
Interactive Proofs

Lecture 17
IP = PSPACE

1

So far

2

So far

IP

2

So far

IP

AM, MA

2

So far

IP

AM, MA

GNI ∈ IP

2

So far

IP

AM, MA

GNI ∈ IP

GNI ∈ AM

2

So far

IP

AM, MA

GNI ∈ IP

GNI ∈ AM

Using AM protocol for set lower-bound

2

So far

IP

AM, MA

GNI ∈ IP

GNI ∈ AM

Using AM protocol for set lower-bound

In fact, IP[k] in AM[k+2]

2

IP = PSPACE

3

IP = PSPACE

Recall, IP means IP[poly]

3

IP = PSPACE

Recall, IP means IP[poly]

IP ⊆ PSPACE

3

IP = PSPACE

Recall, IP means IP[poly]

IP ⊆ PSPACE

Even though prover unbounded, cannot convince
poly time verifier of everything

3

IP = PSPACE

Recall, IP means IP[poly]

IP ⊆ PSPACE

Even though prover unbounded, cannot convince
poly time verifier of everything

PSPACE ⊆ IP

3

IP = PSPACE

Recall, IP means IP[poly]

IP ⊆ PSPACE

Even though prover unbounded, cannot convince
poly time verifier of everything

PSPACE ⊆ IP

Prover can convince verifier of high complexity
statements

3

IP ⊆ PSPACE

4

IP ⊆ PSPACE

Easier direction!

4

IP ⊆ PSPACE

Easier direction!

Plan: For given input calculate Pr[yes] of honest verifier,
maximum over all “prover strategies”

4

IP ⊆ PSPACE

Easier direction!

Plan: For given input calculate Pr[yes] of honest verifier,
maximum over all “prover strategies”

Warm-up: public-coins (i.e., AM[poly])

4

IP ⊆ PSPACE

Easier direction!

Plan: For given input calculate Pr[yes] of honest verifier,
maximum over all “prover strategies”

Warm-up: public-coins (i.e., AM[poly])

Could then use the “fact” that IP[poly]=AM[poly]

4

IP ⊆ PSPACE

Easier direction!

Plan: For given input calculate Pr[yes] of honest verifier,
maximum over all “prover strategies”

Warm-up: public-coins (i.e., AM[poly])

Could then use the “fact” that IP[poly]=AM[poly]

Or modify the proof (as we’ll do)

4

AM[poly] ⊆ PSPACE

5

AM[poly] ⊆ PSPACE

Plan: For given input calculate max
Pr[yes] over all “prover strategies”

5

AM[poly] ⊆ PSPACE

Plan: For given input calculate max
Pr[yes] over all “prover strategies”

Assume for convenience (w.l.o.g)
each message is a single bit and
P, V alternate

5

AM[poly] ⊆ PSPACE

Plan: For given input calculate max
Pr[yes] over all “prover strategies”

Assume for convenience (w.l.o.g)
each message is a single bit and
P, V alternate

Protocol’s configuration tree:
path to a node corresponds to
the transcript so far

5

AM[poly] ⊆ PSPACE

Plan: For given input calculate max
Pr[yes] over all “prover strategies”

Assume for convenience (w.l.o.g)
each message is a single bit and
P, V alternate

Protocol’s configuration tree:
path to a node corresponds to
the transcript so far

P

V

V

P

V V

5

AM[poly] ⊆ PSPACE

P

V

V

P

V V

6

AM[poly] ⊆ PSPACE
Plan: For given input calculate maximum value, over
all “prover strategies,” of Pr[yes]

P

V

V

P

V V

6

AM[poly] ⊆ PSPACE
Plan: For given input calculate maximum value, over
all “prover strategies,” of Pr[yes]

Note that finding the honest prover strategy
may require super-PSPACE computation P

V

V

P

V V

6

AM[poly] ⊆ PSPACE
Plan: For given input calculate maximum value, over
all “prover strategies,” of Pr[yes]

Note that finding the honest prover strategy
may require super-PSPACE computation

Recursively for each node, calculate maximum
Pr[yes]

P

V

V

P

V V

6

AM[poly] ⊆ PSPACE
Plan: For given input calculate maximum value, over
all “prover strategies,” of Pr[yes]

Note that finding the honest prover strategy
may require super-PSPACE computation

