Probabilistic Computation

Lecture 15
Computing with Less Randomness, or with
Imperfect Randomness

Soundness Amplification
for BPP

Soundness Amplification
for BPP

@ Repeat M(x) t times and take majority

Soundness Amplification
for BPP

@ Repeat M(x) t times and take majority

@ i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

Soundness Amplification
for BPP

@ Repeat M(x) t times and take majority

@ i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

@ Error only if | estimate-real | > gap/2

Soundness Amplification
for BPP

@ Repeat M(x) t times and take majority
@ i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

@ Error only if | estimate-real | > gap/2

@ Estimation error goes down exponentially with ft:
Chernoff bound

Soundness Amplification
for BPP

@ Repeat M(x) t times and take majority
@ i.e. estimate Pr[M(x)=yes] and check if it is > 1/2
@ Error only if | estimate-real | > gap/2

@ Estimation error goes down exponentially with ft:
Chernoff bound

@ Pr[lestimate - real] > /2] ¢ 2-2t272)

Soundness Amplification
for BPP

@ Repeat M(x) t times and take majority
@ i.e. estimate Pr[M(x)=yes] and check if it is > 1/2
@ Error only if | estimate-real | > gap/2

@ Estimation error goes down exponentially with ft:
Chernoff bound

@ Pr[lestimate - real] > /2] ¢ 2-2t272)

@ t = O(n?/d?) enough for Prlerror] ¢ 2"¢

Randomness Efficient
Soundness Amplification

Randomness Efficient
Soundness Amplification

@ In repeating t times (to reduce error to 2-%") number of
coins used = t.m

Randomness Efficient
Soundness Amplification

@ In repeating t times (to reduce error to 2-%") number of
coins used = t.m

@ Used independent random tapes to get error 2-4"

Randomness Efficient
Soundness Amplification

@ In repeating t times (to reduce error to 2-%") number of
coins used = t.m

@ Used independent random tapes to get error 2-4"

@ Can use very dependent tapes and still get error 2-2t)
(but with a smaller constant inside Q)

Randomness Efficient
Soundness Amplification

@ In repeating t times (to reduce error to 2-%") number of
coins used = t.m

@ Used independent random tapes to get error 2-4"

@ Can use very dependent tapes and still get error 2-2t)
(but with a smaller constant inside Q)

@ Random tapes produced using a random walk on an
"expander graph”

Randomness Efficient
Soundness Amplification

@ In repeating t times (to reduce error to 2-%") number of
coins used = t.m

@ Used independent random tapes to get error 2-4"

@ Can use very dependent tapes and still get error 2-2t)
(but with a smaller constant inside Q)

@ Random tapes produced using a random walk on an
"expander graph”

@ No. of coins used = m + O(%)

Randomness Efficient
Soundness Amplification

Randomness Efficient
Soundness Amplification

@ Space of all random tapes = {0,1}". Consider a
subset (“yes” set). To estimate its weight p.

Randomness Efficient
Soundness Amplification

@ Space of all random tapes = {0,1}". Consider a
subset (“yes” set). To estimate its weight p.

Randomness Efficient
Soundness Amplification

@ Space of all random tapes = {0,1}". Consider a
subset (“yes” set). To estimate its weight p.

Randomness Efficient
Soundness Amplification

@ Space of all random tapes = {0,1}". Consider a
subset (“yes” set). To estimate its weight p.

@ By Chernoff, if p' is the estimate from t

independent samples, then Pr[lp’-pl> €p] < 2-t€"2)

Randomness Efficient
Soundness Amplification

@ Space of all random tapes = {0,1}". Consider a
subset (“yes” set). To estimate its weight p.

@ By Chernoff, if p’ is the estimate from t
independent samples, then Pr[lp’-pl> €p] < 2-t€"2)

@ Random walk: superimpose an “expander graph” on this
space. Pick first point at random, and then do random walk
of length t using the graph edges. Estimate p’ = fraction of
yes nodes along the path

Randomness Efficient
Soundness Amplification

@ Space of all random tapes = {0,1}". Consider a
subset (“yes” set). To estimate its weight p.

