
Interactive Proofs

Lecture 16
What the all-powerful can convince

mere mortals of

1

Recap

2

Recap
Non-deterministic Computation

2

Recap
Non-deterministic Computation

Polynomial Hierarchy

2

Recap
Non-deterministic Computation

Polynomial Hierarchy

Non-determinism on steroids!

2

Recap
Non-deterministic Computation

Polynomial Hierarchy

Non-determinism on steroids!

Non-uniform computation

2

Recap
Non-deterministic Computation

Polynomial Hierarchy

Non-determinism on steroids!

Non-uniform computation

Probabilistic Computation

2

Recap
Non-deterministic Computation

Polynomial Hierarchy

Non-determinism on steroids!

Non-uniform computation

Probabilistic Computation

Today: Interactive Proofs

2

Recap
Non-deterministic Computation

Polynomial Hierarchy

Non-determinism on steroids!

Non-uniform computation

Probabilistic Computation

Today: Interactive Proofs

Non-determinism and Probabilistic computation on steroids!

2

Interactive Proofs

3

Prover wants to convince verifier that x has some
property

Interactive Proofs

3

Prover wants to convince verifier that x has some
property

i.e. x is in language L

Interactive Proofs

3

Prover wants to convince verifier that x has some
property

i.e. x is in language L

Interactive Proofs

3

x ∈ L

Prover wants to convince verifier that x has some
property

i.e. x is in language L

Interactive Proofs

3

x ∈ L

Prover wants to convince verifier that x has some
property

i.e. x is in language L

Interactive Proofs

Prove to me!

3

x ∈ L

Prover wants to convince verifier that x has some
property

i.e. x is in language L

Interactive Proofs

Prove to me!

3

x ∈ L

Prover wants to convince verifier that x has some
property

i.e. x is in language L

Interactive Proofs

Prove to me!

YES!

3

x ∈ L

Prover wants to convince verifier that x has some
property

i.e. x is in language L

All powerful prover, computationally bounded verifier

Interactive Proofs

Prove to me!

YES!

3

x ∈ L

Prover wants to convince verifier that x has some
property

i.e. x is in language L

All powerful prover, computationally bounded verifier

Verifier doesn’t trust prover

Interactive Proofs

Prove to me!

YES!

3

x ∈ L

Prover wants to convince verifier that x has some
property

i.e. x is in language L

All powerful prover, computationally bounded verifier

Verifier doesn’t trust prover

Limits the power

Interactive Proofs

Prove to me!

YES!

3

Interactive Proofs

4

Interactive Proofs
Completeness

4

Interactive Proofs
Completeness

If x in L, honest Prover should convince
honest Verifier

4

Interactive Proofs
Completeness

If x in L, honest Prover should convince
honest Verifier

Soundness

4

Interactive Proofs
Completeness

If x in L, honest Prover should convince
honest Verifier

Soundness

If x not in L, honest Verifier won’t accept
any purported proof

4

Interactive Proofs
Completeness

If x in L, honest Prover should convince
honest Verifier

Soundness

If x not in L, honest Verifier won’t accept
any purported proof

4

Interactive Proofs
Completeness

If x in L, honest Prover should convince
honest Verifier

Soundness

If x not in L, honest Verifier won’t accept
any purported proof

x ∈ L

4

Interactive Proofs
Completeness

If x in L, honest Prover should convince
honest Verifier

Soundness

If x not in L, honest Verifier won’t accept
any purported proof

x ∈ L
yeah right!

4

Interactive Proofs
Completeness

If x in L, honest Prover should convince
honest Verifier

Soundness

If x not in L, honest Verifier won’t accept
any purported proof

x ∈ L
yeah right!

4

Interactive Proofs
Completeness

If x in L, honest Prover should convince
honest Verifier

Soundness

If x not in L, honest Verifier won’t accept
any purported proof

x ∈ L
yeah right!

 NO!

