Probabilistic Computation

Lecture 15
Computing with Less Randomness, or with
Imperfect Randomness

Repeat M(x) t times and take majority

- Repeat M(x) t times and take majority
 - i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

- Repeat M(x) t times and take majority
 - i.e. estimate Pr[M(x)=yes] and check if it is > 1/2
 - Error only if | estimate-real | ≥ gap/2

- Repeat M(x) t times and take majority
 - i.e. estimate Pr[M(x)=yes] and check if it is > 1/2
 - Error only if | estimate-real | ≥ gap/2
 - Estimation error goes down exponentially with t:
 Chernoff bound

- Repeat M(x) t times and take majority
 - i.e. estimate Pr[M(x)=yes] and check if it is > 1/2
 - Error only if | estimate-real | ≥ gap/2
 - Estimation error goes down exponentially with t:
 Chernoff bound
 - Pr[|estimate real| ≥ δ/2] ≤ $2^{-\Omega(t.\delta^2)}$

- Repeat M(x) t times and take majority
 - i.e. estimate Pr[M(x)=yes] and check if it is > 1/2
 - Error only if | estimate-real | ≥ gap/2
 - Estimation error goes down exponentially with t:
 Chernoff bound
 - Pr[|estimate real| ≥ δ/2] ≤ $2^{-\Omega(t.\delta^2)}$
 - \circ t = $O(n^d/\delta^2)$ enough for $Pr[error] \leq 2^{-n^2d}$

In repeating t times (to reduce error to $2^{-\Omega(t)}$) number of coins used = t.m

- In repeating t times (to reduce error to $2^{-\Omega(t)}$) number of coins used = t.m
 - \odot Used independent random tapes to get error $2^{-\Omega(t)}$

- In repeating t times (to reduce error to $2^{-\Omega(t)}$) number of coins used = t.m
 - \odot Used independent random tapes to get error $2^{-\Omega(t)}$
 - © Can use very dependent tapes and still get error $2^{-\Omega(t)}$! (but with a smaller constant inside Ω)

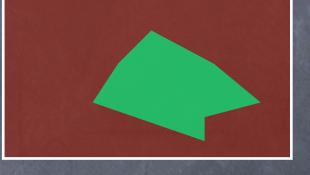
- In repeating t times (to reduce error to $2^{-\Omega(t)}$) number of coins used = t.m
 - \odot Used independent random tapes to get error $2^{-\Omega(t)}$
 - © Can use very dependent tapes and still get error $2^{-\Omega(t)}$! (but with a smaller constant inside Ω)
 - Random tapes produced using a random walk on an "expander graph"

- In repeating t times (to reduce error to $2^{-\Omega(t)}$) number of coins used = t.m
 - \odot Used independent random tapes to get error $2^{-\Omega(t)}$
 - © Can use very dependent tapes and still get error $2^{-\Omega(t)}$! (but with a smaller constant inside Ω)
 - Random tapes produced using a random walk on an "expander graph"
 - \odot No. of coins used = m + O(t)

Space of all random tapes = {0,1}^m. Consider a subset ("yes" set). To estimate its weight p.

Space of all random tapes = {0,1}^m. Consider a subset ("yes" set). To estimate its weight p.

Space of all random tapes = {0,1}^m. Consider a subset ("yes" set). To estimate its weight p.



Space of all random tapes = {0,1}^m. Consider a subset ("yes" set). To estimate its weight p.

By Chernoff, if p' is the estimate from t independent samples, then $Pr[|p'-p| > εp] < 2^{-Ω(t.ε^2)}$

- Space of all random tapes = {0,1}^m. Consider a subset ("yes" set). To estimate its weight p.
 - By Chernoff, if p' is the estimate from t independent samples, then $Pr[|p'-p| > \epsilon p] < 2^{-\Omega(t.\epsilon^2)}$
 - Random walk: superimpose an "expander graph" on this space. Pick first point at random, and then do random walk of length t using the graph edges. Estimate p' = fraction of yes nodes along the path

- Space of all random tapes = {0,1}^m. Consider a subset ("yes" set). To estimate its weight p.
 - By Chernoff, if p' is the estimate from t independent samples, then $Pr[|p'-p| > \epsilon p] < 2^{-\Omega(t.\epsilon^2)}$
 - Random walk: superimpose an "expander graph" on this space. Pick first point at random, and then do random walk of length t using the graph edges. Estimate p' = fraction of yes nodes along the path

- Space of all random tapes = {0,1}^m. Consider a subset ("yes" set). To estimate its weight p.
 - By Chernoff, if p' is the estimate from t independent samples, then $Pr[|p'-p| > \epsilon p] < 2^{-\Omega(t.\epsilon^2)}$
 - Random walk: superimpose an "expander graph" on this space. Pick first point at random, and then do random walk of length t using the graph edges. Estimate p' = fraction of yes nodes along the path

- Space of all random tapes = {0,1}^m. Consider a subset ("yes" set). To estimate its weight p.
 - By Chernoff, if p' is the estimate from t independent samples, then $Pr[|p'-p| > \epsilon p] < 2^{-\Omega(t.\epsilon^2)}$
 - Random walk: superimpose an "expander graph" on this space. Pick first point at random, and then do random walk of length t using the graph edges. Estimate p' = fraction of yes nodes along the path
 - Expander's degree is constant: coins needed = m + O(t)