@ By Chernoff, if p’ is the estimate from t
independent samples, then Pr[lp’-pl> €p] < 2-t€"2)

@ Random walk: superimpose an “expander graph” on this
space. Pick first point at random, and then do random walk
of length t using the graph edges. Estimate p’ = fraction of
yes nodes along the path

Randomness Efficient
Soundness Amplification

@ Space of all random tapes = {0,1}™. Consider a A Dt
subset (“yes” set). To estimate its weight p. f‘ﬁj‘%\ﬁ}

@ By Chernoff, if p' is the estimate from t

independent samples, then Pr[lp’-pl> €p] < 2-t€"2)

@ Random walk: superimpose an “expander graph” on this
space. Pick first point at random, and then do random walk
of length t using the graph edges. Estimate p’ = fraction of
yes nodes along the path

Randomness Efficient
Soundness Amplification

@ Space of all random tapes = {0,1}™. Consider a A Dt
subset (“yes” set). To estimate its weight p. f‘ﬁj‘%\ﬁ}

@ By Chernoff, if p’ is the estimate from t
independent samples, then Pr[lp’-pl> €p] < 2-t€"2)

@ Random walk: superimpose an “expander graph” on this
space. Pick first point at random, and then do random walk
of length t using the graph edges. Estimate p’ = fraction of
yes nodes along the path

@ Expander’s degree is constant: coins needed = m + O(t)

Randomness Efficient
Soundness Amplification

@ Space of all random tapes = {0,1}™. Consider a A Dt
subset (“yes” set). To estimate its weight p. f‘ﬁj‘%\ﬁ}

@ By Chernoff, if p’ is the estimate from t
independent samples, then Pr[lp’-pl> €p] < 2-t€"2)

@ Random walk: superimpose an “expander graph” on this
space. Pick first point at random, and then do random walk
of length t using the graph edges. Estimate p’ = fraction of
yes nodes along the path

@ Expander’s degree is constant: coins needed = m + O(t)

@ Expander “mixing”: Prllp’-pl> €p] < 2-2*€2) (but with a
smaller constant inside Q)

Soundness Amplification

Soundness Amplification

@ Probabilistic Approximately Correct estimation of Pr(yes]

Soundness Amplification

@ Probabilistic Approximately Correct estimation of Pr(yes]

@ Bounded gap: so enough to approximate

Soundness Amplification

@ Probabilistic Approximately Correct estimation of Pr(yes]

@ Bounded gap: so enough to approximate

@ A small probability of error still allowed

Soundness Amplification

@ Probabilistic Approximately Correct estimation of Pr[yes]
@ Bounded gap: so enough to approximate

@ A small probability of error still allowed

@ Not “derandomization”

Soundness Amplification

@ Probabilistic Approximately Correct estimation of Pr[yes]
@ Bounded gap: so enough to approximate
@ A small probability of error still allowed

@ Not “derandomization”

@ Trying to minimize amount of randomness used

Soundness Amplification

@ Probabilistic Approximately Correct estimation of Pr[yes]
@ Bounded gap: so enough to approximate
@ A small probability of error still allowed
@ Not "derandomization”

@ Trying to minimize amount of randomness used

@ Still need perfectly random bits (fair, independent coin tosses)

Soundness Amplification

@ Probabilistic Approximately Correct estimation of Pr[yes]
@ Bounded gap: so enough to approximate
@ A small probability of error still allowed
@ Not "derandomization”
@ Trying to minimize amount of randomness used

@ Still need perfectly random bits (fair, independent coin tosses)

@ Not a realistic assumption on random sources

Soundness Amplification

@ Probabilistic Approximately Correct estimation of Pr[yes]
@ Bounded gap: so enough to approximate
@ A small probability of error still allowed
@ Not "derandomization”
@ Trying to minimize amount of randomness used
@ Still need perfectly random bits (fair, independent coin tosses)
@ Not a realistic assumption on random sources

@ Can we work with imperfect random sources?

