Interactive Proofs

Lecture 16
What the all-powerful can convince
mere mortals of
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Recap

@ Non-deterministic Computation
@ Polynomial Hierarchy

@ Non-determinism on steroids!
@ Non-uniform computation
@ Probabilistic Computation
@ Today: Interactive Proofs

@ Non-determinism and Probabilistic computation on steroids!
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@ Prover wants to convince verifier that x has some
property

@ i.e. X iIs in language L

@ All powerful prover, computationally bounded verifier

@ Verifier doesnt trust prover Prove to me!

@ Limits the power
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® Coke in bottle or can
@ Prover claims: coke in bottle and coke in can are different
@ IP protocol:

@ prover fells whether cup was filled from can or bottle

@ repeat till verifier is convinced Pour intd
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@ Graph non-isomorphism (GNI)
@ Prover claims: Go not isomorphic to G;
@ IP protocol:

@ prover tells whether G* came from Go or G;

@ repeat till verifier is convinced
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Interactive Proofs

@ Completeness
@ If xin L, honest Prover will convince honest Verifier

@ With probability at least 2/3

® Soundness

@ If x not in L, honest Verifier won't accept any purported
proof

@ Except with probability at most 1/3
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Deterministic IP?

® Deterministic Verifier IP

@ Prover can construct the entire transcript, which
verifier can verify deterministically

@ NP certificate
® Deterministic Verifier IP = NP
® Deterministic Prover IP = IP

@ For each input prover can choose the random tape
which maximizes Pr[yes] (probability over honest
verifiers randomness)
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Public and Private Coins

® Public coins: Prover sees verifiers coin tosses

@ Verifier might as well send nothing but the coins
to the prover

@ Private coins: Verifier does not send everything
about the coins

@ e.g. GNI protocol: verifier keeps coin tosses
hidden; uses it to create challenge
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MA and AM

@ Class of languages with two message Arthur-Merlin
protocols

@ AM (or AM[2]): One message from beacon,
followed by one message from Merlin

@ MA (or MA[2]): One message from Merlin followed
by one message from beacon

@ Contain NP and BPP
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Multiple-message proofs

o AM[K], MA[K], IP[K]: k(n) messages

@ Turns out IP[k] € AM[k+2]!

@ Turns out IP[const] = AM[const] = AM[2]!
@ Called AM

@ Turns out IP[poly] = AM[poly] = PSPACE!
@ Called IP (= PSPACE)

@ Later.
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How can private coins be
avoided?

@ Example: GNI
@ Recall GNI protocol used private coins
@ An alternate view of GNI
@ Each of Go and G; has n! isomorphic graphs
@ (Assuming no automorphisms)
@ If Go and G; isomorphic, same set of n! isomorphic graphs
@ Else 2(n!) isomorphic graphs

@ Prover to prove that |{H: H = Go or H = Gj}| > n!
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@ Prover wants to prove that |S| > K, for a set S such that
S| 2 2K

@ S € U, a sampleable universe, membership in S

certifiable
@ Suppose K large (say K=|U|/3). Then simple protocol:

@ Verifier picks a random element x€U
@ If x€S, prover returns certificate

@ If certificate valid, verifier accepts
o If |S| > 2K, Prlyes] > 2/3. If |S| < K, Pr[yes] < 1/3
@ But what if K/|U| is exponentially small?



Set Lower-bound




Set Lower-bound

@ Prover wants to prove that [S| > K, for a set S such that
S| > 2K




Set Lower-bound

@ Prover wants to prove that [S| > K, for a set S such that
S| > 2K

@ But K can be very small (say |U|=2", K=2"/?)




Set Lower-bound

@ Prover wants to prove that [S| > K, for a set S such that
S| > 2K

@ But K can be very small (say |U|=2", K=2"/?)

@ Idea: First “"hash down” U to almost size 2K, so that small
sets (like S) do not shrink much (and of course, do not grow)




Set Lower-bound

@ Prover wants to prove that [S| > K, for a set S such that
S| > 2K

@ But K can be very small (say |U|=2", K=2"/?)

