Interactive Proofs

Lecture 16
What the all-powerful can convince
mere mortals of

Recap

Recap

@ Non-deterministic Computation

Recap

@ Non-deterministic Computation

@ Polynomial Hierarchy

Recap

@ Non-deterministic Computation

@ Polynomial Hierarchy

@ Non-determinism on steroids!

Recap

@ Non-deterministic Computation
@ Polynomial Hierarchy

@ Non-determinism on steroids!

@ Non-uniform computation

Recap

@ Non-deterministic Computation
@ Polynomial Hierarchy
@ Non-determinism on steroids!

@ Non-uniform computation

@ Probabilistic Computation

D

D

D

Recap

Non-deterministic Computation
Polynomial Hierarchy

@ Non-determinism on steroids!
Non-uniform computation

Probabilistic Computation

Today: Interactive Proofs

Recap

@ Non-deterministic Computation
@ Polynomial Hierarchy

@ Non-determinism on steroids!
@ Non-uniform computation
@ Probabilistic Computation
@ Today: Interactive Proofs

@ Non-determinism and Probabilistic computation on steroids!

Interactive Proofs

Interactive Proofs

@ Prover wants to convince verifier that x has some
property

Interactive Proofs

@ Prover wants to convince verifier that x has some
property

@ i.e. X iIs in language L

Interactive Proofs

® Prover wants to convince verifier that x has some
property

@ i.e. X iIs in language L

Interactive Proofs

@ Prover wants to convince verifier that x has some
property

@ i.e. X iIs in language L

Interactive Proofs

® Prover wants to convince verifier that x has some

Prove to mel!

property

@ i.e. X iIs in language L

Interactive Proofs

® Prover wants to convince verifier that x has some

Prove to mel!

property

@ i.e. X iIs in language L

Interactive Proofs

@ Prover wants to convince verifier that x has some
property

@ i.e. X iIs in language L

Prove to mel!

Interactive Proofs

@ Prover wants to convince verifier that x has some
property

@ i.e. X iIs in language L

@ All powerful prover, computationally bounded verifier

Prove to mel!

Interactive Proofs

@ Prover wants to convince verifier that x has some
property

@ i.e. X iIs in language L

@ All powerful prover, computationally bounded verifier

@ Verifier doesnt trust prover Prove to me!

Interactive Proofs

@ Prover wants to convince verifier that x has some
property

@ i.e. X iIs in language L

@ All powerful prover, computationally bounded verifier

@ Verifier doesnt trust prover Prove to me!

@ Limits the power

Interactive Proofs

Interactive Proofs

@ Completeness

Interactive Proofs

@ Completeness

@ If xinL, honest Prover should convince
honest Verifier

Interactive Proofs

@ Completeness

@ If xinL, honest Prover should convince
honest Verifier

® Soundness

Interactive Proofs

@ Completeness

@ If xinL, honest Prover should convince
honest Verifier

® Soundness

@ If x not in L, honest Verifier wont accept
any purported proof

Interactive Proofs

@ Completeness

@ If xinL, honest Prover should convince
honest Verifier

® Soundness

@ If x not in L, honest Verifier wont accept

Interactive Proofs

@ Completeness

@ If xinL, honest Prover should convince
honest Verifier

® Soundness

@ If x not in L, honest Verifier wont accept

Interactive Proofs

@ Completeness

@ If xinL, honest Prover should convince
honest Verifier

® Soundness

@ If x not in L, honest Verifier wont accept

Interactive Proofs

@ Completeness

@ If xinL, honest Prover should convince
honest Verifier

® Soundness

@ If x not in L, honest Verifier wont accept

Interactive Proofs

@ Completeness

@ If xinL, honest Prover should convince
honest Verifier

® Soundness

@ If x not in L, honest Verifier wont accept

An Example

An Example

® Coke in bottle or can

An Example

® Coke in bottle or can

@ Prover claims: coke in bottle and coke in can are different

An Example

® Coke in bottle or can

@ Prover claims: coke in bottle and coke in can are different

@ IP protocol:

An Example

® Coke in bottle or can

@ Prover claims: coke in bottle and coke in can are different

@ IP protocol:

An Example

® Coke in bottle or can
@ Prover claims: coke in bottle and coke in can are different

@ IP protocol:

Pour into
from can or
bottle

An Example

® Coke in bottle or can
@ Prover claims: coke in bottle and coke in can are different

@ IP protocol:

Pour into
from can or
bottle

An Example

® Coke in bottle or can
@ Prover claims: coke in bottle and coke in can are different
@ IP protocol:

@ prover fells whether cup was filled from can or bottle

Pour into
from can or

bottle

'8
%

a%GhY can/bottle

An Example

® Coke in bottle or can
@ Prover claims: coke in bottle and coke in can are different
@ IP protocol:

@ prover fells whether cup was filled from can or bottle

@ repeat till verifier is convinced Pour intd
L from can or

bottle

'8
%

a%GhY can/bottle

An Example

An Example

@ Graph non-isomorphism (GNI)

An Example

@ Graph non-isomorphism (GNI)

@ Prover claims: Go not isomorphic to G;

An Example

@ Graph non-isomorphism (GNI)

@ Prover claims: Go not isomorphic to G;

@ IP protocol:

An Example

@ Graph non-isomorphism (GNI)

@ Prover claims: Go not isomorphic to G;

@ IP protocol:

An Example

@ Graph non-isomorphism (GNI)

@ Prover claims: Go not isomorphic to G;

@ IP protocol:

An Example

@ Graph non-isomorphism (GNI)

@ Prover claims: Go not isomorphic to G;

@ IP protocol:

An Example

@ Graph non-isomorphism (GNI)
@ Prover claims: Go not isomorphic to G;

@ IP protocol:

@ prover tells whether G* came from Go or G;

An Example

@ Graph non-isomorphism (GNI)
@ Prover claims: Go not isomorphic to G;
@ IP protocol:

@ prover tells whether G* came from Go or G;

@ repeat till verifier is convinced

Interactive Proofs

Interactive Proofs

@ Completeness

Interactive Proofs

@ Completeness

@ If xin L, honest Prover will convince honest Verifier

Interactive Proofs

@ Completeness

@ If xin L, honest Prover will convince honest Verifier

@ With probability at least 2/3

Interactive Proofs

@ Completeness
@ If xin L, honest Prover will convince honest Verifier

@ With probability at least 2/3

® Soundness

Interactive Proofs

@ Completeness
@ If xin L, honest Prover will convince honest Verifier

@ With probability at least 2/3

® Soundness

@ If x not in L, honest Verifier won't accept any purported
proof

Interactive Proofs

@ Completeness
@ If xin L, honest Prover will convince honest Verifier

@ With probability at least 2/3

® Soundness

@ If x not in L, honest Verifier won't accept any purported
proof

@ Except with probability at most 1/3

Deterministic IP?

Deterministic IP?

® Deterministic Verifier IP

Deterministic IP?

® Deterministic Verifier IP

@ Prover can construct the entire transcript, which
verifier can verify deterministically

Deterministic IP?

® Deterministic Verifier IP

@ Prover can construct the entire transcript, which
verifier can verify deterministically

® NP certificate

Deterministic IP?

® Deterministic Verifier IP

@ Prover can construct the entire transcript, which
verifier can verify deterministically

® NP certificate

® Deterministic Verifier IP = NP

Deterministic IP?

® Deterministic Verifier IP

@ Prover can construct the entire transcript, which
verifier can verify deterministically

® NP certificate

® Deterministic Verifier IP = NP

® Deterministic Prover IP = IP

Deterministic IP?

