
Probabilistic Computation

Lecture 15
Computing with Less Randomness, or with

Imperfect Randomness

1

Soundness Amplification
for BPP

2

Soundness Amplification
for BPP

Repeat M(x) t times and take majority

2

Soundness Amplification
for BPP

Repeat M(x) t times and take majority

i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

2

Soundness Amplification
for BPP

Repeat M(x) t times and take majority

i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

Error only if | estimate-real | ≥ gap/2

2

Soundness Amplification
for BPP

Repeat M(x) t times and take majority

i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

Error only if | estimate-real | ≥ gap/2

Estimation error goes down exponentially with t:
Chernoff bound

2

Soundness Amplification
for BPP

Repeat M(x) t times and take majority

i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

Error only if | estimate-real | ≥ gap/2

Estimation error goes down exponentially with t:
Chernoff bound

Pr[|estimate - real| ≥ δ/2] ≤ 2-Ω(t.δ^2)

2

Soundness Amplification
for BPP

Repeat M(x) t times and take majority

i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

Error only if | estimate-real | ≥ gap/2

Estimation error goes down exponentially with t:
Chernoff bound

Pr[|estimate - real| ≥ δ/2] ≤ 2-Ω(t.δ^2)

t = O(nd/δ2) enough for Pr[error] ≤ 2-n^d

2

Randomness Efficient
Soundness Amplification

3

Randomness Efficient
Soundness Amplification

In repeating t times (to reduce error to 2-Ω(t)) number of
coins used = t.m

3

Randomness Efficient
Soundness Amplification

In repeating t times (to reduce error to 2-Ω(t)) number of
coins used = t.m

Used independent random tapes to get error 2-Ω(t)

3

Randomness Efficient
Soundness Amplification

In repeating t times (to reduce error to 2-Ω(t)) number of
coins used = t.m

Used independent random tapes to get error 2-Ω(t)

Can use very dependent tapes and still get error 2-Ω(t)!
(but with a smaller constant inside Ω)

3

Randomness Efficient
Soundness Amplification

In repeating t times (to reduce error to 2-Ω(t)) number of
coins used = t.m

Used independent random tapes to get error 2-Ω(t)

Can use very dependent tapes and still get error 2-Ω(t)!
(but with a smaller constant inside Ω)

Random tapes produced using a random walk on an
“expander graph”

3

Randomness Efficient
Soundness Amplification

In repeating t times (to reduce error to 2-Ω(t)) number of
coins used = t.m

Used independent random tapes to get error 2-Ω(t)

Can use very dependent tapes and still get error 2-Ω(t)!
(but with a smaller constant inside Ω)

Random tapes produced using a random walk on an
“expander graph”

No. of coins used = m + O(t)

3

Randomness Efficient
Soundness Amplification

4

Space of all random tapes = {0,1}m. Consider a
subset (“yes” set). To estimate its weight p.

Randomness Efficient
Soundness Amplification

4

Space of all random tapes = {0,1}m. Consider a
subset (“yes” set). To estimate its weight p.

Randomness Efficient
Soundness Amplification

4

Space of all random tapes = {0,1}m. Consider a
subset (“yes” set). To estimate its weight p.

Randomness Efficient
Soundness Amplification

4

Space of all random tapes = {0,1}m. Consider a
subset (“yes” set). To estimate its weight p.

By Chernoff, if p’ is the estimate from t
independent samples, then Pr[|p’-p|> εp] < 2-Ω(t.ε^2)

Randomness Efficient
Soundness Amplification

4

Space of all random tapes = {0,1}m. Consider a
subset (“yes” set). To estimate its weight p.

By Chernoff, if p’ is the estimate from t
independent samples, then Pr[|p’-p|> εp] < 2-Ω(t.ε^2)

Random walk: superimpose an “expander graph” on this
space. Pick first point at random, and then do random walk
of length t using the graph edges. Estimate p’ = fraction of
yes nodes along the path

Randomness Efficient
Soundness Amplification

4

Space of all random tapes = {0,1}m. Consider a
subset (“yes” set). To estimate its weight p.

By Chernoff, if p’ is the estimate from t
independent samples, then Pr[|p’-p|> εp] < 2-Ω(t.ε^2)

Random walk: superimpose an “expander graph” on this
space. Pick first point at random, and then do random walk
of length t using the graph edges. Estimate p’ = fraction of
yes nodes along the path

Randomness Efficient
Soundness Amplification

4

Space of all random tapes = {0,1}m. Consider a
subset (“yes” set). To estimate its weight p.

By Chernoff, if p’ is the estimate from t
independent samples, then Pr[|p’-p|> εp] < 2-Ω(t.ε^2)

Random walk: superimpose an “expander graph” on this
space. Pick first point at random, and then do random walk
of length t using the graph edges. Estimate p’ = fraction of
yes nodes along the path

Randomness Efficient
Soundness Amplification

4

Space of all random tapes = {0,1}m. Consider a
subset (“yes” set). To estimate its weight p.

