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@ IP[K]
@ IP[poly] = PSPACE
@ IP protocol for TQBF using arithmetization
@ We saw IP protocol for sum-check
@ IP[const] = AM[const]
® We saw public coin protocol for Graph Non-Isomorphism
@ Using 2-universal hash functions
@ Today: Collapse of the AM hierarchy
@ AM[const] = AM[2]
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o AM[2] (or simply AM)
@ Input X
® Random coins r come from a beacon

@ Unbounded prover Merlin sends a
"proof” message a

@ Polynomial time verifier Arthur runs
a defterministic verification procedure
R(x;r,a), and outputs Yes or No

@ L is said to have an AM protocol if

@ xeL & max Pr[Yes] > 2/3

D
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max Pr[Yes]

@ Quantity of infterest

® Maximum (over prover strategies)
probability (over coins from the beacon)
of Arthur saying yes

@ Evaluate the "Avg-Max tree”

@ Leaves: Pr[yes] = 0 or 1, as determined
by Arthur's program

® Max nodes: maximum of children
@ Avg node: average of children

@ Extends to AM[K], with k alternating levels
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@ Recall error reduction in BPP algorithms

@ By repeating and faking majority

@ Exponential error reduction (by Chernoff bound)
@ Extends to MA

@ Given input and any answer from Merlin, to determine
Pr(Yes]

@ Run many independent verifications (using independent
random strings from the beacon). Chernoff bound holds.

@ Increased the length of the second message
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Parallel Repetition for AM[K]

@ Soundness amplification by sequential repetition/majority

@ Exponential amplification, just like in MA. But be careful!
Not independent executions (Merlin can adapt strategy over
the repetitions.) But not a problem!

@ But increases rounds
@ Soundness amplification without increasing rounds

@ Parallel repetition

@ More careful! Merlins answers (and probability of proof
being rejected) in the parallel sessions could be correlated

@ Still turns out to give exponential amplification
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MA € AM

@ Publishing random test before receiving proof
@ Completeness is no worse

@ If MA soundness error was sufficiently small, can use
union bound over all Merlin messages to get that the AM
soundness error is still small

@ If MA soundness error < 1/2™%, where m is the length
of Merlins message, AM soundness error < 1/4

@ Note: Argument similar to why BPP < P/poly
@ Extends to MAM € AM

@ So MAM = AM
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Collapse of the
AM hierarchy

@ Intuition: Can change any MA sequence to an AM
sequence

® Need a notion of soundness error in each round
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Alternating Threshold TM

@ A generalization of ATM, with two
thresholds instead of 3 and V

@ .: > (or >) r fraction of children

are 17?
% Elo IS El, and 31 IS ‘v’

@ Leaves R(x;path) = 0 or 1

® Parameters: depth (number of
alternations) and size = log(#leaves)

(= total length of the “messages”) ‘/;//l\\\¢4

@ Will denote as ATTMIK,(r,r"),R] (size
and individual degrees implicit) a ﬁ a
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Alternating Threshold TM

@ We will be interested in ATTM[K,(r,r"),R] where

@ One of r, r’ is a fraction > 1/2 (called the threshold), and the
other is O or 1

@ K is constant, size is polynomial and R is a polynomial time
relation

@ ATTM threshold can also be amplified using “parallel repetition”!

@ Takes threshold from (1/2 + ¢) to (1 - 1/2")

@ K unchanged, size increases by a polynomial factor
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A Pair of Complementary
ATTMs

@ Consider M, and of the form ATTMIK,(r,0),R] and
(where r>1/2)

o We'll call it a pair of complementary (k,r) ATTMs
@ For any r>1/2, {x| M,(x)=1} and are disjoint

o M = is the complement of M,:
ixl Mi(x)=0} =

@ If r > 1-r, M_ stricter than M:

IN
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A Pair of Complementary
ATTMs

@ L is said to have a pair of complementary ATTMs (M,,M.) if
8 xeL & M.(x)=1 and M_(x)=0

D

@ Exact threshold not critical

@ Threshold of (M;,M.) can be reduced to any r > 1/2
@ Reducing threshold enlarges {x| M.(x)=1} and
@ And they stay disjoint
@ So they do not change (as they were already a

partitioning)

@ By parallel repetition, can increase threshold to

exponentially close to 1, starting from 1/2 + ¢
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AM and ATTM-pairs

@ A language L has an AM[K,r] protocol iff L has a pair of
complementary (k,r) ATTMs for r>1/2+c

@ Guarantees on probability of acceptance translated to
threshold guarantees, and vice versa

@ AM[K,r] protocol — (k,r’) ATTM pair: natural conversion
works if r > 1-22¢ and r’ = 3/4 [Exercise]

o (k,r’) ATTM pair = AM[K,r] protocol: natural conversion
works if r’ > 1-1/4k and r = 3/4 [Exercise]

@ Enough, because we can reduce error (increase thresholds) for
both AM protocols and ATTMs
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AM[K] = AM

@ In terms of ATTM-pairs

@ Flipping MA to AM: reduces depth, does not change
size, but requires threshold fo be reduced from
1 -1/2™2 to 3/4

o Amplifying again: Threshold increased to 1 - 1/2m2,
but size increased by a polynomial factor

@ Repeat “k/2 times to reduce to AM[2]
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One-Sided Error

@ Recall BPP c 2,°

@ Using “shifts” of random
tapes
o xeL = 3P P(Yesx) = {0,1}™

o x¢L = VP [P(Yesy)| < 2m/4

@ As an MA protocol Space of random strings = {0,1}™
@ Merlin sends P
@ Arthur picks r10,1}"
@ Merlin sends s € Yesy s.t. r € P(s)

® One-sided error
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Perfect Completeness

@ Converting MA protocol to perfectly complete MA
@ Consider Yesx,a Where a is the message from Merlin
@ xeL = da,P P(Yesyxq) = {O,1}™

o x¢&L = Va,P |P(Yesxd)l < 2™/4

@ Perfectly complete MA protocol
@ Merlin sends a, P
@ Arthur picks r<{0,1}"
@ Checks if there exists s € Pl(r) s.t. s € Yesxa

@ Converting AM protfocols
@ Yesx = {rl da s.t. Arthur accepts x on transcript (r,a) }
@ A one-sided error MAM protocol: (P, 1, a)
® But MAM = AM (and preserves completeness)
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Perfect Completeness

@ Therefore requiring perfect completeness does not
change the classes MA or AM

® Contrast with RP vs. BPP
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Today

@ MA € AM. MAM = AM.
@ AM[K] = AM for k > 2

@ Using alternate characterization in terms of pairs of
complementary ATTMs

® one-Sided-error-AM = AM
@ Coming up:
@ A little more of AM (and where it fits into the zoo)

@ Some other concepfts in interactive proofs