- Space of all random tapes = {0,1}^m. Consider a subset ("yes" set). To estimate its weight p.
 - By Chernoff, if p' is the estimate from t independent samples, then $Pr[|p'-p| > \epsilon p] < 2^{-\Omega(t.\epsilon^2)}$
 - Random walk: superimpose an "expander graph" on this space. Pick first point at random, and then do random walk of length t using the graph edges. Estimate p' = fraction of yes nodes along the path
 - Expander's degree is constant: coins needed = m + O(t)
 - Expander "mixing": $Pr[|p'-p|> \in p] < 2^{-\Omega(t.\epsilon^2)}$ (but with a smaller constant inside Ω)

Probabilistic Approximately Correct estimation of Pr[yes]

- Probabilistic Approximately Correct estimation of Pr[yes]
 - Bounded gap: so enough to approximate

- Probabilistic Approximately Correct estimation of Pr[yes]
 - Bounded gap: so enough to approximate
 - A small probability of error still allowed

- Probabilistic Approximately Correct estimation of Pr[yes]
 - Bounded gap: so enough to approximate
 - A small probability of error still allowed
 - Not "derandomization"

- Probabilistic Approximately Correct estimation of Pr[yes]
 - Bounded gap: so enough to approximate
 - A small probability of error still allowed
 - Not "derandomization"
- Trying to minimize amount of randomness used

- Probabilistic Approximately Correct estimation of Pr[yes]
 - Bounded gap: so enough to approximate
 - A small probability of error still allowed
 - Not "derandomization"
- Trying to minimize amount of randomness used
 - Still need perfectly random bits (fair, independent coin tosses)

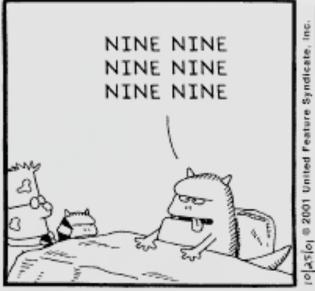
- Probabilistic Approximately Correct estimation of Pr[yes]
 - Bounded gap: so enough to approximate
 - A small probability of error still allowed
 - Not "derandomization"
- Trying to minimize amount of randomness used
 - Still need perfectly random bits (fair, independent coin tosses)
 - Not a realistic assumption on random sources

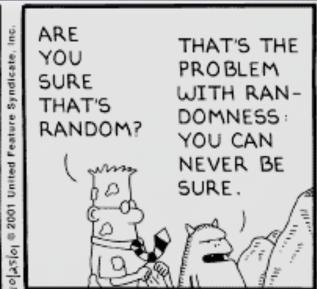
- Probabilistic Approximately Correct estimation of Pr[yes]
 - Bounded gap: so enough to approximate
 - A small probability of error still allowed
 - Not "derandomization"
- Trying to minimize amount of randomness used
 - Still need perfectly random bits (fair, independent coin tosses)
 - Not a realistic assumption on random sources
 - Can we work with imperfect random sources?

Philosophical Issues with Randomness/Probability

Philosophical Issues with Randomness/Probability







Copyright 3 2001 United Feature Syndicate, Inc.

Imperfect Randomness

Perfect

- Perfect
 - Fair coin flips

- Perfect
 - Fair coin flips
- Slightly imperfect

- Perfect
 - Fair coin flips
- Slightly imperfect
 - Sufficient unpredictability (entropy)

- Perfect
 - Fair coin flips
- Slightly imperfect
 - Sufficient unpredictability (entropy)
 - Sufficient independence

- Perfect
 - Fair coin flips
- Slightly imperfect
 - Sufficient unpredictability (entropy)
 - Sufficient independence
 - Don't know the exact distribution, but belongs to a known class of distributions

Bit-wise guarantee

- Bit-wise guarantee
 - o von Neumann source

- Bit-wise guarantee
 - o von Neumann source
 - Independent but not fair: Each bit is independent of previous bits, but with a bias. Bias is same for all bits.

- Bit-wise guarantee
 - o von Neumann source
 - Independent but not fair: Each bit is independent of previous bits, but with a bias. Bias is same for all bits.
 - Santha-Vazirani source

- Bit-wise guarantee
 - o von Neumann source
 - Independent but not fair: Each bit is independent of previous bits, but with a bias. Bias is same for all bits.
 - Santha-Vazirani source
 - Dependent bits of varying bias: Each bit can depend on all previous bits, but $Pr[b_i=0]$, $Pr[b_i=1] \in [1/2-\delta/2, 1/2+\delta/2]$, even conditioned on all previous bits (i.e., sufficiently unpredictable)

- Bit-wise guarantee
 - o von Neumann source
 - Independent but not fair: Each bit is independent of previous bits, but with a bias. Bias is same for all bits.
 - Santha-Vazirani source
 - Dependent bits of varying bias: Each bit can depend on all previous bits, but $Pr[b_i=0]$, $Pr[b_i=1] \in [1/2-\delta/2, 1/2+\delta/2]$, even conditioned on all previous bits (i.e., sufficiently unpredictable)
- Weaker guarantees: e.g. Block source