Recursively for each node, calculate maximum
Pr[yes]

Leaves: Pr[yes] = 0 or 1, determined by
running verifier’s program

P

V

V

P

V V

6

AM[poly] ⊆ PSPACE
Plan: For given input calculate maximum value, over
all “prover strategies,” of Pr[yes]

Note that finding the honest prover strategy
may require super-PSPACE computation

Recursively for each node, calculate maximum
Pr[yes]

Leaves: Pr[yes] = 0 or 1, determined by
running verifier’s program

P nodes: max of children

P

V

V

P

V V

6

AM[poly] ⊆ PSPACE
Plan: For given input calculate maximum value, over
all “prover strategies,” of Pr[yes]

Note that finding the honest prover strategy
may require super-PSPACE computation

Recursively for each node, calculate maximum
Pr[yes]

Leaves: Pr[yes] = 0 or 1, determined by
running verifier’s program

P nodes: max of children

V nodes: average of children

P

V

V

P

V V

6

AM[poly] ⊆ PSPACE
Plan: For given input calculate maximum value, over
all “prover strategies,” of Pr[yes]

Note that finding the honest prover strategy
may require super-PSPACE computation

Recursively for each node, calculate maximum
Pr[yes]

Leaves: Pr[yes] = 0 or 1, determined by
running verifier’s program

P nodes: max of children

V nodes: average of children

In PSPACE: depth polynomial

P

V

V

P

V V

6

IP ⊆ PSPACE

P

V

V

P

V V

7

IP ⊆ PSPACE
Calculate max Pr[yes] when prover’s strategy can
depend only on messages and not private coins

P

V

V

P

V V

7

IP ⊆ PSPACE
Calculate max Pr[yes] when prover’s strategy can
depend only on messages and not private coins

Maintain the set of consistent random-tapes at
each V node P

V

V

P

V V

7

IP ⊆ PSPACE
Calculate max Pr[yes] when prover’s strategy can
depend only on messages and not private coins

Maintain the set of consistent random-tapes at
each V node

Children of V node not always chosen with
1/2-1/2 probability. Instead weighted by fraction
of consistent random-tapes

P

V

V

P

V V

7

IP ⊆ PSPACE
Calculate max Pr[yes] when prover’s strategy can
depend only on messages and not private coins

Maintain the set of consistent random-tapes at
each V node

Children of V node not always chosen with
1/2-1/2 probability. Instead weighted by fraction
of consistent random-tapes

Leaves: Pr[yes] determined by running verifier’s
program on all consistent random-tapes of
verifier

P

V

V

P

V V

7

IP ⊆ PSPACE
Calculate max Pr[yes] when prover’s strategy can
depend only on messages and not private coins

Maintain the set of consistent random-tapes at
each V node

Children of V node not always chosen with
1/2-1/2 probability. Instead weighted by fraction
of consistent random-tapes

Leaves: Pr[yes] determined by running verifier’s
program on all consistent random-tapes of
verifier

P nodes: max of children

P

V

V

P

V V

7

IP ⊆ PSPACE
Calculate max Pr[yes] when prover’s strategy can
depend only on messages and not private coins

Maintain the set of consistent random-tapes at
each V node

Children of V node not always chosen with
1/2-1/2 probability. Instead weighted by fraction
of consistent random-tapes

Leaves: Pr[yes] determined by running verifier’s
program on all consistent random-tapes of
verifier

P nodes: max of children

V nodes: (weighted) average of children

P

V

V

P

V V

7

PSPACE ⊆ IP

8

PSPACE ⊆ IP
Enough to show an IP protocol for TQBF

8

PSPACE ⊆ IP
Enough to show an IP protocol for TQBF

For any L in PSPACE, both prover and verifier can
first reduce input to a TQBF instance, and then
prover proves its membership

8

PSPACE ⊆ IP
Enough to show an IP protocol for TQBF

For any L in PSPACE, both prover and verifier can
first reduce input to a TQBF instance, and then
prover proves its membership

Recall TQBF

8

PSPACE ⊆ IP
Enough to show an IP protocol for TQBF

For any L in PSPACE, both prover and verifier can
first reduce input to a TQBF instance, and then
prover proves its membership

Recall TQBF

Decide whether a QBF is true or not

8

PSPACE ⊆ IP
Enough to show an IP protocol for TQBF

For any L in PSPACE, both prover and verifier can
first reduce input to a TQBF instance, and then
prover proves its membership

