctness using an IP protocol?

Vendor: But I don’t have a (nano-bio-quantum) implementation of  
the prover’s program...
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(w.h.p) that P’s output is correct, 
or finds out that P≠f, efficiently

Completeness: Vendor need not  
fear being falsely accused

Soundness: User need not fear 
using a wrong value as f(x)

Will consider boolean f               
(i.e., a language L)
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Program Checking and IP
PC for L from IP protocols (for L and Lc)

PC must be efficient. Provers may   
not be

If provers (for L and Lc) are efficient 
given L-oracle, can construct PC!

Retains completeness and 
soundness

e.g. For PSPACE-complete L (why?)

How about Graph Isomorphism?

User
f(x) or P≠f

L

Verifier
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If P says no for all u in G1, report “P bad”

Else remember v↦u, and recurse on (G0\v, G1\u)

On finding isomorphism, verify and output G0 ≡ G1

Note: An IP protocol (i.e., an NP proof) for GI, where 
prover is in PGI
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Program Checking for GI
If P(G0,G1) says G0 ≢ G1, test P similar to in IP protocol 

for GNI (coke from can/bottle)

Let H = π(Gb) where π is a random permutation and   
b = 0 or 1 at random

Run P(G0,H) many times

If P says G0 ≡ H exactly whenever b=0, output G0 ≢ G1

Else output “Bad P”

Note: Prover in the IP protocol for GNI is in PGI

10



Multi-Prover  
Interactive Proofs

11



Multi-Prover  
Interactive Proofs

Interrogate multiple provers separately

11



Multi-Prover  
Interactive Proofs

Interrogate multiple provers separately

Provers can’t talk to each other during the 
interrogation (but can agree on a strategy a priori)

11



Multi-Prover  
Interactive Proofs

Interrogate multiple provers separately

Provers can’t talk to each other during the 
interrogation (but can agree on a strategy a priori)

Verifier cross-checks answers from the provers

11



Multi-Prover  
Interactive Proofs

Interrogate multiple provers separately

Provers can’t talk to each other during the 
interrogation (but can agree on a strategy a priori)

Verifier cross-checks answers from the provers

2 provers as good as k provers

11



Multi-Prover  
Interactive Proofs

Interrogate multiple provers separately

Provers can’t talk to each other during the 
interrogation (but can agree on a strategy a priori)

Verifier cross-checks answers from the provers

2 provers as good as k provers

MIP = NEXP

11



Multi-Prover  
Interactive Proofs

Interrogate multiple provers separately

Provers can’t talk to each other during the 
interrogation (but can agree on a strategy a priori)

Verifier cross-checks answers from the provers

2 provers as good as k provers

MIP = NEXP

Parallel repetition theorem highly non-trivial!
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Prover submits a (very long) written proof

Verifier reads some positions (probabilistically chosen) from 
the proof and decides to accept or reject

PCP[r,q]: length of proof 2r, number of queries q

Intuitively, in MIP, the provers cannot change their strategy 
(because one does not know what the other sees), so must 
stick to a prior agreed up on strategy

Which will be the written proof

PCP[poly,poly] = MIP = NEXP
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PCP Theorem

NP = PCP[log,const]

PCP is only poly long (just like usual NP certificate)

But verifier reads only constantly many bits!

Extensively useful in proving “hardness of approximation” 
results for optimization problems

Also useful in certain cryptographic protocols
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Zero-Knowledge Proofs

Interactive Proof for membership in L

Complete and Sound

ZK Property: Verifier “learns 
nothing” except that x is in L

Verifier’s view could have been 
“simulated”

For every adversarial strategy, 
there exists a simulation    
strategy

x i
n L
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set lower-bound, perfect completeness

Zoo: MA and AM, between 1st and 2nd levels of PH

Other related concepts

MIP, PCP, ZK proofs

Understanding power of interaction/non-determinism and 
randomness

Useful in “hardness of approximation”, in cryptography, ...
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