Small bias (1/m, where m coins in all) SV source is harmless:

- Small bias (1/m, where m coins in all) SV source is harmless:
 - \bullet Any string has weight at most $(1/2+\delta/2)^m$

Small bias (1/m, where m coins in all) SV source is harmless:

 \odot Any string has weight at most $(1/2+\delta/2)^m$

Using bound on conditional probability

- Small bias (1/m, where m coins in all) SV source is

 harmless:

 Conditional probability
 - Any string has weight at most $(1/2+\delta/2)^m$
 - \bullet t strings can have weight at most t.(1/2+ δ /2)^m

- Small bias (1/m, where m coins in all) SV source is

 harmless:

 Conditional probability
 - Any string has weight at most $(1/2+\delta/2)^m$
 - \bullet t strings can have weight at most t.(1/2+ δ /2)^m
 - $t.(1/2+\delta/2)^m = (t/2^m).(1+\delta)^m < (t/2^m).e$ if $\delta < 1/m$

- Small bias (1/m, where m coins in all) SV source is harmless:
 - Any string has weight at most $(1/2+\delta/2)^m$
 - \odot t strings can have weight at most $t.(1/2+\delta/2)^m$

$$\bullet$$
 t. $(1/2+\delta/2)^m = (t/2^m).(1+\delta)^m < (t/2^m).e if $\delta < 1/m$$

Using bound on conditional probability

(1+x)1/x ≤ e

- Small bias (1/m, where m coins in all) SV source is

 harmless:

 Conditional probability
 - Any string has weight at most $(1/2+\delta/2)^m$
 - \odot t strings can have weight at most t. $(1/2+\delta/2)^m$

$$\bullet$$
 t. $(1/2+\delta/2)^m = (t/2^m).(1+\delta)^m < (t/2^m).e if $\delta < 1/m$$

If on perfect randomness, Pr[error] < 1/(e2ⁿ), then on imperfect randomness with bias < 1/m, Pr[error] < 1/2ⁿ

Handling more imperfectness

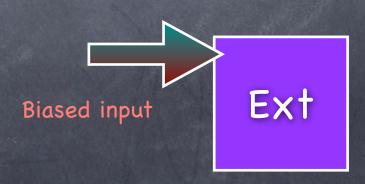
- Handling more imperfectness
 - by pre-processing the randomness

- Handling more imperfectness
 - by pre-processing the randomness
 - Randomness extraction

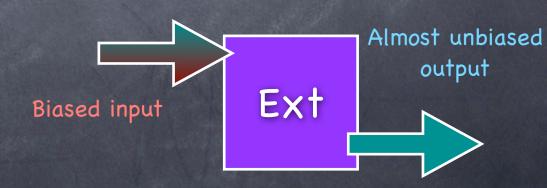
- Handling more imperfectness
 - by pre-processing the randomness
 - Randomness extraction
- Simple Extractor:

- Handling more imperfectness
 - by pre-processing the randomness
 - Randomness extraction
- Simple Extractor:

- Handling more imperfectness
 - by pre-processing the randomness
 - Randomness extraction
- Simple Extractor:



- Handling more imperfectness
 - by pre-processing the randomness
 - Randomness extraction
- Simple Extractor:



Extraction for von Neumann sources

Extraction for von Neumann sources

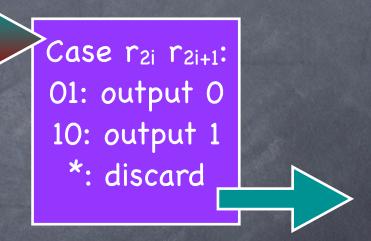
Extraction for von Neumann sources

Case r_{2i} r_{2i+1}:
01: output 0
10: output 1
*: discard

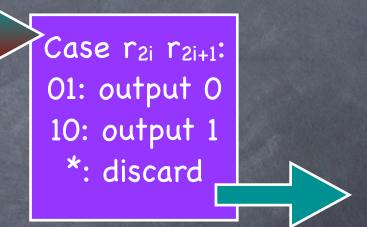
- Extraction for von Neumann sources
 - Perfectly random output

Case r_{2i} r_{2i+1}:
01: output 0
10: output 1
*: discard

- Extraction for von Neumann sources
 - Perfectly random output
 - Fewer output bits

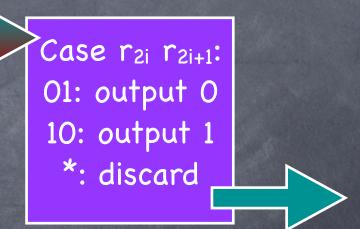


- Extraction for von Neumann sources
 - Perfectly random output
 - Fewer output bits
 - Running time (per bit): constant number of tries, expected



Simple extractor for von Neumann Sources

- Extraction for von Neumann sources
 - Perfectly random output
 - Fewer output bits
 - Running time (per bit): constant number of tries, expected
- Can be generalized to sources which are (hidden) Markov chains