Recall TQBF

Decide whether a QBF is true or not

QBF: Q1x1 Q2x2 ... Qnxn F(x1,...,xn) for quantifiers Qi

and a formula F on boolean variables

8

Arithmetization

9

Arithmetization
A Boolean formula as a polynomial

9

Arithmetization
A Boolean formula as a polynomial

Arithmetic over a (finite, exponentially large) field

9

Arithmetization
A Boolean formula as a polynomial

Arithmetic over a (finite, exponentially large) field

0 and 1 (identities of addition and multiplication) instead of
True and False

9

Arithmetization
A Boolean formula as a polynomial

Arithmetic over a (finite, exponentially large) field

0 and 1 (identities of addition and multiplication) instead of
True and False

For formula F, polynomial P such that for boolean vector
b and corresponding 0-1 vector x we have F(b) = P(x)

9

Arithmetization
A Boolean formula as a polynomial

Arithmetic over a (finite, exponentially large) field

0 and 1 (identities of addition and multiplication) instead of
True and False

For formula F, polynomial P such that for boolean vector
b and corresponding 0-1 vector x we have F(b) = P(x)

NOT: (1-x); AND: x.y

9

Arithmetization
A Boolean formula as a polynomial

Arithmetic over a (finite, exponentially large) field

0 and 1 (identities of addition and multiplication) instead of
True and False

For formula F, polynomial P such that for boolean vector
b and corresponding 0-1 vector x we have F(b) = P(x)

NOT: (1-x); AND: x.y

OR (as NOT of AND of NOT): 1 - (1-x).(1-y)

9

Arithmetization
A Boolean formula as a polynomial

Arithmetic over a (finite, exponentially large) field

0 and 1 (identities of addition and multiplication) instead of
True and False

For formula F, polynomial P such that for boolean vector
b and corresponding 0-1 vector x we have F(b) = P(x)

NOT: (1-x); AND: x.y

OR (as NOT of AND of NOT): 1 - (1-x).(1-y)

Exercise: Arithmetize x=y (now!). Degree? Size?

9

Arithmetization
A Boolean formula as a polynomial

Arithmetic over a (finite, exponentially large) field

0 and 1 (identities of addition and multiplication) instead of
True and False

For formula F, polynomial P such that for boolean vector
b and corresponding 0-1 vector x we have F(b) = P(x)

NOT: (1-x); AND: x.y

OR (as NOT of AND of NOT): 1 - (1-x).(1-y)

Exercise: Arithmetize x=y (now!). Degree? Size?

Can always use a polynomial linear in each variable
since xn=x for x=0 and x=1

9

Arithmetization

10

Arithmetization
A QBF as a polynomial

10

Arithmetization
A QBF as a polynomial

TRUE will correspond to > 0, and FALSE, = 0

10

Arithmetization
A QBF as a polynomial

TRUE will correspond to > 0, and FALSE, = 0

Suppose for Boolean formula F, polynomial P

10

Arithmetization
A QBF as a polynomial

TRUE will correspond to > 0, and FALSE, = 0

Suppose for Boolean formula F, polynomial P

∃x F(x) → P(0) + P(1) > 0 (i.e., Σx=0,1 P(x) > 0)

10

Arithmetization
A QBF as a polynomial

TRUE will correspond to > 0, and FALSE, = 0

Suppose for Boolean formula F, polynomial P

∃x F(x) → P(0) + P(1) > 0 (i.e., Σx=0,1 P(x) > 0)

∀x F(x) → P(0).P(1) > 0 (i.e., Πx=0,1 P(x) > 0)

10

Arithmetization
A QBF as a polynomial

TRUE will correspond to > 0, and FALSE, = 0

Suppose for Boolean formula F, polynomial P

∃x F(x) → P(0) + P(1) > 0 (i.e., Σx=0,1 P(x) > 0)

∀x F(x) → P(0).P(1) > 0 (i.e., Πx=0,1 P(x) > 0)

Extends to more quantifiers: i.e., if F(x) is a QBF above

10

Arithmetization
A QBF as a polynomial

TRUE will correspond to > 0, and FALSE, = 0

Suppose for Boolean formula F, polynomial P

∃x F(x) → P(0) + P(1) > 0 (i.e., Σx=0,1 P(x) > 0)

∀x F(x) → P(0).P(1) > 0 (i.e., Πx=0,1 P(x) > 0)

Extends to more quantifiers: i.e., if F(x) is a QBF above

So, how do you arithmetize ∃x∀y G(x,y) and ∀y∃x G(x,y)?