Philosophical Issues with
Randomness/Probability

Philosophical Issues with
Randomness/Probability

TOUR OF ACCOUNTING

NINE NINE oo THAT'S THE

NINE NINE 3 SURE PROBLEM
NINE NINE | THAT'S WITH RAN-
1 RANDOM? DOMNESS:
- YOU CAN
NEVER BE
SURE.

R

OVER HERE

WeE HAVE OUR
RANDOM NUMBER
GENERATOR.

www.dilbert.com ecottadama®aol.com

opyuyright g 2681 United Feature Syndicate, |nc.

Imperfect Randomness

Imperfect Randomness

@ Perfect

Imperfect Randomness

@ Perfect

@ Fair coin flips

Imperfect Randomness

@ Perfect

@ Fair coin flips

@ Slightly imperfect

Imperfect Randomness

@ Perfect
@ Fair coin flips

@ Slightly imperfect

@ Sufficient unpredictability (entropy)

Imperfect Randomness

@ Perfect
@ Fair coin flips
@ Slightly imperfect

@ Sufficient unpredictability (entropy)

@ Sufficient independence

Imperfect Randomness

@ Perfect
@ Fair coin flips

@ Slightly imperfect
@ Sufficient unpredictability (entropy)
@ Sufficient independence

@ Dont know the exact distribution, but belongs to
a known class of distributions

Imperfect Randomness

Imperfect Randomness

@ Bit-wise guarantee

Imperfect Randomness

@ Bit-wise guarantee

@ von Neumann source

Imperfect Randomness

@ Bit-wise guarantee

@ von Neumann source

@ Independent but not fair: Each bit is independent of
previous bits, but with a bias. Bias is same for all bits.

Imperfect Randomness

@ Bit-wise guarantee
@ von Neumann source

@ Independent but not fair: Each bit is independent of
previous bits, but with a bias. Bias is same for all bits.

® Santha-Vazirani source

Imperfect Randomness

@ Bit-wise guarantee
@ von Neumann source

@ Independent but not fair: Each bit is independent of
previous bits, but with a bias. Bias is same for all bits.

® Santha-Vazirani source

@ Dependent bits of varying bias: Each bit can depend on all
previous bits, but Pr[bi=0], Pr[bi=1] € [1/2-0/2, 1/2+0/2],

even conditioned on all previous bits (i.e., sufficiently
unpredictable)

Imperfect Randomness

@ Bit-wise guarantee
@ von Neumann source

@ Independent but not fair: Each bit is independent of
previous bits, but with a bias. Bias is same for all bits.

® Santha-Vazirani source

@ Dependent bits of varying bias: Each bit can depend on all
previous bits, but Pr[bi=0], Pr[bi=1] € [1/2-0/2, 1/2+0/2],

even conditioned on all previous bits (i.e., sufficiently
unpredictable)

@ Weaker guarantees: e.g. Block source

BPP using imperfect
randomness

BPP using imperfect
randomness

@ Small bias (1/m, where m coins in all) SV source is
harmless:

BPP using imperfect
randomness

@ Small bias (1/m, where m coins in all) SV source is
harmless:

@ Any string has weight at most (1/2+0/2)"

BPP using imperfect
randomness

@ Small bias (1/m, where m coins in all) SV source is
. Using bound on. |
harmless: L probabilty
@ Any string has weight at most (1/2+0/2)"

BPP using imperfect
randomness

@ Small bias (1/m, where m coins in all) SV source is
. Using bound on. |
harmless: L probabilty
@ Any string has weight at most (1/2+0/2)"

@ t strings can have weight at most t.(1/2+6/2)™

BPP using imperfect
randomness

@ Small bias (1/m, where m coins in all) SV source is
. Using bound on. |
harmless: L probabilty
@ Any string has weight at most (1/2+0/2)"