No simple extractor, for even one bit output

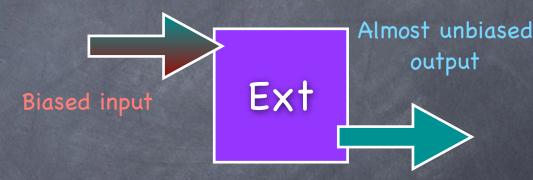
- No simple extractor, for even one bit output
- For any extractor, can find an SV-source on which the extractor "fails"

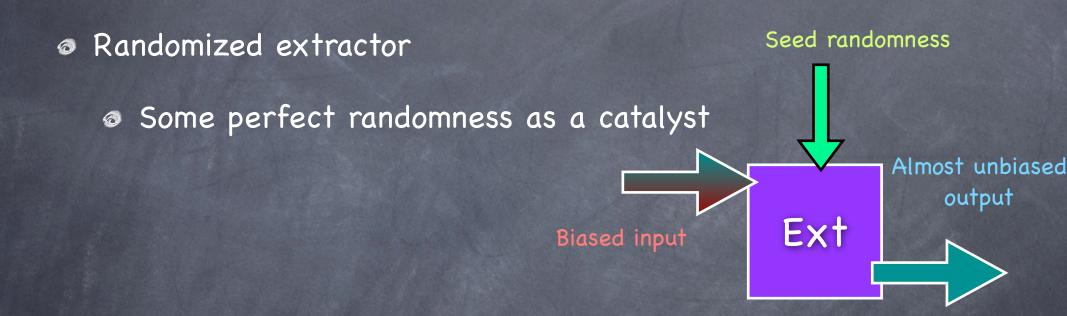
- No simple extractor, for even one bit output
- For any extractor, can find an SV-source on which the extractor "fails"
 - Output bias no better than input bias

- No simple extractor, for even one bit output
- For any extractor, can find an SV-source on which the extractor "fails"
 - Output bias no better than input bias
 - Exercise

- Randomized extractor
 - Some perfect randomness as a catalyst

- Randomized extractor
 - Some perfect randomness as a catalyst

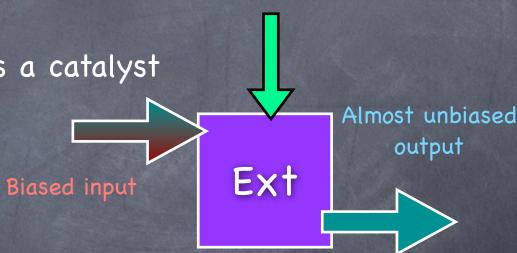




Randomized extractor

Some perfect randomness as a catalyst

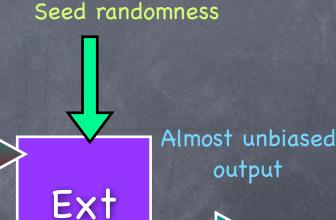
Running a BPP algorithm with only the imperfect source



Seed randomness

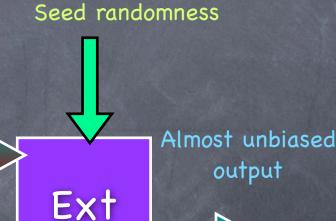
Biased input

- Randomized extractor
 - Some perfect randomness as a catalyst
- Running a BPP algorithm with only the imperfect source
 - Draw one string from the biased source and generate random tapes, one for each seed. If the algorithm accepts on more than half the random tapes, accept.



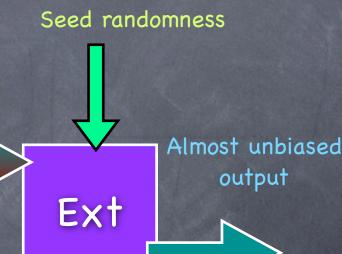
Biased input

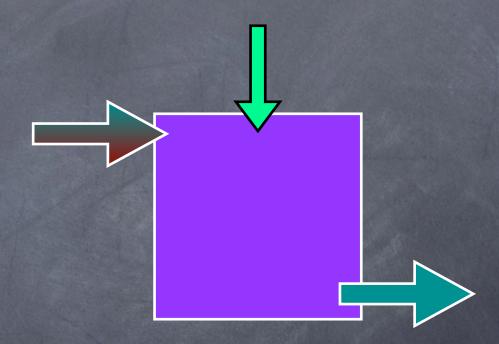
- Randomized extractor
 - Some perfect randomness as a catalyst
- Running a BPP algorithm with only the imperfect source
 - Draw one string from the biased source and generate random tapes, one for each seed. If the algorithm accepts on more than half the random tapes, accept.
 - Polynomial time, if seed logarithmically short