10

Arithmetization
A QBF as a polynomial

TRUE will correspond to > 0, and FALSE, = 0

Suppose for Boolean formula F, polynomial P

∃x F(x) → P(0) + P(1) > 0 (i.e., Σx=0,1 P(x) > 0)

∀x F(x) → P(0).P(1) > 0 (i.e., Πx=0,1 P(x) > 0)

Extends to more quantifiers: i.e., if F(x) is a QBF above

So, how do you arithmetize ∃x∀y G(x,y) and ∀y∃x G(x,y)?

Σx=0,1 Πy=0,1 P(x,y) > 0 and Πy=0,1 Σx=0,1 P(x,y) > 0
10

Arithmetization

11

Arithmetization

For a protocol for TQBF: Give a protocol for proving that
Q1(x1=0,1) Q2(x2=0,1) ... Qn(xn=0,1) P(x1,...,xn) > 0, where Qi are
Σ or Π, and P is a (multi-linear) polynomial

11

Arithmetization

For a protocol for TQBF: Give a protocol for proving that
Q1(x1=0,1) Q2(x2=0,1) ... Qn(xn=0,1) P(x1,...,xn) > 0, where Qi are
Σ or Π, and P is a (multi-linear) polynomial

Instead suppose all Qi are Σ

11

Arithmetization

For a protocol for TQBF: Give a protocol for proving that
Q1(x1=0,1) Q2(x2=0,1) ... Qn(xn=0,1) P(x1,...,xn) > 0, where Qi are
Σ or Π, and P is a (multi-linear) polynomial

Instead suppose all Qi are Σ

Counts number of satisfying assignments to an
(unquantified) boolean formula F

11

Arithmetization

For a protocol for TQBF: Give a protocol for proving that
Q1(x1=0,1) Q2(x2=0,1) ... Qn(xn=0,1) P(x1,...,xn) > 0, where Qi are
Σ or Π, and P is a (multi-linear) polynomial

Instead suppose all Qi are Σ

Counts number of satisfying assignments to an
(unquantified) boolean formula F

Proving > 0 is trivial

11

Arithmetization

For a protocol for TQBF: Give a protocol for proving that
Q1(x1=0,1) Q2(x2=0,1) ... Qn(xn=0,1) P(x1,...,xn) > 0, where Qi are
Σ or Π, and P is a (multi-linear) polynomial

Instead suppose all Qi are Σ

Counts number of satisfying assignments to an
(unquantified) boolean formula F

Proving > 0 is trivial

Consider proving = K (will be useful in the general case)

11

Sum-check protocol

12

Sum-check protocol
To prove: Σx1...Σxn P(x1,...,xn) = K for some degree d polynomial P

12

Sum-check protocol
To prove: Σx1...Σxn P(x1,...,xn) = K for some degree d polynomial P

Verifier has only oracle access to P

12

Sum-check protocol
To prove: Σx1...Σxn P(x1,...,xn) = K for some degree d polynomial P

Note: to evaluate need to add up 2n values

Verifier has only oracle access to P

12

Sum-check protocol
To prove: Σx1...Σxn P(x1,...,xn) = K for some degree d polynomial P

Note: to evaluate need to add up 2n values

Base case: n=0. Verifier will simply use oracle access to P.

Verifier has only oracle access to P

12

Sum-check protocol
To prove: Σx1...Σxn P(x1,...,xn) = K for some degree d polynomial P

Note: to evaluate need to add up 2n values

Base case: n=0. Verifier will simply use oracle access to P.

For n>0: Let R(X) := Σx2...Σxn P(X,x2,...,xn)

Verifier has only oracle access to P

12

Sum-check protocol
To prove: Σx1...Σxn P(x1,...,xn) = K for some degree d polynomial P

Note: to evaluate need to add up 2n values

Base case: n=0. Verifier will simply use oracle access to P.