4

An Example

5

Coke in bottle or can

An Example

5

Coke in bottle or can

Prover claims: coke in bottle and coke in can are different

An Example

5

Coke in bottle or can

Prover claims: coke in bottle and coke in can are different

IP protocol:

An Example

5

Coke in bottle or can

Prover claims: coke in bottle and coke in can are different

IP protocol:

An Example

5

Coke in bottle or can

Prover claims: coke in bottle and coke in can are different

IP protocol:

An Example

Pour into
from can or

bottle

5

Coke in bottle or can

Prover claims: coke in bottle and coke in can are different

IP protocol:

An Example

Pour into
from can or

bottle

5

Coke in bottle or can

Prover claims: coke in bottle and coke in can are different

IP protocol:

prover tells whether cup was filled from can or bottle

An Example

Pour into
from can or

bottle

can/bottle

5

Coke in bottle or can

Prover claims: coke in bottle and coke in can are different

IP protocol:

prover tells whether cup was filled from can or bottle

repeat till verifier is convinced

An Example

Pour into
from can or

bottle

can/bottle

5

An Example

6

Graph non-isomorphism (GNI)

An Example

6

Graph non-isomorphism (GNI)

Prover claims: G0 not isomorphic to G1

An Example

6

Graph non-isomorphism (GNI)

Prover claims: G0 not isomorphic to G1

IP protocol:

An Example

6

Graph non-isomorphism (GNI)

Prover claims: G0 not isomorphic to G1

IP protocol:

An Example

6

Graph non-isomorphism (GNI)

Prover claims: G0 not isomorphic to G1

IP protocol:

An Example

Set G* to be π(G0) or π(G1) (π a random permutation)

6

Graph non-isomorphism (GNI)

Prover claims: G0 not isomorphic to G1

IP protocol:

An Example

Set G* to be π(G0) or π(G1) (π a random permutation)G*

6

Graph non-isomorphism (GNI)

Prover claims: G0 not isomorphic to G1

IP protocol:

prover tells whether G* came from G0 or G1

An Example

Set G* to be π(G0) or π(G1) (π a random permutation)

G0/G1

G*

6

Graph non-isomorphism (GNI)

Prover claims: G0 not isomorphic to G1

IP protocol:

prover tells whether G* came from G0 or G1

repeat till verifier is convinced

An Example

Set G* to be π(G0) or π(G1) (π a random permutation)

G0/G1

G*

6

Interactive Proofs

7

Interactive Proofs
Completeness

7

Interactive Proofs
Completeness

If x in L, honest Prover will convince honest Verifier

7

Interactive Proofs
Completeness

If x in L, honest Prover will convince honest Verifier

With probability at least 2/3

7

Interactive Proofs
Completeness

If x in L, honest Prover will convince honest Verifier

With probability at least 2/3

Soundness

7

Interactive Proofs
Completeness

If x in L, honest Prover will convince honest Verifier

With probability at least 2/3

Soundness

If x not in L, honest Verifier won’t accept any purported
proof

7

Interactive Proofs
Completeness

If x in L, honest Prover will convince honest Verifier

With probability at least 2/3

Soundness

If x not in L, honest Verifier won’t accept any purported
proof

Except with probability at most 1/3

7

Deterministic IP?

8

Deterministic Verifier IP

Deterministic IP?

8

Deterministic Verifier IP

Prover can construct the entire transcript, which
verifier can verify deterministically

Deterministic IP?

8

Deterministic Verifier IP

Prover can construct the entire transcript, which
verifier can verify deterministically

NP certificate

Deterministic IP?

8

Deterministic Verifier IP

Prover can construct the entire transcript, which
verifier can verify deterministically

NP certificate

Deterministic Verifier IP = NP

Deterministic IP?

8

Deterministic Verifier IP

Prover can construct the entire transcript, which
verifier can verify deterministically

NP certificate

Deterministic Verifier IP = NP

Deterministic Prover IP = IP

Deterministic IP?

8

Deterministic Verifier IP

Prover can construct the entire transcript, which
verifier can verify deterministically

NP certificate

Deterministic Verifier IP = NP

Deterministic Prover IP = IP

For each input prover can choose the random tape
which maximizes Pr[yes] (probability over honest
verifier’s randomness)

Deterministic IP?