@ Idea: First “"hash down” U to almost size 2K, so that small
sets (like S) do not shrink much (and of course, do not grow)

@ Verifier picks a random element yeH(U)




Set Lower-bound

@ Prover wants to prove that [S| > K, for a set S such that
S| > 2K

@ But K can be very small (say |U|=2", K=2"/?)

@ Idea: First “"hash down” U to almost size 2K, so that small
sets (like S) do not shrink much (and of course, do not grow)

@ Verifier picks a random element yeH(U)

o If yeH(S), prover returns certificate: xS (+cert.), y=H(x)




Set Lower-bound

@ Prover wants to prove that [S| > K, for a set S such that
S| > 2K

@ But K can be very small (say |U|=2", K=2"/?)

@ Idea: First “"hash down” U to almost size 2K, so that small
sets (like S) do not shrink much (and of course, do not grow)

@ Verifier picks a random element yeH(U)

o If yeH(S), prover returns certificate: xS (+cert.), y=H(x)

@ If certificate valid, verifier accepts




Set Lower-bound

@ Prover wants to prove that [S| > K, for a set S such that
S| > 2K

@ But K can be very small (say |U|=2", K=2"/?)

@ Idea: First “"hash down” U to almost size 2K, so that small
sets (like S) do not shrink much (and of course, do not grow)

@ Verifier picks a random element yeH(U)
o If yeH(S), prover returns certificate: xS (+cert.), y=H(x)

@ If certificate valid, verifier accepts

® Is there such a hash function for all small sets S?



Set Lower-bound

@ Prover wants to prove that [S| > K, for a set S such that
S| > 2K

@ But K can be very small (say |U|=2", K=2"/?)

@ Idea: First “"hash down” U to almost size 2K, so that small
sets (like S) do not shrink much (and of course, do not grow)

@ Verifier picks a random element yeH(U)
o If yeH(S), prover returns certificate: xS (+cert.), y=H(x)

@ If certificate valid, verifier accepts
@ Is there such a hash function for all small sets S?

@ Clearly no single function for all S!
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Hash Function Family

@ A family of hash functions

@ Given any small subset S, a random function h from

the family will not shrink it much (say by 3/4) with
high probability

® (Though every h shrinks some small sets)

@ Relate shrinking to “hash collision probability”
@ Pri[h(x)=h(x")] (max over x#x')

@ Exercise!



2-Universal Hash Family




2-Universal Hash Family

@ (a.k.a pairwise-independent hashing)




2-Universal Hash Family

@ (a.k.a pairwise-independent hashing)

@ Family of functions h: U =& R




2-Universal Hash Family

@ (a.k.a pairwise-independent hashing)

@ Family of functions h: U =& R

o Pril = for all xeU and yeR




2-Universal Hash Family

@ (a.k.a pairwise-independent hashing)
@ Family of functions h: U =& R

o Pril = for all xeU and yeR

o Pril & ] = for all x#x' € Uand y, y'e R




2-Universal Hash Family

@ (a.k.a pairwise-independent hashing)
@ Family of functions h: U =& R

o Pril = for all xeU and yeR

o Pril & ] = for all x#x' € Uand y, y'e R

@ E.g. in exercise




2-Universal Hash Family

@ (a.k.a pairwise-independent hashing)
@ Family of functions h: U =& R

& Pryf e for all xeU and yeR
o Pril & ] = for all x#x' € Uand y, y'e R

@ E.g. in exercise

@ Hash collision probability = 1/IR|
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Public-coin protocol for
Set lower-bound

@ Given a description of S and size K, to prove |S|>K (if |S|>2K)

@ Verifier picks a random hash function h from a 2UHF
family from U to R, with |R| = 8K (say), and a random
element y in R

@ Prover sends back (if possible) xeS s.t. h(x)=y, with a
certificate for xeS

@ Verifier verifies xS and h(x)=y and outputs YES

@ Pr[Yes] has a constant gap between |S| > 2K and IS| < K
[Exercise]