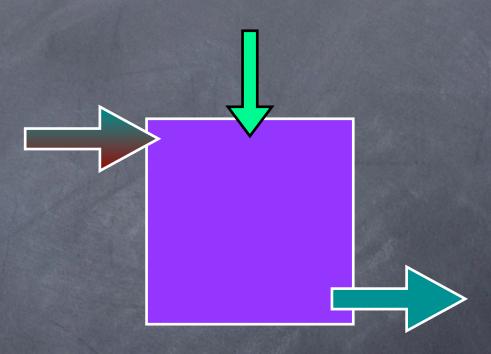


Biased input

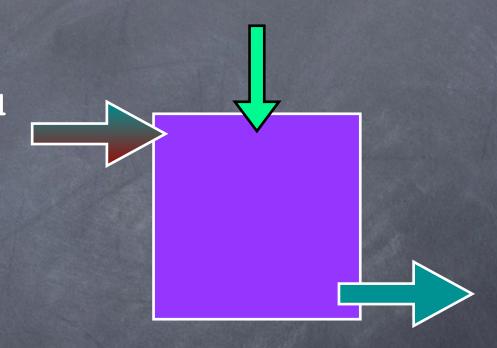
- Randomized extractor
 - Some perfect randomness as a catalyst
- Running a BPP algorithm with only the imperfect source
 - Draw one string from the biased source and generate random tapes, one for each seed. If the algorithm accepts on more than half the random tapes, accept.
 - Polynomial time, if seed logarithmically short
 - Error probability remains bounded [Exercise]



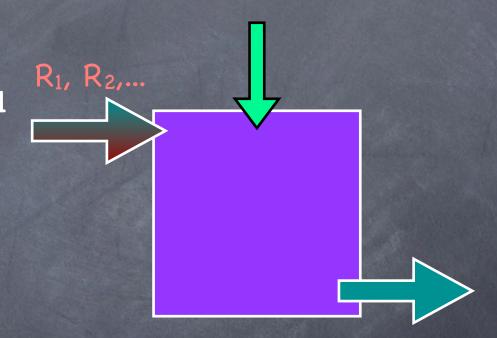




- Randomized extractor
 - \odot Input: SV(δ) for a constant δ <1



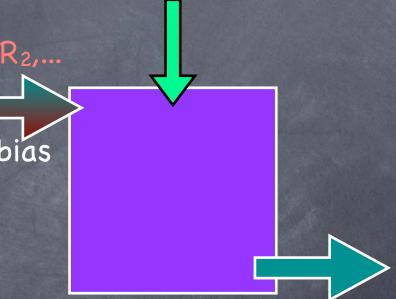
- Randomized extractor
 - Input: SV(δ) for a constant $\delta < 1$



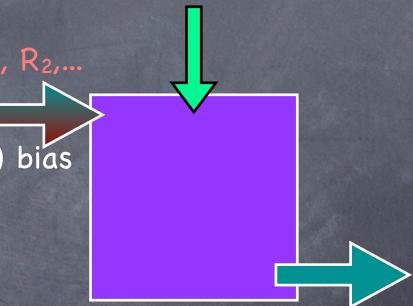
Randomized extractor

 \odot Input: SV(δ) for a constant δ <1

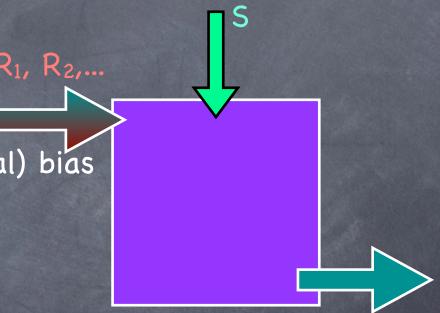
Plan: to get to a small (conditional) bias (O(1/m)) for each output bit.



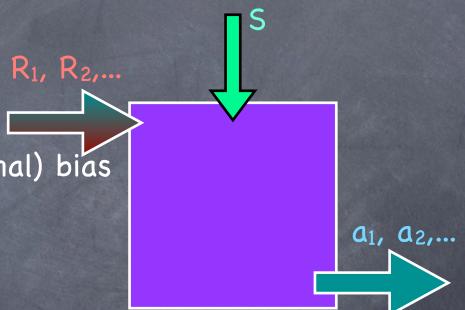
- Randomized extractor
 - Input: SV(δ) for a constant $\delta < 1$
 - Plan: to get to a small (conditional) bias (O(1/m)) for each output bit.
 - Weak extraction



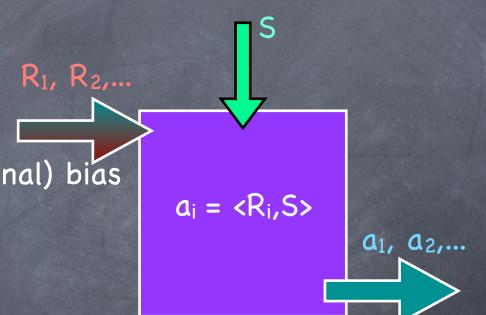
- Randomized extractor
 - Input: SV(δ) for a constant $\delta < 1$
 - Plan: to get to a small (conditional) bias (O(1/m)) for each output bit.
 - Weak extraction



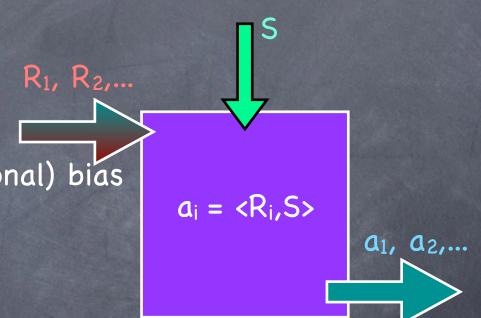
- Randomized extractor
 - Input: SV(δ) for a constant $\delta < 1$
 - Plan: to get to a small (conditional) bias (O(1/m)) for each output bit.
 - Weak extraction