8

Public and Private Coins

9

Public and Private Coins

Public coins: Prover sees verifier’s coin tosses

9

Public and Private Coins

Public coins: Prover sees verifier’s coin tosses

Verifier might as well send nothing but the coins
to the prover

9

Public and Private Coins

Public coins: Prover sees verifier’s coin tosses

Verifier might as well send nothing but the coins
to the prover

Private coins: Verifier does not send everything
about the coins

9

Public and Private Coins

Public coins: Prover sees verifier’s coin tosses

Verifier might as well send nothing but the coins
to the prover

Private coins: Verifier does not send everything
about the coins

e.g. GNI protocol: verifier keeps coin tosses
hidden; uses it to create challenge

9

Arthur Merlin Proofs

10

Arthur Merlin Proofs

Arthur-Merlin proof-systems

10

Arthur Merlin Proofs

Arthur-Merlin proof-systems

Arthur: polynomial time verifier

10

Arthur Merlin Proofs

Arthur-Merlin proof-systems

Arthur: polynomial time verifier

10

Arthur Merlin Proofs

Arthur-Merlin proof-systems

Arthur: polynomial time verifier

Merlin: unbounded prover

10

Arthur Merlin Proofs

Arthur-Merlin proof-systems

Arthur: polynomial time verifier

Merlin: unbounded prover

10

Arthur Merlin Proofs

Arthur-Merlin proof-systems

Arthur: polynomial time verifier

Merlin: unbounded prover

Random coins come from a
beacon

10

Arthur Merlin Proofs

Arthur-Merlin proof-systems

Arthur: polynomial time verifier

Merlin: unbounded prover

Random coins come from a
beacon

10

Arthur Merlin Proofs

Arthur-Merlin proof-systems

Arthur: polynomial time verifier

Merlin: unbounded prover

Random coins come from a
beacon

Public coin proof-system

10

Arthur Merlin Proofs

Arthur-Merlin proof-systems

Arthur: polynomial time verifier

Merlin: unbounded prover

Random coins come from a
beacon

Public coin proof-system

Arthur sends no messages nor
flips any coins

10

Arthur Merlin Proofs

Arthur-Merlin proof-systems

Arthur: polynomial time verifier

Merlin: unbounded prover

Random coins come from a
beacon

Public coin proof-system

Arthur sends no messages nor
flips any coins

10

Arthur Merlin Proofs

Arthur-Merlin proof-systems

Arthur: polynomial time verifier

Merlin: unbounded prover

Random coins come from a
beacon

Public coin proof-system

Arthur sends no messages nor
flips any coins

10

Arthur Merlin Proofs

Arthur-Merlin proof-systems

Arthur: polynomial time verifier

Merlin: unbounded prover

Random coins come from a
beacon

Public coin proof-system

Arthur sends no messages nor
flips any coins

10

Arthur Merlin Proofs

Arthur-Merlin proof-systems

Arthur: polynomial time verifier

Merlin: unbounded prover

Random coins come from a
beacon

Public coin proof-system

Arthur sends no messages nor
flips any coins

10

Arthur Merlin Proofs

Arthur-Merlin proof-systems

Arthur: polynomial time verifier

Merlin: unbounded prover

Random coins come from a
beacon

Public coin proof-system

Arthur sends no messages nor
flips any coins

10

MA and AM

11

MA and AM

Class of languages with two message Arthur-Merlin
protocols

11

MA and AM

Class of languages with two message Arthur-Merlin
protocols

AM (or AM[2]): One message from beacon,
followed by one message from Merlin

11

MA and AM

Class of languages with two message Arthur-Merlin
protocols

AM (or AM[2]): One message from beacon,
followed by one message from Merlin

MA (or MA[2]): One message from Merlin followed
by one message from beacon

11

MA and AM

Class of languages with two message Arthur-Merlin
protocols

AM (or AM[2]): One message from beacon,
followed by one message from Merlin

MA (or MA[2]): One message from Merlin followed
by one message from beacon

Contain NP and BPP

11

Multiple-message proofs

12

Multiple-message proofs

AM[k], MA[k], IP[k]: k(n) messages

12

Multiple-message proofs

AM[k], MA[k], IP[k]: k(n) messages

Turns out IP[k] ⊆ AM[k+2]!

