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Unbounded prover Merlin sends a 
“proof” message a

Polynomial time verifier Arthur runs 
a deterministic verification procedure 
R(x;r,a), and outputs Yes or No

L is said to have an AM protocol if

x∈L ⇔ max Pr[Yes] > 2/3

x∉L ⇔ max Pr[Yes] < 1/3
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max Pr[Yes]

Max

Avg

R

Max

R R

Max... ...

... ...

Quantity of interest

Maximum (over prover strategies)    
probability (over coins from the beacon)    
of Arthur saying yes

Evaluate the “Avg-Max tree”

Leaves: Pr[yes] = 0 or 1, as determined 
by Arthur’s program

Max nodes: maximum of children

Avg node: average of children

Extends to AM[k], with k alternating levels
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Soundness Amplification
Recall error reduction in BPP algorithms

By repeating and taking majority

Exponential error reduction (by Chernoff bound)

Extends to MA

Given input and any answer from Merlin, to determine     
Pr[Yes]

Run many independent verifications (using independent 
random strings from the beacon). Chernoff bound holds.

Increased the length of the second message
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Parallel Repetition for AM[k]
Soundness amplification by sequential repetition/majority

Exponential amplification, just like in MA. But be careful! 
Not independent executions (Merlin can adapt strategy over 
the repetitions.) But not a problem!

But increases rounds

Soundness amplification without increasing rounds

Parallel repetition

More careful! Merlin’s answers (and probability of proof 
being rejected) in the parallel sessions could be correlated

Still turns out to give exponential amplification
6
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If MA soundness error was sufficiently small, can use 
union bound over all Merlin messages to get that the AM 
soundness error is still small

If MA soundness error < 1/2m+2, where m is the length 
of Merlin’s message, AM soundness error < 1/4

Note: Argument similar to why BPP ⊆ P/poly

Extends to MAM ⊆ AM

 So MAM = AM
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Collapse of the            
AM hierarchy

Intuition: Can change any MA sequence to an AM 
sequence

Need a notion of soundness error in each round
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One of r, r’ is a fraction > 1/2 (called the threshold), and the 
other is 0 or 1

k is constant, size is polynomial and R is a polynomial time 
relation

ATTM threshold can also be amplified using “parallel repetition”!

Takes threshold from (1/2 + c) to (1 - 1/2n)

k unchanged, size increases by a polynomial factor
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For any r>1/2, {x| M+(x)=1} and {x| M-(x)=1} are disjoint

M = ATTM[k,(1-r,1),Rc] is the complement of M+:           
{x| M+(x)=0} = {x| M(x)=1}

If r > 1-r, M- stricter than M: {x| M-(x)=1} ⊆ {x| M(x)=1} 
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A Pair of Complementary 
ATTMs

L is said to have a pair of complementary ATTMs (M+,M-) if
x∈L ⇔ M+(x)=1 and M-(x)=0

x∉L ⇔ M+(x)=0 and M-(x)=1

Exact threshold not critical
Threshold of (M+,M-) can be reduced to any r > 1/2

Reducing threshold enlarges {x| M+(x)=1} and {x| M-(x)=1}
And they stay disjoint
So they do not change (as they were already a 
partitioning)

By parallel repetition, can increase threshold to 
exponentially close to 1, starting from 1/2 + c

12
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Guarantees on probability of acceptance translated to 
threshold guarantees, and vice versa

AM[k,r] protocol → (k,r’) ATTM pair: natural conversion 
works if r > 1-2-2k and r’ = 3/4  [Exercise]

(k,r’) ATTM pair → AM[k,r] protocol: natural conversion 
works if r’ > 1-1/4k and r = 3/4 [Exercise]

Enough, because we can reduce error (increase thresholds) for 
both AM protocols and ATTMs
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AM[k] = AM

In terms of ATTM-pairs

Flipping MA to AM: reduces depth, does not change 
size, but requires threshold to be reduced from    
1 - 1/2m+2 to 3/4

Amplifying again: Threshold increased to 1 - 1/2m+2, 
but size increased by a polynomial factor

Repeat ~k/2 times to reduce to AM[2]
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Perfect Completeness

Therefore requiring perfect completeness does not 
change the classes MA or AM

Contrast with RP vs. BPP
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