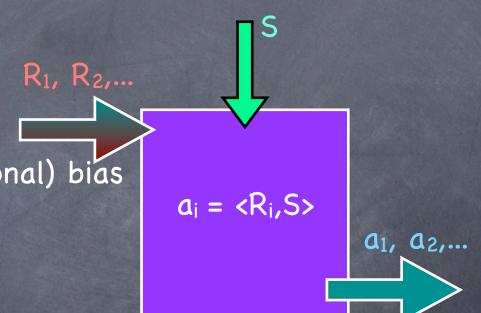
- Randomized extractor
 - Input: SV(δ) for a constant $\delta < 1$
 - Plan: to get to a small (conditional) bias (O(1/m)) for each output bit.
 - Weak extraction



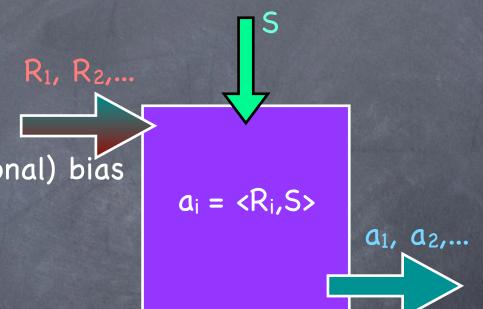
- Randomized extractor
 - \odot Input: SV(δ) for a constant δ <1
 - Plan: to get to a small (conditional) bias (O(1/m)) for each output bit.
 - Weak extraction
 - Using seed-length d = O(log m)

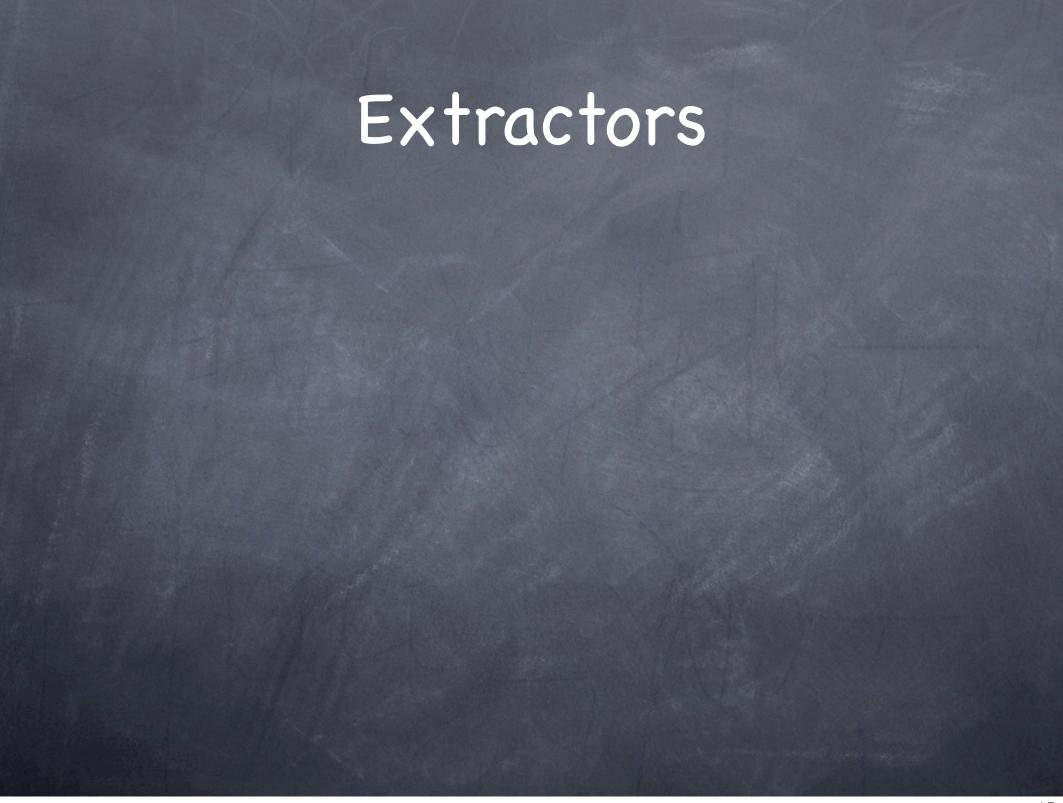


- Randomized extractor
 - \odot Input: SV(δ) for a constant δ <1
 - Plan: to get to a small (conditional) bias (O(1/m)) for each output bit.
 - Weak extraction
 - Using seed-length d = O(log m)
 - Analysis: Need to bound only the collision probability for an input block of length d [Exercise]



- Randomized extractor
 - \odot Input: SV(δ) for a constant δ <1
 - Plan: to get to a small (conditional) bias (O(1/m)) for each output bit.
 - Weak extraction
 - Using seed-length d = O(log m)
 - Analysis: Need to bound only the collision probability for an input block of length d [Exercise]
 - © Collision prob \leq max prob \leq $(1/2 + \delta/2)^d = 1/poly(m)$