For n>0: Let R(X) := Σx2...Σxn P(X,x2,...,xn)

Σx1...Σxn P(x1,...,xn) = R(0) + R(1)

Verifier has only oracle access to P

12

Sum-check protocol
To prove: Σx1...Σxn P(x1,...,xn) = K for some degree d polynomial P

Note: to evaluate need to add up 2n values

Base case: n=0. Verifier will simply use oracle access to P.

For n>0: Let R(X) := Σx2...Σxn P(X,x2,...,xn)

Σx1...Σxn P(x1,...,xn) = R(0) + R(1)

R has only one variable and degree at most d

Verifier has only oracle access to P

12

Sum-check protocol
To prove: Σx1...Σxn P(x1,...,xn) = K for some degree d polynomial P

Note: to evaluate need to add up 2n values

Base case: n=0. Verifier will simply use oracle access to P.

For n>0: Let R(X) := Σx2...Σxn P(X,x2,...,xn)

Σx1...Σxn P(x1,...,xn) = R(0) + R(1)

R has only one variable and degree at most d

Only Σ
, no

Π

Verifier has only oracle access to P

12

Sum-check protocol
To prove: Σx1...Σxn P(x1,...,xn) = K for some degree d polynomial P

Note: to evaluate need to add up 2n values

Base case: n=0. Verifier will simply use oracle access to P.

For n>0: Let R(X) := Σx2...Σxn P(X,x2,...,xn)

Σx1...Σxn P(x1,...,xn) = R(0) + R(1)

R has only one variable and degree at most d

Prover sends T=R (as d+1 coefficients) to verifier

Only Σ
, no

Π

Verifier has only oracle access to P

12

Sum-check protocol
To prove: Σx1...Σxn P(x1,...,xn) = K for some degree d polynomial P

Note: to evaluate need to add up 2n values

Base case: n=0. Verifier will simply use oracle access to P.

For n>0: Let R(X) := Σx2...Σxn P(X,x2,...,xn)

Σx1...Σxn P(x1,...,xn) = R(0) + R(1)

R has only one variable and degree at most d

Prover sends T=R (as d+1 coefficients) to verifier

Needs degree to be small

Only Σ
, no

Π

Verifier has only oracle access to P

12

Sum-check protocol
To prove: Σx1...Σxn P(x1,...,xn) = K for some degree d polynomial P

Note: to evaluate need to add up 2n values

Base case: n=0. Verifier will simply use oracle access to P.

For n>0: Let R(X) := Σx2...Σxn P(X,x2,...,xn)

Σx1...Σxn P(x1,...,xn) = R(0) + R(1)

R has only one variable and degree at most d

Prover sends T=R (as d+1 coefficients) to verifier

Verifier checks K = T(0) + T(1). Still needs to check T=R

Needs degree to be small

Only Σ
, no

Π

Verifier has only oracle access to P

12

Sum-check protocol

13

Sum-check protocol
To prove: Σx1...Σxn P(x1,...,xn) = K for some degree d polynomial P

13

Sum-check protocol
To prove: Σx1...Σxn P(x1,...,xn) = K for some degree d polynomial P

Verifier wants to check T(X) = R(X) := Σx2...Σxn P(X,x2,...,xn)

13

Sum-check protocol
To prove: Σx1...Σxn P(x1,...,xn) = K for some degree d polynomial P

Verifier wants to check T(X) = R(X) := Σx2...Σxn P(X,x2,...,xn)

Picks random field element a (large enough field)

13

Sum-check protocol
To prove: Σx1...Σxn P(x1,...,xn) = K for some degree d polynomial P

Verifier wants to check T(X) = R(X) := Σx2...Σxn P(X,x2,...,xn)

Picks random field element a (large enough field)

Asks prover to prove that T(a) = R(a) = Σx2...Σxn P(a,x2,...,xn)

13

Sum-check protocol
To prove: Σx1...Σxn P(x1,...,xn) = K for some degree d polynomial P

Verifier wants to check T(X) = R(X) := Σx2...Σxn P(X,x2,...,xn)

Picks random field element a (large enough field)

Asks prover to prove that T(a) = R(a) = Σx2...Σxn P(a,x2,...,xn)

Recurse on P1(x2,...,xn) = P(a,x2,...,xn) of one variable less

13

Sum-check protocol
To prove: Σx1...Σxn P(x1,...,xn) = K for some degree d polynomial P

Verifier wants to check T(X) = R(X) := Σx2...Σxn P(X,x2,...,xn)