@ t strings can have weight at most t.(1/2+6/2)™

o 1.(1/2+40/2)™ = (t/2™).(1+0)™ < (t/2M).e if O < 1/m

BPP using imperfect
randomness

@ Small bias (1/m, where m coins in all) SV source is
. Using bound on. |
harmless: L probabilty
@ Any string has weight at most (1/2+0/2)"

e

@ t strings can have weight at most t.(1/2+0/2)™ (1+x)¥% < e

s

o 1.(1/2+40/2)™ = (t/2™).(1+0)™ < (t/2M).e if O < 1/m

BPP using imperfect
randomness

@ Small bias (1/m, where m coins in all) SV source is
. Using bound on. |
harmless: L probabilty
@ Any string has weight at most (1/2+0/2)"

——

@ t strings can have weight at most t.(1/2+0/2)™ (1+x)¥% < e

s

o 1.(1/2+40/2)™ = (t/2™).(1+0)™ < (t/2M).e if O < 1/m

@ If on perfect randomness, Prl[error] < 1/(e2"), then on
imperfect randomness with bias < 1/m, Pr[error] < 1/2"

BPP using imperfect
randomness

BPP using imperfect
randomness

@ Handling more imperfectness

BPP using imperfect
randomness

@ Handling more imperfectness

@ by pre-processing the randomness

BPP using imperfect
randomness

@ Handling more imperfectness

@ by pre-processing the randomness

® Randomness extraction

BPP using imperfect
randomness

@ Handling more imperfectness
@ by pre-processing the randomness

® Randomness extraction

@ Simple Extractor:

BPP using imperfect
randomness

@ Handling more imperfectness
@ by pre-processing the randomness

® Randomness extraction

@ Simple Extractor:

Ext

BPP using imperfect
randomness

@ Handling more imperfectness
@ by pre-processing the randomness

® Randomness extraction

@ Simple Extractor: :I|>"

Ext

BPP using imperfect
randomness

@ Handling more imperfectness
@ by pre-processing the randomness

® Randomness extraction

_ Almost unbiased
@ Simple Extractor: output

Ext

Simple extractor for
von Neumann Sources

Simple extractor for
von Neumann Sources

@ Extraction for von Neumann sources

Simple extractor for
von Neumann Sources

=

@ Extraction for von Neumann sources

—>

Simple extractor for
von Neumann Sources

I:|I>‘>Cc158 r2i T2i+1s

® Extraction for von Neumann sources Ol: output O
10: output 1

*. discard ll>

Simple extractor for
von Neumann Sources

:|I>‘>CGS€ r2i T2isl

® Extraction for von Neumann sources

@ Perfectly random output

Ol: output O
10: output 1

*. discard ll:

Simple extractor for
von Neumann Sources

:|I>‘>CGS€ r2i T2isl

® Extraction for von Neumann sources

@ Perfectly random output

@ Fewer output bits

Ol: output O
10: output 1

*. discard ll:

Simple extractor for
von Neumann Sources

I:|I>‘>Cc156 r2i T2i+1s

@ Extraction for von Neumann sources Ol: output O
10: output 1

@ Perfectly random output *. discard E:{>

@ Fewer output bits

@ Running time (per bit): constant number of tries, expected

Simple extractor for
von Neumann Sources

I:|I>‘>Cc156 r2i T2i+1s

@ Extraction for von Neumann sources Ol: output O
10: output 1

@ Perfectly random output *. discard E:{>

@ Fewer output bits

@ Running time (per bit): constant number of tries, expected

@ Can be generalized to sources which are (hidden) Markov chains

Extractor for SV
sources?

Extractor for SV
sources?

@ No simple extractor, for even one bit output

Extractor for SV
sources?

@ No simple extractor, for even one bit output

@ For any extractor, can find an SV-source on which
the extractor “fails”

Extractor for SV
sources?

@ No simple extractor, for even one bit output

@ For any extractor, can find an SV-source on which
the extractor “fails”

@ Output bias no better than input bias

Extractor for SV
sources?