® Deterministic Verifier IP

@ Prover can construct the entire transcript, which
verifier can verify deterministically

@ NP certificate
® Deterministic Verifier IP = NP
® Deterministic Prover IP = IP

@ For each input prover can choose the random tape
which maximizes Pr[yes] (probability over honest
verifiers randomness)

Public and Private Coins

Public and Private Coins

® Public coins: Prover sees verifiers coin tosses

Public and Private Coins

® Public coins: Prover sees verifiers coin tosses

@ Verifier might as well send nothing but the coins
to the prover

Public and Private Coins

® Public coins: Prover sees verifiers coin tosses

@ Verifier might as well send nothing but the coins
to the prover

@ Private coins: Verifier does not send everything
about the coins

Public and Private Coins

® Public coins: Prover sees verifiers coin tosses

@ Verifier might as well send nothing but the coins
to the prover

@ Private coins: Verifier does not send everything
about the coins

@ e.g. GNI protocol: verifier keeps coin tosses
hidden; uses it to create challenge

Arthur Merlin Proofs

Arthur Merlin Proofs

@ Arthur-Merlin proof-systems

Arthur Merlin Proofs

@ Arthur-Merlin proof-systems

@ Arthur: polynomial time verifier

Arthur Merlin Proofs

@ Arthur-Merlin proof-systems

@ Arthur: polynomial time verifier

fﬂ
W
,.,_)

Arthur Merlin Proofs

@ Arthur-Merlin proof-systems
@ Arthur: polynomial time verifier

@ Merlin: unbounded prover

fﬂ
W
,.,_)

Arthur Merlin Proofs

@ Arthur-Merlin proof-systems
@ Arthur: polynomial time verifier

@ Merlin: unbounded prover

Arthur Merlin Proofs

@ Arthur-Merlin proof-systems
@ Arthur: polynomial time verifier
@ Merlin: unbounded prover

® Random coins come from a
beacon

Arthur Merlin Proofs

@ Arthur-Merlin proof-systems

@ Arthur: polynomial time verifier
@ Merlin: unbounded prover

® Random coins come from a
beacon

Arthur Merlin Proofs

@ Arthur-Merlin proof-systems

@ Arthur: polynomial time verifier
@ Merlin: unbounded prover

® Random coins come from a
beacon

@ Public coin proof-system

Arthur Merlin Proofs

@ Arthur-Merlin proof-systems

@ Arthur: polynomial time verifier
@ Merlin: unbounded prover

® Random coins come from a
beacon

@ Public coin proof-system

@ Arthur sends no messages nor
flips any coins

Arthur Merlin Proofs

@ Arthur-Merlin proof-systems
@ Arthur: polynomial time verifier
@ Merlin: unbounded prover

® Random coins come from a
beacon

@ Public coin proof-system

@ Arthur sends no messages nor
flips any coins

Arthur Merlin Proofs

@ Arthur-Merlin proof-systems s
@ Arthur: polynomial time verifier f‘,

@ Merlin: unbounded prover

® Random coins come from a
beacon

@ Public coin proof-system

@ Arthur sends no messages nor
flips any coins

Arthur Merlin Proofs

@ Arthur-Merlin proof-systems
@ Arthur: polynomial time verifier

@ Merlin: unbounded prover

® Random coins come from a
beacon

@ Public coin proof-system

@ Arthur sends no messages nor
flips any coins

Arthur Merlin Proofs

@ Arthur-Merlin proof-systems

@ Arthur: polynomial time verifier

@ Merlin: unbounded prover

® Random coins come from a
beacon

@ Public coin proof-system

@ Arthur sends no messages nor
flips any coins

Arthur Merlin Proofs

@ Arthur-Merlin proof-systems

@ Arthur: polynomial time verifier

@ Merlin: unbounded prover

® Random coins come from a
beacon

@ Public coin proof-system

@ Arthur sends no messages nor
flips any coins

MA and AM

MA and AM

@ Class of languages with two message Arthur-Merlin
protocols

MA and AM

@ Class of languages with two message Arthur-Merlin
protocols

@ AM (or AM[2]): One message from beacon,
followed by one message from Merlin

MA and AM

@ Class of languages with two message Arthur-Merlin
protocols

@ AM (or AM[2]): One message from beacon,
followed by one message from Merlin

@ MA (or MA[2]): One message from Merlin followed
by one message from beacon

MA and AM

@ Class of languages with two message Arthur-Merlin
protocols

@ AM (or AM[2]): One message from beacon,
followed by one message from Merlin

@ MA (or MA[2]): One message from Merlin followed
by one message from beacon

@ Contain NP and BPP

Multiple-message proofs

Multiple-message proofs

o AM[K], MA[K], IP[K]: k(n) messages

Multiple-message proofs

o AM[K], MA[K], IP[K]: k(n) messages

@ Turns out IP[k] € AM[k+2]!