Picks random field element a (large enough field)

Asks prover to prove that T(a) = R(a) = Σx2...Σxn P(a,x2,...,xn)

Recurse on P1(x2,...,xn) = P(a,x2,...,xn) of one variable less

i.e., Recurse to prove Σx2...Σxn P1(x2,...,xn) = T(a)

13

Sum-check protocol
To prove: Σx1...Σxn P(x1,...,xn) = K for some degree d polynomial P

Verifier wants to check T(X) = R(X) := Σx2...Σxn P(X,x2,...,xn)

Picks random field element a (large enough field)

Asks prover to prove that T(a) = R(a) = Σx2...Σxn P(a,x2,...,xn)

Recurse on P1(x2,...,xn) = P(a,x2,...,xn) of one variable less

i.e., Recurse to prove Σx2...Σxn P1(x2,...,xn) = T(a)

Note: P1 has degree at most d; verifier has oracle access to
P1 (as it knows a, and has oracle access to P)

13

Sum-check protocol

14

Sum-check protocol
Why does sum-check protocol work?

14

Sum-check protocol
Why does sum-check protocol work?

Instead of checking T(X) = R(X), simply checks (recursively) if
T(a)=R(a) for a single random a in the field

14

Sum-check protocol
Why does sum-check protocol work?

Instead of checking T(X) = R(X), simply checks (recursively) if
T(a)=R(a) for a single random a in the field

Can’t afford more than one check

14

Sum-check protocol
Why does sum-check protocol work?

Instead of checking T(X) = R(X), simply checks (recursively) if
T(a)=R(a) for a single random a in the field

Completeness is obvious

Can’t afford more than one check

14

Sum-check protocol
Why does sum-check protocol work?

Instead of checking T(X) = R(X), simply checks (recursively) if
T(a)=R(a) for a single random a in the field

Completeness is obvious

Soundness: Since T(X) and R(X) are of degree d, if T≠R,
at most d points where they agree

Can’t afford more than one check

14

Sum-check protocol
Why does sum-check protocol work?

Instead of checking T(X) = R(X), simply checks (recursively) if
T(a)=R(a) for a single random a in the field

Completeness is obvious

Soundness: Since T(X) and R(X) are of degree d, if T≠R,
at most d points where they agree

Error (picking a bad a), with probability ≤ d/p, where
field is of size p

Can’t afford more than one check

14

Sum-check protocol
Why does sum-check protocol work?

Instead of checking T(X) = R(X), simply checks (recursively) if
T(a)=R(a) for a single random a in the field

Completeness is obvious

Soundness: Since T(X) and R(X) are of degree d, if T≠R,
at most d points where they agree

Error (picking a bad a), with probability ≤ d/p, where
field is of size p

Also possible error in recursive step (despite good a)

Can’t afford more than one check

14

Sum-check protocol
Why does sum-check protocol work?

Instead of checking T(X) = R(X), simply checks (recursively) if
T(a)=R(a) for a single random a in the field

Completeness is obvious

Soundness: Since T(X) and R(X) are of degree d, if T≠R,
at most d points where they agree

Error (picking a bad a), with probability ≤ d/p, where
field is of size p

Also possible error in recursive step (despite good a)

At most nd/p if n variables. Can take p exponential.

Can’t afford more than one check

14

IP Protocol for TQBF

15

IP Protocol for TQBF
For a protocol for TQBF: Give a protocol for proving that
Q1(x1=0,1) Q2(x2=0,1) ... Qn(xn=0,1) P(x1,...,xn) > 0, where Qi are Σ or Π
and P is a multi-linear polynomial

15

IP Protocol for TQBF
For a protocol for TQBF: Give a protocol for proving that
Q1(x1=0,1) Q2(x2=0,1) ... Qn(xn=0,1) P(x1,...,xn) > 0, where Qi are Σ or Π
and P is a multi-linear polynomial

In fact a protocol to prove: Q1 x1... Qn xn P(x1,...,xn) = K

15

IP Protocol for TQBF
For a protocol for TQBF: Give a protocol for proving that
Q1(x1=0,1) Q2(x2=0,1) ... Qn(xn=0,1) P(x1,...,xn) > 0, where Qi are Σ or Π
and P is a multi-linear polynomial

