
Probabilistic Computation

Lecture 15
Computing with Less Randomness, or with 

Imperfect Randomness
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for BPP

Repeat M(x) t times and take majority

i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

Error only if | estimate-real | ≥ gap/2

Estimation error goes down exponentially with t: 
Chernoff bound

Pr[ |estimate - real| ≥ δ/2 ] ≤ 2-Ω(t.δ^2)

t = O(nd/δ2) enough for Pr[error] ≤  2-n^d
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Soundness Amplification

In repeating t times (to reduce error to 2-Ω(t)) number of 
coins used = t.m

Used independent random tapes to get error 2-Ω(t)

Can use very dependent tapes and still get error 2-Ω(t)! 
(but with a smaller constant inside Ω)

Random tapes produced using a random walk on an 
“expander graph”

No. of coins used = m + O(t)
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Space of all random tapes = {0,1}m. Consider a                      
subset (“yes” set). To estimate its weight p.

By Chernoff, if p’ is the estimate from t                                  
independent samples, then Pr[|p’-p|> εp] < 2-Ω(t.ε^2)

Random walk: superimpose an “expander graph” on this 
space. Pick first point at random, and then do random walk 
of length t using the graph edges. Estimate p’ = fraction of 
yes nodes along the path

Expander’s degree is constant: coins needed = m + O(t)

Expander “mixing”: Pr[|p’-p|> εp] < 2-Ω(t.ε^2) (but with a 
smaller constant inside Ω)

Randomness Efficient 
Soundness Amplification
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Soundness Amplification
Probabilistic Approximately Correct estimation of Pr[yes]

Bounded gap: so enough to approximate

A small probability of error still allowed

Not “derandomization”

Trying to minimize amount of randomness used

Still need perfectly random bits (fair, independent coin tosses)

Not a realistic assumption on random sources

Can we work with imperfect random sources?
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Imperfect Randomness

Perfect

Fair coin flips

Slightly imperfect

Sufficient unpredictability (entropy)

Sufficient independence

Don’t know the exact distribution, but belongs to 
a known class of distributions
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Imperfect Randomness
Bit-wise guarantee

von Neumann source

Independent but not fair: Each bit is independent of 
previous bits, but with a bias. Bias is same for all bits.

Santha-Vazirani source

Dependent bits of varying bias: Each bit can depend on all 
previous bits, but Pr[bi=0], Pr[bi=1] ∈ [1/2-δ/2, 1/2+δ/2], 
even conditioned on all previous bits (i.e., sufficiently 
unpredictable)

Weaker guarantees: e.g. Block source
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Small bias (1/m, where m coins in all) SV source is 
harmless:

Any string has weight at most (1/2+δ/2)m

t strings can have weight at most t.(1/2+δ/2)m

t.(1/2+δ/2)m = (t/2m).(1+δ)m < (t/2m).e if δ < 1/m        

If on perfect randomness, Pr[error] <  1/(e2n), then on 
imperfect randomness with bias < 1/m, Pr[error] < 1/2n

Using bound on 

conditional probability

(1+x)1/x ≤ e
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Extraction for von Neumann sources

Perfectly random output

Fewer output bits

Running time (per bit): constant number of tries, expected

Can be generalized to sources which are (hidden) Markov chains

Simple extractor for           
von Neumann Sources

Case r2i r2i+1:
01: output 0
10: output 1
*: discard 
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Extractor for SV 
sources?

No simple extractor, for even one bit output

For any extractor, can find an SV-source on which 
the extractor “fails”

Output bias no better than input bias

Exercise
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Randomized Extractors
Randomized extractor

Some perfect randomness as a catalyst

Running a BPP algorithm with                          
only the imperfect source

Draw one string from the biased source                   
and generate random tapes, one for each seed.  
If the algorithm accepts on more than half the 
random tapes, accept.

Polynomial time, if seed logarithmically short

Error probability remains bounded [Exercise]

ExtBiased input

Almost unbiased 
output

Seed randomness
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Extractor for SV sources
Randomized extractor

Input: SV(δ) for a constant δ<1

Plan: to get to a small (conditional) bias               
(O(1/m)) for each output bit.

Weak extraction

Using seed-length d = O(log m)

Analysis: Need to bound only the collision probability 
for an input block of length d [Exercise]

Collision prob ≤ max prob ≤ (1/2 + δ/2)d  = 1/poly(m)

ai = <Ri,S>

R1, R2,...
S

a1, a2,...
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Extractors

Extractors with logarithmic seed-length known for more 
general classes of sources (block sources)

Which extract “almost all” the entropy in the input

Output can be made “arbitrarily close” to uniform

Bottom line: Can efficiently run BPP algorithms using very 
general classes of sources of randomness
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Extracting from 
independent sources

Simple (deterministic) 
extraction possible!

Challenge: extract almost all 
the entropy from two 
independent sources

Known, with a few more 
sources

a = <R,S>

R

S

a
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Today
Efficient soundness amplification using expanders

Imperfect random sources

von Neumann, SV, and more

Extractors

For von Neumann, SV sources and more

Can extract almost all entropy into almost uniform output 
using log seed-length

Closely related to other tools: pseudorandomness generators, 
list decodable codes

Useful in “derandomization”
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