12

Multiple-message proofs

AM[k], MA[k], IP[k]: k(n) messages

Turns out IP[k] ⊆ AM[k+2]!

Turns out IP[const] = AM[const] = AM[2]!

12

Multiple-message proofs

AM[k], MA[k], IP[k]: k(n) messages

Turns out IP[k] ⊆ AM[k+2]!

Turns out IP[const] = AM[const] = AM[2]!

Called AM

12

Multiple-message proofs

AM[k], MA[k], IP[k]: k(n) messages

Turns out IP[k] ⊆ AM[k+2]!

Turns out IP[const] = AM[const] = AM[2]!

Called AM

Turns out IP[poly] = AM[poly] = PSPACE!

12

Multiple-message proofs

AM[k], MA[k], IP[k]: k(n) messages

Turns out IP[k] ⊆ AM[k+2]!

Turns out IP[const] = AM[const] = AM[2]!

Called AM

Turns out IP[poly] = AM[poly] = PSPACE!

Called IP (= PSPACE)

12

Multiple-message proofs

AM[k], MA[k], IP[k]: k(n) messages

Turns out IP[k] ⊆ AM[k+2]!

Turns out IP[const] = AM[const] = AM[2]!

Called AM

Turns out IP[poly] = AM[poly] = PSPACE!

Called IP (= PSPACE)

Later.

12

How can private coins be
avoided?

13

How can private coins be
avoided?

Example: GNI

13

How can private coins be
avoided?

Example: GNI

Recall GNI protocol used private coins

13

How can private coins be
avoided?

Example: GNI

Recall GNI protocol used private coins

An alternate view of GNI

13

How can private coins be
avoided?

Example: GNI

Recall GNI protocol used private coins

An alternate view of GNI

Each of G0 and G1 has n! isomorphic graphs

13

How can private coins be
avoided?

Example: GNI

Recall GNI protocol used private coins

An alternate view of GNI

Each of G0 and G1 has n! isomorphic graphs

(Assuming no automorphisms)

13

How can private coins be
avoided?

Example: GNI

Recall GNI protocol used private coins

An alternate view of GNI

Each of G0 and G1 has n! isomorphic graphs

(Assuming no automorphisms)

If G0 and G1 isomorphic, same set of n! isomorphic graphs

13

How can private coins be
avoided?

Example: GNI

Recall GNI protocol used private coins

An alternate view of GNI

Each of G0 and G1 has n! isomorphic graphs

(Assuming no automorphisms)

If G0 and G1 isomorphic, same set of n! isomorphic graphs

Else 2(n!) isomorphic graphs

13

How can private coins be
avoided?

Example: GNI

Recall GNI protocol used private coins

An alternate view of GNI

Each of G0 and G1 has n! isomorphic graphs

(Assuming no automorphisms)

If G0 and G1 isomorphic, same set of n! isomorphic graphs

Else 2(n!) isomorphic graphs

Prover to prove that |{H: H ≡ G0 or H ≡ G1}| > n!

13

Set Lower-bound

14

Set Lower-bound
Prover wants to prove that |S| > K, for a set S such that
|S| ≥ 2K

14

Set Lower-bound
Prover wants to prove that |S| > K, for a set S such that
|S| ≥ 2K

S ⊆ U, a sampleable universe, membership in S

certifiable

14

Set Lower-bound
Prover wants to prove that |S| > K, for a set S such that
|S| ≥ 2K

S ⊆ U, a sampleable universe, membership in S

certifiable

Suppose K large (say K=|U|/3). Then simple protocol:

14

Set Lower-bound
Prover wants to prove that |S| > K, for a set S such that
|S| ≥ 2K

S ⊆ U, a sampleable universe, membership in S

certifiable

Suppose K large (say K=|U|/3). Then simple protocol:

Verifier picks a random element x∈U

14

Set Lower-bound
Prover wants to prove that |S| > K, for a set S such that
|S| ≥ 2K

S ⊆ U, a sampleable universe, membership in S

certifiable

Suppose K large (say K=|U|/3). Then simple protocol:

Verifier picks a random element x∈U
If x∈S, prover returns certificate

14

Set Lower-bound
Prover wants to prove that |S| > K, for a set S such that
|S| ≥ 2K