@ No simple extractor, for even one bit output

@ For any extractor, can find an SV-source on which
the extractor “fails”

@ Output bias no better than input bias

@ Exercise

Randomized Extractors

Randomized Extractors

® Randomized extractor

Randomized Extractors

® Randomized extractor

@ Some perfect randomness as a catalyst

Randomized Extractors

® Randomized extractor

@ Some perfect randomness as a catalyst

—r:

Ext

Almost unbiased
output

—

Randomized Extractors

® Randomized extractor Seed randomness

@ Some perfect randomness as a catalyst

Almost unbiased
output
Ext [

Randomized Extractors

® Randomized extractor

@ Some perfect randomness as a catalyst

@ Running a BPP algorithm with
only the imperfect source

Seed randomness

—r:

Ext

Almost unbiased
output

—

Randomized Extractors

® Randomized extractor Seed randomness

@ Some perfect randomness as a catalyst

; : } Almost unbiased
@ Running a BPP algorithm with :|I>" output

only the imperfect source ExT

@ Draw one string from the biased source ' ::

and generate random tapes, one for each seed.

If the algorithm accepts on more than half the
random tapes, accept.

Randomized Extractors

® Randomized extractor Seed randomness

@ Some perfect randomness as a catalyst

; : } Almost unbiased
@ Running a BPP algorithm with :|I>" output

only the imperfect source ExT

@ Draw one string from the biased source ' ::

and generate random tapes, one for each seed.

If the algorithm accepts on more than half the
random tapes, accept.

@ Polynomial time, if seed logarithmically short

Randomized Extractors

® Randomized extractor Seed randomness

@ Some perfect randomness as a catalyst

; : } Almost unbiased
@ Running a BPP algorithm with :|I>" output

only the imperfect source ExT

@ Draw one string from the biased source ' ::

and generate random tapes, one for each seed.

If the algorithm accepts on more than half the
random tapes, accept.

@ Polynomial time, if seed logarithmically short

@ Error probability remains bounded [Exercise]

Extractor for SV sources

=

Extractor for SV sources

® Randomized extractor

=

Extractor for SV sources

® Randomized extractor

@ Input: SV(0) for a constant o<l ::

Extractor for SV sources

® Randomized extractor

@ Input: SV(0) for a constant o<l ::

Extractor for SV sources

® Randomized extractor

@ Input: SV(0) for a constant o<l ::

@ Plan: to get to a small (conditional) bias
(O(1/m)) for each output bit.

Extractor for SV sources

® Randomized extractor

@ Input: SV(0) for a constant o<l ::

@ Plan: to get to a small (conditional) bias
(O(1/m)) for each output bit.

® Weak extraction ['::>

Extractor for SV sources

® Randomized extractor S

@ Input: SV(0) for a constant o<l ::

@ Plan: to get to a small (conditional) bias
(O(1/m)) for each output bit.

® Weak extraction ['::>

Extractor for SV sources

® Randomized extractor S

@ Input: SV(0) for a constant o<l ::

@ Plan: to get to a small (conditional) bias
(O(1/m)) for each output bit.

ay, dz,...

® Weak extraction ['::>

Extractor for SV sources

® Randomized extractor

S

@ Input: SV(0) for a constant o<l ::

@ Plan: to get to a small (conditional) bias
(O(1/m)) for each output bit.

® Weak extraction

a; = <R;,S>

ay, dz,...

—>

Extractor for SV sources

® Randomized extractor

S

@ Input: SV(0) for a constant o<l ::

@ Plan: to get to a small (conditional) bias
(O(1/m)) for each output bit.

® Weak extraction

a; = <R;,S>

ay, dz,...

—>

@ Using seed-length d = O(log m)

Extractor for SV sources

® Randomized extractor S

@ Input: SV(0) for a constant o<l ::

@ Plan: to get to a small (conditional) bias
(O(1/m)) for each output bit. aj = <R;,S>
@y, az,...