Multiple-message proofs

o AM[K], MA[K], IP[K]: k(n) messages

@ Turns out IP[k] € AM[k+2]!

@ Turns out IP[const] = AM[const] = AM[2]!

Multiple-message proofs

o AM[K], MA[K], IP[K]: k(n) messages

@ Turns out IP[k] € AM[k+2]!

@ Turns out IP[const] = AM[const] = AM[2]!

@ Called AM

Multiple-message proofs

o AM[K], MA[K], IP[K]: k(n) messages

@ Turns out IP[k] € AM[k+2]!

@ Turns out IP[const] = AM[const] = AM[2]!

@ Called AM

@ Turns out IP[poly] = AM[poly] = PSPACE!

Multiple-message proofs

o AM[K], MA[K], IP[K]: k(n) messages

@ Turns out IP[k] € AM[k+2]!

@ Turns out IP[const] = AM[const] = AM[2]!
@ Called AM

@ Turns out IP[poly] = AM[poly] = PSPACE!

@ Called IP (= PSPACE)

Multiple-message proofs

o AM[K], MA[K], IP[K]: k(n) messages

@ Turns out IP[k] € AM[k+2]!

@ Turns out IP[const] = AM[const] = AM[2]!
@ Called AM

@ Turns out IP[poly] = AM[poly] = PSPACE!
@ Called IP (= PSPACE)

@ Later.

How can private coins be
avoided?

How can private coins be
avoided?

@ Example: GNI

How can private coins be
avoided?

@ Example: GNI

@ Recall GNI protocol used private coins

How can private coins be
avoided?

@ Example: GNI

@ Recall GNI protocol used private coins

@ An alternate view of GNI

How can private coins be
avoided?

@ Example: GNI
@ Recall GNI protocol used private coins

@ An alternate view of GNI

@ Each of Go and G; has n! isomorphic graphs

How can private coins be
avoided?

@ Example: GNI
@ Recall GNI protocol used private coins
@ An alternate view of GNI

@ Each of Go and G; has n! isomorphic graphs

@ (Assuming no automorphisms)

How can private coins be
avoided?

@ Example: GNI
@ Recall GNI protocol used private coins
@ An alternate view of GNI
@ Each of Gp and G; has n! isomorphic graphs

@ (Assuming no automorphisms)

@ If Go and G; isomorphic, same set of n! isomorphic graphs

How can private coins be
avoided?

@ Example: GNI
@ Recall GNI protocol used private coins
@ An alternate view of GNI
@ Each of Gp and G; has n! isomorphic graphs
@ (Assuming no automorphisms)

@ If Go and G; isomorphic, same set of n! isomorphic graphs

@ Else 2(n!) isomorphic graphs

How can private coins be
avoided?

@ Example: GNI
@ Recall GNI protocol used private coins
@ An alternate view of GNI
@ Each of Go and G; has n! isomorphic graphs
@ (Assuming no automorphisms)
@ If Go and G; isomorphic, same set of n! isomorphic graphs
@ Else 2(n!) isomorphic graphs

@ Prover to prove that |{H: H = Go or H = Gj}| > n!

Set Lower-bound

Set Lower-bound

@ Prover wants to prove that |S| > K, for a set S such that
S| 2 2K

Set Lower-bound

@ Prover wants to prove that |S| > K, for a set S such that
S| 2 2K

@ S € U, a sampleable universe, membership in S

certifiable

Set Lower-bound

@ Prover wants to prove that |S| > K, for a set S such that
S| 2 2K

@ S € U, a sampleable universe, membership in S

certifiable

@ Suppose K large (say K=|U|/3). Then simple protocol:

Set Lower-bound

@ Prover wants to prove that |S| > K, for a set S such that
S| 2 2K

@ S € U, a sampleable universe, membership in S

certifiable

@ Suppose K large (say K=|U|/3). Then simple protocol:

@ Verifier picks a random element x€U

Set Lower-bound

@ Prover wants to prove that |S| > K, for a set S such that
S| 2 2K

@ S € U, a sampleable universe, membership in S

certifiable

@ Suppose K large (say K=|U|/3). Then simple protocol:

@ Verifier picks a random element x€U

@ If xS, prover returns certificate

Set Lower-bound

@ Prover wants to prove that |S| > K, for a set S such that
S| 2 2K

@ S € U, a sampleable universe, membership in S

certifiable

@ Suppose K large (say K=|U|/3). Then simple protocol:

@ Verifier picks a random element x€U

@ If xS, prover returns certificate

@ If certificate valid, verifier accepts

Set Lower-bound

@ Prover wants to prove that |S| > K, for a set S such that
S| 2 2K

@ S € U, a sampleable universe, membership in S

certifiable
@ Suppose K large (say K=|U|/3). Then simple protocol:

@ Verifier picks a random element x€U
@ If x€S, prover returns certificate

@ If certificate valid, verifier accepts

o If |S| > 2K, Prlyes] > 2/3. If |S| < K, Pr[yes] < 1/3

Set Lower-bound

@ Prover wants to prove that |S| > K, for a set S such that
S| 2 2K

@ S € U, a sampleable universe, membership in S

certifiable
@ Suppose K large (say K=|U|/3). Then simple protocol:

@ Verifier picks a random element x€U
@ If x€S, prover returns certificate

@ If certificate valid, verifier accepts
o If |S| > 2K, Prlyes] > 2/3. If |S| < K, Pr[yes] < 1/3
@ But what if K/|U| is exponentially small?

Set Lower-bound

Set Lower-bound

@ Prover wants to prove that [S| > K, for a set S such that
S| > 2K

Set Lower-bound

@ Prover wants to prove that [S| > K, for a set S such that
S| > 2K

@ But K can be very small (say |U|=2", K=2"/?)

Set Lower-bound

@ Prover wants to prove that [S| > K, for a set S such that
S| > 2K

@ But K can be very small (say |U|=2", K=2"/?)

@ Idea: First “"hash down” U to almost size 2K, so that small
sets (like S) do not shrink much (and of course, do not grow)

Set Lower-bound

@ Prover wants to prove that [S| > K, for a set S such that
S| > 2K

@ But K can be very small (say |U|=2", K=2"/?)

@ Idea: First “"hash down” U to almost size 2K, so that small
sets (like S) do not shrink much (and of course, do not grow)

@ Verifier picks a random element yeH(U)

Set Lower-bound

@ Prover wants to prove that [S| > K, for a set S such that
S| > 2K

@ But K can be very small (say |U|=2", K=2"/?)

@ Idea: First “"hash down” U to almost size 2K, so that small
sets (like S) do not shrink much (and of course, do not grow)

@ Verifier picks a random element yeH(U)

o If yeH(S), prover returns certificate: xS (+cert.), y=H(x)

Set Lower-bound

@ Prover wants to prove that [S| > K, for a set S such that
S| > 2K

@ But K can be very small (say |U|=2", K=2"/?)

@ Idea: First “"hash down” U to almost size 2K, so that small
sets (like S) do not shrink much (and of course, do not grow)

@ Verifier picks a random element yeH(U)

o If yeH(S), prover returns certificate: xS (+cert.), y=H(x)

@ If certificate valid, verifier accepts

Set Lower-bound

@ Prover wants to prove that [S| > K, for a set S such that
S| > 2K

@ But K can be very small (say |U|=2", K=2"/?)

@ Idea: First “"hash down” U to almost size 2K, so that small
sets (like S) do not shrink much (and of course, do not grow)

@ Verifier picks a random element yeH(U)
o If yeH(S), prover returns certificate: xS (+cert.), y=H(x)

@ If certificate valid, verifier accepts

® Is there such a hash function for all small sets S?

Set Lower-bound

@ Prover wants to prove that [S| > K, for a set S such that
S| > 2K

@ But K can be very small (say |U|=2", K=2"/?)

@ Idea: First “"hash down” U to almost size 2K, so that small
sets (like S) do not shrink much (and of course, do not grow)

@ Verifier picks a random element yeH(U)
o If yeH(S), prover returns certificate: xS (+cert.), y=H(x)

@ If certificate valid, verifier accepts
@ Is there such a hash function for all small sets S?