Extractors with logarithmic seed-length known for more general classes of sources (block sources)

- Extractors with logarithmic seed-length known for more general classes of sources (block sources)
 - Which extract "almost all" the entropy in the input

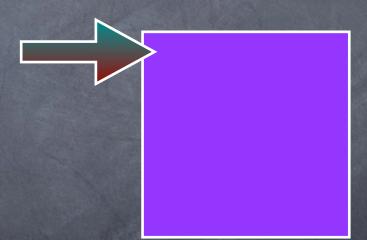
- Extractors with logarithmic seed-length known for more general classes of sources (block sources)
 - Which extract "almost all" the entropy in the input
 - Output can be made "arbitrarily close" to uniform

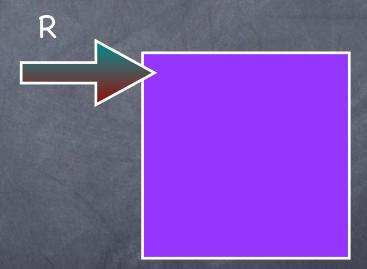
- Extractors with logarithmic seed-length known for more general classes of sources (block sources)
 - Which extract "almost all" the entropy in the input
 - Output can be made "arbitrarily close" to uniform
- Bottom line: Can efficiently run BPP algorithms using very general classes of sources of randomness

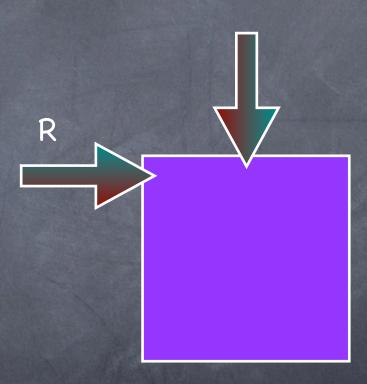
Simple (deterministic) extraction possible!

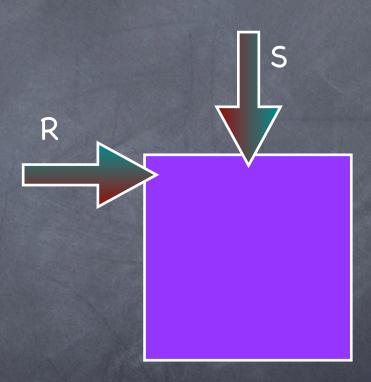
Simple (deterministic) extraction possible!

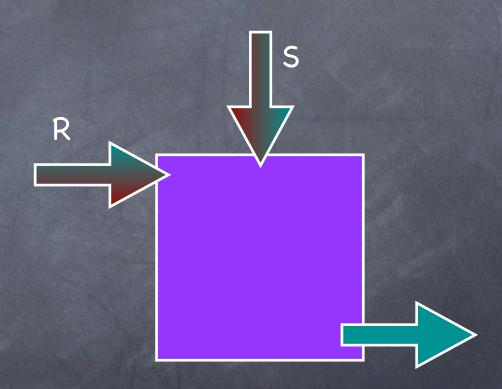
Simple (deterministic) extraction possible!