S ⊆ U, a sampleable universe, membership in S

certifiable

Suppose K large (say K=|U|/3). Then simple protocol:

Verifier picks a random element x∈U
If x∈S, prover returns certificate

If certificate valid, verifier accepts

14

Set Lower-bound
Prover wants to prove that |S| > K, for a set S such that
|S| ≥ 2K

S ⊆ U, a sampleable universe, membership in S

certifiable

Suppose K large (say K=|U|/3). Then simple protocol:

Verifier picks a random element x∈U
If x∈S, prover returns certificate

If certificate valid, verifier accepts

If |S| > 2K, Pr[yes] > 2/3. If |S| ≤ K, Pr[yes] ≤ 1/3

14

Set Lower-bound
Prover wants to prove that |S| > K, for a set S such that
|S| ≥ 2K

S ⊆ U, a sampleable universe, membership in S

certifiable

Suppose K large (say K=|U|/3). Then simple protocol:

Verifier picks a random element x∈U
If x∈S, prover returns certificate

If certificate valid, verifier accepts

If |S| > 2K, Pr[yes] > 2/3. If |S| ≤ K, Pr[yes] ≤ 1/3

But what if K/|U| is exponentially small?

14

Set Lower-bound

15

Set Lower-bound
Prover wants to prove that |S| > K, for a set S such that
|S| ≥ 2K

15

Set Lower-bound
Prover wants to prove that |S| > K, for a set S such that
|S| ≥ 2K

But K can be very small (say |U|=2n, K=2n/2)

15

Set Lower-bound
Prover wants to prove that |S| > K, for a set S such that
|S| ≥ 2K

But K can be very small (say |U|=2n, K=2n/2)

Idea: First “hash down” U to almost size 2K, so that small
sets (like S) do not shrink much (and of course, do not grow)

15

Set Lower-bound
Prover wants to prove that |S| > K, for a set S such that
|S| ≥ 2K

But K can be very small (say |U|=2n, K=2n/2)

Idea: First “hash down” U to almost size 2K, so that small
sets (like S) do not shrink much (and of course, do not grow)

Verifier picks a random element y∈H(U)

15

Set Lower-bound
Prover wants to prove that |S| > K, for a set S such that
|S| ≥ 2K

But K can be very small (say |U|=2n, K=2n/2)

Idea: First “hash down” U to almost size 2K, so that small
sets (like S) do not shrink much (and of course, do not grow)

Verifier picks a random element y∈H(U)

If y∈H(S), prover returns certificate: x∈S (+cert.), y=H(x)

15

Set Lower-bound
Prover wants to prove that |S| > K, for a set S such that
|S| ≥ 2K

But K can be very small (say |U|=2n, K=2n/2)

Idea: First “hash down” U to almost size 2K, so that small
sets (like S) do not shrink much (and of course, do not grow)

Verifier picks a random element y∈H(U)

If y∈H(S), prover returns certificate: x∈S (+cert.), y=H(x)

If certificate valid, verifier accepts

15

Set Lower-bound
Prover wants to prove that |S| > K, for a set S such that
|S| ≥ 2K

But K can be very small (say |U|=2n, K=2n/2)

Idea: First “hash down” U to almost size 2K, so that small
sets (like S) do not shrink much (and of course, do not grow)

Verifier picks a random element y∈H(U)

If y∈H(S), prover returns certificate: x∈S (+cert.), y=H(x)

If certificate valid, verifier accepts

Is there such a hash function for all small sets S?

15

Set Lower-bound
Prover wants to prove that |S| > K, for a set S such that
|S| ≥ 2K

But K can be very small (say |U|=2n, K=2n/2)

Idea: First “hash down” U to almost size 2K, so that small
sets (like S) do not shrink much (and of course, do not grow)

Verifier picks a random element y∈H(U)

If y∈H(S), prover returns certificate: x∈S (+cert.), y=H(x)

If certificate valid, verifier accepts

Is there such a hash function for all small sets S?

Clearly no single function for all S!

