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Recap
Non-deterministic Computation

Polynomial Hierarchy

Non-determinism on steroids!

Non-uniform computation

Probabilistic Computation

Today: Interactive Proofs

Non-determinism and Probabilistic computation on steroids!
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x ∈ L

Prover wants to convince verifier that x has some 
property 

i.e. x is in language L

All powerful prover, computationally bounded verifier

Verifier doesn’t trust prover

Limits the power

Interactive Proofs

Prove to me!

YES!
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Interactive Proofs
Completeness

If x in L, honest Prover should convince 
honest Verifier

Soundness

If x not in L, honest Verifier won’t accept 
any purported proof

x ∈ L
yeah right!

       NO!
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Interactive Proofs
Completeness

If x in L, honest Prover will convince honest Verifier

With probability at least 2/3

Soundness

If x not in L, honest Verifier won’t accept any purported 
proof

Except with probability at most 1/3
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Deterministic Verifier IP

Prover can construct the entire transcript, which 
verifier can verify deterministically

NP certificate

Deterministic Verifier IP = NP

Deterministic Prover IP = IP

For each input prover can choose the random tape 
which maximizes Pr[yes] (probability over honest 
verifier’s randomness)

Deterministic IP?
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Public and Private Coins

Public coins: Prover sees verifier’s coin tosses

Verifier might as well send nothing but the coins 
to the prover

Private coins: Verifier does not send everything 
about the coins

e.g. GNI protocol: verifier keeps coin tosses 
hidden; uses it to create challenge
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MA and AM

Class of languages with two message Arthur-Merlin 
protocols

AM (or AM[2]): One message from beacon, 
followed by one message from Merlin

MA (or MA[2]): One message from Merlin followed 
by one message from beacon

Contain NP and BPP
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Multiple-message proofs

AM[k], MA[k], IP[k]: k(n) messages

Turns out IP[k] ⊆ AM[k+2]!

Turns out IP[const] = AM[const] = AM[2]!

Called AM

Turns out IP[poly] = AM[poly] = PSPACE!

Called IP (= PSPACE)

Later.
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How can private coins be 
avoided?

Example: GNI

Recall GNI protocol used private coins

An alternate view of GNI

Each of G0 and G1 has n! isomorphic graphs

(Assuming no automorphisms)

If G0 and G1 isomorphic, same set of n! isomorphic graphs

Else 2(n!) isomorphic graphs

Prover to prove that |{H: H ≡ G0 or H ≡ G1}| > n!
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S ⊆ U, a sampleable universe, membership in S 

certifiable

Suppose K large (say K=|U|/3). Then simple protocol:

Verifier picks a random element x∈U
If x∈S, prover returns certificate

If certificate valid, verifier accepts

If |S| > 2K, Pr[yes] > 2/3. If |S| ≤ K, Pr[yes] ≤ 1/3

But what if K/|U| is exponentially small?
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Prover wants to prove that |S| > K, for a set S such that     
|S| ≥ 2K

But K can be very small (say |U|=2n, K=2n/2)

Idea: First “hash down” U to almost size 2K, so that small 
sets (like S) do not shrink much (and of course, do not grow)

Verifier picks a random element y∈H(U)

If y∈H(S), prover returns certificate: x∈S (+cert.), y=H(x)

If certificate valid, verifier accepts

Is there such a hash function for all small sets S?

Clearly no single function for all S!
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Hash Function Family
A family of hash functions

Given any small subset S, a random function h from 
the family will not shrink it much (say by 3/4) with 
high probability

(Though every h shrinks some small sets)

Relate shrinking to “hash collision probability”

Prh[h(x)=h(x’)] (max over x≠x’)

Exercise!
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Family of functions h: U → R

Prh[h(x)=y] = 1/|R| for all x∈U and y∈R

Prh[h(x)=y & h(x’)=y’] = 1/|R|2 for all x≠x’ ∈ U and y, y’∈ R

E.g. in exercise

Hash collision probability = 1/|R|
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Public-coin protocol for 
Set lower-bound

Given a description of S and size K, to prove |S|>K (if |S|>2K)

Verifier picks a random hash function h from a 2UHF 
family from U to R, with |R| = 8K (say), and a random 
element y in R

Prover sends back (if possible) x∈S s.t. h(x)=y, with a 

certificate for x∈S

Verifier verifies x∈S and h(x)=y and outputs YES

Pr[Yes] has a constant gap between |S| > 2K and |S| < K 
[Exercise]
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