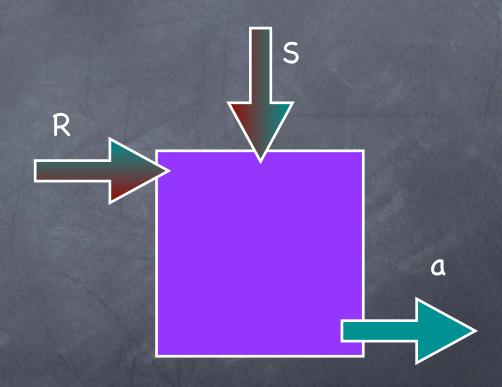


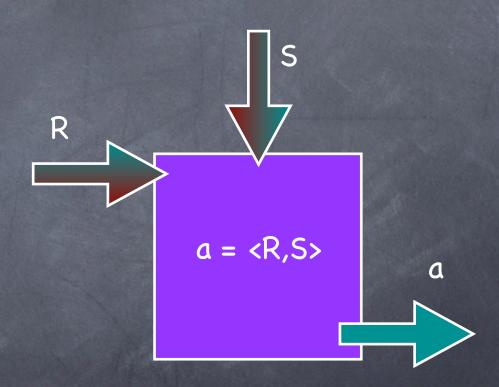




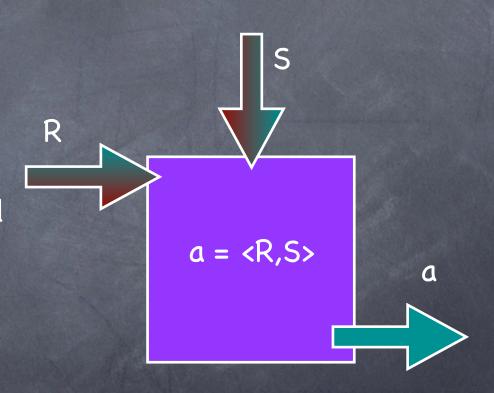




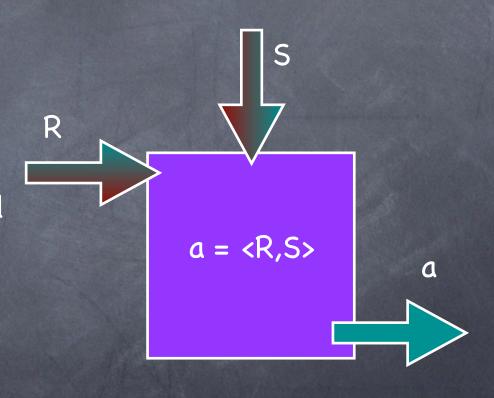


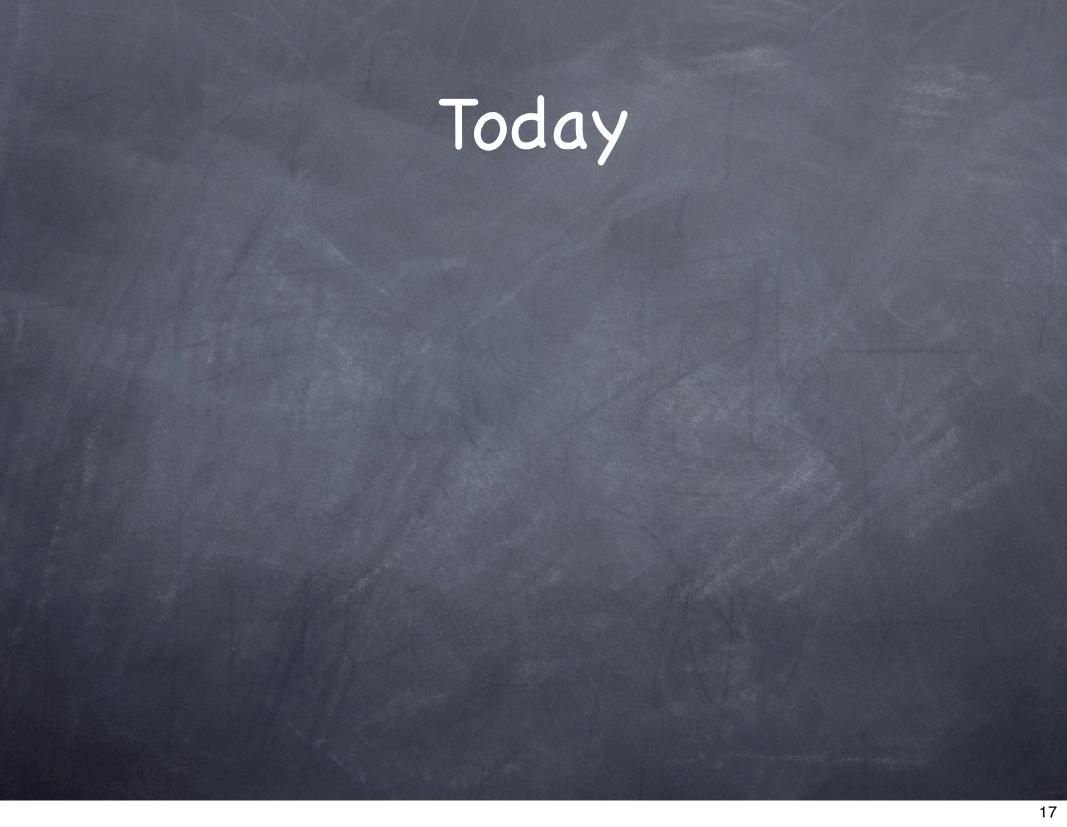


- Simple (deterministic) extraction possible!
- © Challenge: extract almost all the entropy from two independent sources



- Simple (deterministic) extraction possible!
- © Challenge: extract almost all the entropy from two independent sources
 - Known, with a few more sources





Efficient soundness amplification using expanders

- Efficient soundness amplification using expanders
- Imperfect random sources

- Efficient soundness amplification using expanders
- Imperfect random sources
 - o von Neumann, SV, and more

- Efficient soundness amplification using expanders
- Imperfect random sources
 - o von Neumann, SV, and more
- Extractors

- Efficient soundness amplification using expanders
- Imperfect random sources
 - o von Neumann, SV, and more
- Extractors
 - For von Neumann, SV sources and more

- Efficient soundness amplification using expanders
- Imperfect random sources
 - o von Neumann, SV, and more
- Extractors
 - For von Neumann, SV sources and more
- Can extract almost all entropy into almost uniform output using log seed-length

- Efficient soundness amplification using expanders
- Imperfect random sources
 - o von Neumann, SV, and more
- Extractors
 - For von Neumann, SV sources and more
- Can extract almost all entropy into almost uniform output using log seed-length
- Closely related to other tools: pseudorandomness generators, list decodable codes

- Efficient soundness amplification using expanders
- Imperfect random sources
 - o von Neumann, SV, and more
- Extractors
 - For von Neumann, SV sources and more
- Can extract almost all entropy into almost uniform output using log seed-length
- Closely related to other tools: pseudorandomness generators, list decodable codes
 - Useful in "derandomization"