In fact a protocol to prove: Q1 x1... Qn xn P(x1,...,xn) = K

Problem with generalizing sum-check protocol: the univariate poly
R(X) := Q2 x2... Qn xn P(X,x2,...,xn) has exponential degree. Verifier
can’t read T(X)=R(X)

15

IP Protocol for TQBF
For a protocol for TQBF: Give a protocol for proving that
Q1(x1=0,1) Q2(x2=0,1) ... Qn(xn=0,1) P(x1,...,xn) > 0, where Qi are Σ or Π
and P is a multi-linear polynomial

In fact a protocol to prove: Q1 x1... Qn xn P(x1,...,xn) = K

Problem with generalizing sum-check protocol: the univariate poly
R(X) := Q2 x2... Qn xn P(X,x2,...,xn) has exponential degree. Verifier
can’t read T(X)=R(X)

Instead of T, can work with “linearization” of T

15

IP Protocol for TQBF
For a protocol for TQBF: Give a protocol for proving that
Q1(x1=0,1) Q2(x2=0,1) ... Qn(xn=0,1) P(x1,...,xn) > 0, where Qi are Σ or Π
and P is a multi-linear polynomial

In fact a protocol to prove: Q1 x1... Qn xn P(x1,...,xn) = K

Problem with generalizing sum-check protocol: the univariate poly
R(X) := Q2 x2... Qn xn P(X,x2,...,xn) has exponential degree. Verifier
can’t read T(X)=R(X)

Instead of T, can work with “linearization” of T

Prover sends L(X) = (T(1)-T(0)) X + T(0)

15

IP Protocol for TQBF
For a protocol for TQBF: Give a protocol for proving that
Q1(x1=0,1) Q2(x2=0,1) ... Qn(xn=0,1) P(x1,...,xn) > 0, where Qi are Σ or Π
and P is a multi-linear polynomial

In fact a protocol to prove: Q1 x1... Qn xn P(x1,...,xn) = K

Problem with generalizing sum-check protocol: the univariate poly
R(X) := Q2 x2... Qn xn P(X,x2,...,xn) has exponential degree. Verifier
can’t read T(X)=R(X)

Instead of T, can work with “linearization” of T

Prover sends L(X) = (T(1)-T(0)) X + T(0)
Verifier picks random a, and asks prover to show R’(a) = L(a)

15

IP Protocol for TQBF
For a protocol for TQBF: Give a protocol for proving that
Q1(x1=0,1) Q2(x2=0,1) ... Qn(xn=0,1) P(x1,...,xn) > 0, where Qi are Σ or Π
and P is a multi-linear polynomial

In fact a protocol to prove: Q1 x1... Qn xn P(x1,...,xn) = K

Problem with generalizing sum-check protocol: the univariate poly
R(X) := Q2 x2... Qn xn P(X,x2,...,xn) has exponential degree. Verifier
can’t read T(X)=R(X)

Instead of T, can work with “linearization” of T

Prover sends L(X) = (T(1)-T(0)) X + T(0)
Verifier picks random a, and asks prover to show R’(a) = L(a)

linearization of R(X)

15

IP Protocol for TQBF
For a protocol for TQBF: Give a protocol for proving that
Q1(x1=0,1) Q2(x2=0,1) ... Qn(xn=0,1) P(x1,...,xn) > 0, where Qi are Σ or Π
and P is a multi-linear polynomial

In fact a protocol to prove: Q1 x1... Qn xn P(x1,...,xn) = K

Problem with generalizing sum-check protocol: the univariate poly
R(X) := Q2 x2... Qn xn P(X,x2,...,xn) has exponential degree. Verifier
can’t read T(X)=R(X)

Instead of T, can work with “linearization” of T

Prover sends L(X) = (T(1)-T(0)) X + T(0)
Verifier picks random a, and asks prover to show R’(a) = L(a)
Verifier checks (as appropriate) L(1).L(0) = K or L(1)+L(0) = K

linearization of R(X)

15

IP Protocol for TQBF

16

IP Protocol for TQBF

IP = PSPACE

16

IP Protocol for TQBF

IP = PSPACE

Protocol is public-coin

16

IP Protocol for TQBF

IP = PSPACE

Protocol is public-coin

IP = AM[poly] = PSPACE

16

IP Protocol for TQBF

IP = PSPACE

Protocol is public-coin

IP = AM[poly] = PSPACE

Protocol has perfect completeness

16