® Weak extraction ['::>

@ Using seed-length d = O(log m)

@ Analysis: Need to bound only the collision probability
for an input block of length d [Exercise]

Extractor for SV sources

® Randomized extractor

@ Input: SV(0) for a constant o<l ::

@ Plan: to get to a small (conditional) bias
(O(1/m)) for each output bit.

® Weak extraction

a; = <R;,S>

ay, dz,...

—>

@ Using seed-length d = O(log m)

@ Analysis: Need to bound only the collision probability

for an input block of length d [Exercise]

@ Collision prob < max prob < (1/2 + 8/2)¢ = 1/poly(m)

Extractors

Extractors

@ Extractors with logarithmic seed-length known for more
general classes of sources (block sources)

Extractors

@ Extractors with logarithmic seed-length known for more
general classes of sources (block sources)

® Which extract “almost all” the entropy in the input

Extractors

@ Extractors with logarithmic seed-length known for more
general classes of sources (block sources)

® Which extract “almost all” the entropy in the input

@ Output can be made "arbitrarily close” to uniform

Extractors

@ Extractors with logarithmic seed-length known for more
general classes of sources (block sources)

® Which extract “almost all” the entropy in the input

@ Output can be made "arbitrarily close” to uniform

@ Bottom line: Can efficiently run BPP algorithms using very
general classes of sources of randomness

Extracting from
independent sources

Extracting from
independent sources

@ Simple (deterministic)
extraction possible!

Extracting from
independent sources

@ Simple (deterministic)
extraction possible!

Extracting from
independent sources

@ Simple (deterministic)

extraction possible! [

Extracting from
independent sources

@ Simple (deterministic)
R

extraction possible! [

Extracting from
independent sources

@ Simple (deterministic)
extraction possible! R J L

|:{>5 -

Extracting from
independent sources

S
@ Simple (deterministic)
extraction possible! R J L

|:{>5 -

Extracting from
independent sources

S
@ Simple (deterministic)
extraction possible! R J L

|:{>5 -

>

Extracting from
independent sources

S
@ Simple (deterministic)
extraction possible! R J L

|:{>5 -

>

Extracting from
independent sources

S
@ Simple (deterministic)
extraction possible! R J L
ﬁ :I \4
a=<R,S>
a

Extracting from
independent sources

S
@ Simple (deterministic) JL
extraction possible! R
ﬁ :l \4
@ Challenge: extract almost all
the entropy from two a=<R,S> A
independent sources

Extracting from
independent sources

S
@ Simple (deterministic) JL
extraction possible! R
ﬁ :l \4
@ Challenge: extract almost all
the entropy from two a=<R,S> A
independent sources

@ Known, with a few more ' ::

sources

Today

Today

@ Efficient soundness amplification using expanders

Today

@ Efficient soundness amplification using expanders

@ Imperfect random sources

Today

@ Efficient soundness amplification using expanders

@ Imperfect random sources

@ von Neumann, SV, and more

Today

@ Efficient soundness amplification using expanders
@ Imperfect random sources

@ von Neumann, SV, and more

® Extractors

Today

@ Efficient soundness amplification using expanders
@ Imperfect random sources
@ von Neumann, SV, and more

® Extractors

® For von Neumann, SV sources and more

Today

@ Efficient soundness amplification using expanders
@ Imperfect random sources

@ von Neumann, SV, and more
@ Extractors

® For von Neumann, SV sources and more

® Can extract almost all entropy into almost uniform output
using log seed-length

Today

@ Efficient soundness amplification using expanders
@ Imperfect random sources

@ von Neumann, SV, and more
@ Extractors

@ For von Neumann, SV sources and more

® Can extract almost all entropy into almost uniform output
using log seed-length

@ Closely related to other fools: pseudorandomness generators,
list decodable codes

Today

@ Efficient soundness amplification using expanders
@ Imperfect random sources

@ von Neumann, SV, and more
@ Extractors

@ For von Neumann, SV sources and more

® Can extract almost all entropy into almost uniform output
using log seed-length

@ Closely related to other fools: pseudorandomness generators,
list decodable codes

® Useful in "derandomization”