@ Clearly no single function for all S!

Hash Function Family

Hash Function Family

@ A family of hash functions

Hash Function Family

@ A family of hash functions

@ Given any small subset S, a random function h from
the family will not shrink it much (say by 3/4) with
high probability

Hash Function Family

@ A family of hash functions

@ Given any small subset S, a random function h from
the family will not shrink it much (say by 3/4) with
high probability

® (Though every h shrinks some small sets)

Hash Function Family

@ A family of hash functions

@ Given any small subset S, a random function h from

the family will not shrink it much (say by 3/4) with
high probability

® (Though every h shrinks some small sets)

@ Relate shrinking to “hash collision probability”

Hash Function Family

@ A family of hash functions

@ Given any small subset S, a random function h from

the family will not shrink it much (say by 3/4) with
high probability

® (Though every h shrinks some small sets)

@ Relate shrinking to “hash collision probability”

@ Pri[h(x)=h(x")] (max over x#x')

Hash Function Family

@ A family of hash functions

@ Given any small subset S, a random function h from

the family will not shrink it much (say by 3/4) with
high probability

® (Though every h shrinks some small sets)

@ Relate shrinking to “hash collision probability”
@ Pri[h(x)=h(x")] (max over x#x')

@ Exercise!

2-Universal Hash Family

2-Universal Hash Family

@ (a.k.a pairwise-independent hashing)

2-Universal Hash Family

@ (a.k.a pairwise-independent hashing)

@ Family of functions h: U =& R

2-Universal Hash Family

@ (a.k.a pairwise-independent hashing)

@ Family of functions h: U =& R

o Pril = for all xeU and yeR

2-Universal Hash Family

@ (a.k.a pairwise-independent hashing)
@ Family of functions h: U =& R

o Pril = for all xeU and yeR

o Pril &] = for all x#x' € Uand y, y'e R

2-Universal Hash Family

@ (a.k.a pairwise-independent hashing)
@ Family of functions h: U =& R

o Pril = for all xeU and yeR

o Pril &] = for all x#x' € Uand y, y'e R

@ E.g. in exercise

2-Universal Hash Family

@ (a.k.a pairwise-independent hashing)
@ Family of functions h: U =& R

& Pryf e for all xeU and yeR
o Pril &] = for all x#x' € Uand y, y'e R

@ E.g. in exercise

@ Hash collision probability = 1/IR|

Public-coin protocol for
Set lower-bound

Public-coin protocol for
Set lower-bound

@ Given a description of S and size K, to prove |S|>K (if |S|>2K)

Public-coin protocol for
Set lower-bound

@ Given a description of S and size K, to prove |S|>K (if |S|>2K)

@ Verifier picks a random hash function h from a 2UHF
family from U to R, with |R| = 8K (say), and a random
element y in R

Public-coin protocol for
Set lower-bound

@ Given a description of S and size K, to prove |S|>K (if |S|>2K)

@ Verifier picks a random hash function h from a 2UHF
family from U to R, with |R| = 8K (say), and a random
element y in R

@ Prover sends back (if possible) xeS s.t. h(x)=y, with a

certificate for xeS

Public-coin protocol for
Set lower-bound

@ Given a description of S and size K, to prove |S|>K (if |S|>2K)

@ Verifier picks a random hash function h from a 2UHF
family from U to R, with |R| = 8K (say), and a random
element y in R

@ Prover sends back (if possible) xeS s.t. h(x)=y, with a

certificate for xeS

@ Verifier verifies xS and h(x)=y and outputs YES

Public-coin protocol for
Set lower-bound

@ Given a description of S and size K, to prove |S|>K (if |S|>2K)

@ Verifier picks a random hash function h from a 2UHF
family from U to R, with |R| = 8K (say), and a random
element y in R

@ Prover sends back (if possible) xeS s.t. h(x)=y, with a
certificate for xeS

@ Verifier verifies xS and h(x)=y and outputs YES

@ Pr[Yes] has a constant gap between |S| > 2K and IS| < K
[Exercise]