15

Hash Function Family

16

Hash Function Family
A family of hash functions

16

Hash Function Family
A family of hash functions

Given any small subset S, a random function h from
the family will not shrink it much (say by 3/4) with
high probability

16

Hash Function Family
A family of hash functions

Given any small subset S, a random function h from
the family will not shrink it much (say by 3/4) with
high probability

(Though every h shrinks some small sets)

16

Hash Function Family
A family of hash functions

Given any small subset S, a random function h from
the family will not shrink it much (say by 3/4) with
high probability

(Though every h shrinks some small sets)

Relate shrinking to “hash collision probability”

16

Hash Function Family
A family of hash functions

Given any small subset S, a random function h from
the family will not shrink it much (say by 3/4) with
high probability

(Though every h shrinks some small sets)

Relate shrinking to “hash collision probability”

Prh[h(x)=h(x’)] (max over x≠x’)

16

Hash Function Family
A family of hash functions

Given any small subset S, a random function h from
the family will not shrink it much (say by 3/4) with
high probability

(Though every h shrinks some small sets)

Relate shrinking to “hash collision probability”

Prh[h(x)=h(x’)] (max over x≠x’)

Exercise!

16

2-Universal Hash Family

17

2-Universal Hash Family

(a.k.a pairwise-independent hashing)

17

2-Universal Hash Family

(a.k.a pairwise-independent hashing)

Family of functions h: U → R

17

2-Universal Hash Family

(a.k.a pairwise-independent hashing)

Family of functions h: U → R

Prh[h(x)=y] = 1/|R| for all x∈U and y∈R

17

2-Universal Hash Family

(a.k.a pairwise-independent hashing)

Family of functions h: U → R

Prh[h(x)=y] = 1/|R| for all x∈U and y∈R

Prh[h(x)=y & h(x’)=y’] = 1/|R|2 for all x≠x’ ∈ U and y, y’∈ R

17

2-Universal Hash Family

(a.k.a pairwise-independent hashing)

Family of functions h: U → R

Prh[h(x)=y] = 1/|R| for all x∈U and y∈R

Prh[h(x)=y & h(x’)=y’] = 1/|R|2 for all x≠x’ ∈ U and y, y’∈ R

E.g. in exercise

17

2-Universal Hash Family

(a.k.a pairwise-independent hashing)

Family of functions h: U → R

Prh[h(x)=y] = 1/|R| for all x∈U and y∈R

Prh[h(x)=y & h(x’)=y’] = 1/|R|2 for all x≠x’ ∈ U and y, y’∈ R

E.g. in exercise

Hash collision probability = 1/|R|

17

Public-coin protocol for
Set lower-bound

18

Public-coin protocol for
Set lower-bound

Given a description of S and size K, to prove |S|>K (if |S|>2K)

18

Public-coin protocol for
Set lower-bound

Given a description of S and size K, to prove |S|>K (if |S|>2K)

Verifier picks a random hash function h from a 2UHF
family from U to R, with |R| = 8K (say), and a random
element y in R

18

Public-coin protocol for
Set lower-bound

Given a description of S and size K, to prove |S|>K (if |S|>2K)

Verifier picks a random hash function h from a 2UHF
family from U to R, with |R| = 8K (say), and a random
element y in R

Prover sends back (if possible) x∈S s.t. h(x)=y, with a

certificate for x∈S

18

Public-coin protocol for
Set lower-bound

Given a description of S and size K, to prove |S|>K (if |S|>2K)

Verifier picks a random hash function h from a 2UHF
family from U to R, with |R| = 8K (say), and a random
element y in R

Prover sends back (if possible) x∈S s.t. h(x)=y, with a

certificate for x∈S

Verifier verifies x∈S and h(x)=y and outputs YES

18

Public-coin protocol for
Set lower-bound

Given a description of S and size K, to prove |S|>K (if |S|>2K)

Verifier picks a random hash function h from a 2UHF
family from U to R, with |R| = 8K (say), and a random
element y in R

Prover sends back (if possible) x∈S s.t. h(x)=y, with a

certificate for x∈S

Verifier verifies x∈S and h(x)=y and outputs YES

Pr[Yes] has a constant gap between |S| > 2K and |S| < K
[Exercise]

18