By Chernoff, if p’ is the estimate from t
independent samples, then Pr[|p’-p|> εp] < 2-Ω(t.ε^2)

Random walk: superimpose an “expander graph” on this
space. Pick first point at random, and then do random walk
of length t using the graph edges. Estimate p’ = fraction of
yes nodes along the path

Expander’s degree is constant: coins needed = m + O(t)

Randomness Efficient
Soundness Amplification

4

Space of all random tapes = {0,1}m. Consider a
subset (“yes” set). To estimate its weight p.

By Chernoff, if p’ is the estimate from t
independent samples, then Pr[|p’-p|> εp] < 2-Ω(t.ε^2)

Random walk: superimpose an “expander graph” on this
space. Pick first point at random, and then do random walk
of length t using the graph edges. Estimate p’ = fraction of
yes nodes along the path

Expander’s degree is constant: coins needed = m + O(t)

Expander “mixing”: Pr[|p’-p|> εp] < 2-Ω(t.ε^2) (but with a
smaller constant inside Ω)

Randomness Efficient
Soundness Amplification

4

Soundness Amplification

5

Soundness Amplification
Probabilistic Approximately Correct estimation of Pr[yes]

5

Soundness Amplification
Probabilistic Approximately Correct estimation of Pr[yes]

Bounded gap: so enough to approximate

5

Soundness Amplification
Probabilistic Approximately Correct estimation of Pr[yes]

Bounded gap: so enough to approximate

A small probability of error still allowed

5

Soundness Amplification
Probabilistic Approximately Correct estimation of Pr[yes]

Bounded gap: so enough to approximate

A small probability of error still allowed

Not “derandomization”

5

Soundness Amplification
Probabilistic Approximately Correct estimation of Pr[yes]

Bounded gap: so enough to approximate

A small probability of error still allowed

Not “derandomization”

Trying to minimize amount of randomness used

5

Soundness Amplification
Probabilistic Approximately Correct estimation of Pr[yes]

Bounded gap: so enough to approximate

A small probability of error still allowed

Not “derandomization”

Trying to minimize amount of randomness used

Still need perfectly random bits (fair, independent coin tosses)

5

Soundness Amplification
Probabilistic Approximately Correct estimation of Pr[yes]

Bounded gap: so enough to approximate

A small probability of error still allowed

Not “derandomization”

Trying to minimize amount of randomness used

Still need perfectly random bits (fair, independent coin tosses)

Not a realistic assumption on random sources

5

Soundness Amplification
Probabilistic Approximately Correct estimation of Pr[yes]

Bounded gap: so enough to approximate

A small probability of error still allowed

Not “derandomization”

Trying to minimize amount of randomness used

Still need perfectly random bits (fair, independent coin tosses)

Not a realistic assumption on random sources

Can we work with imperfect random sources?

5

Philosophical Issues with
Randomness/Probability

6

Philosophical Issues with
Randomness/Probability

6

Imperfect Randomness

7

Imperfect Randomness

Perfect

7

Imperfect Randomness

Perfect

Fair coin flips

7

Imperfect Randomness

Perfect

Fair coin flips

Slightly imperfect

7

Imperfect Randomness

Perfect

Fair coin flips

Slightly imperfect

Sufficient unpredictability (entropy)

7

Imperfect Randomness

Perfect

Fair coin flips

Slightly imperfect

Sufficient unpredictability (entropy)

Sufficient independence

7

Imperfect Randomness

Perfect

Fair coin flips

Slightly imperfect

Sufficient unpredictability (entropy)

Sufficient independence

Don’t know the exact distribution, but belongs to
a known class of distributions

7

Imperfect Randomness

8

Imperfect Randomness
Bit-wise guarantee

8

Imperfect Randomness
Bit-wise guarantee

von Neumann source

8

Imperfect Randomness
Bit-wise guarantee

von Neumann source

Independent but not fair: Each bit is independent of
previous bits, but with a bias. Bias is same for all bits.

8

Imperfect Randomness
Bit-wise guarantee

von Neumann source

Independent but not fair: Each bit is independent of
previous bits, but with a bias. Bias is same for all bits.

Santha-Vazirani source

8

Imperfect Randomness
Bit-wise guarantee

von Neumann source

Independent but not fair: Each bit is independent of
previous bits, but with a bias. Bias is same for all bits.

Santha-Vazirani source

Dependent bits of varying bias: Each bit can depend on all
previous bits, but Pr[bi=0], Pr[bi=1] ∈ [1/2-δ/2, 1/2+δ/2],
even conditioned on all previous bits (i.e., sufficiently
unpredictable)

8

Imperfect Randomness
Bit-wise guarantee

von Neumann source

Independent but not fair: Each bit is independent of
previous bits, but with a bias. Bias is same for all bits.

Santha-Vazirani source

Dependent bits of varying bias: Each bit can depend on all
previous bits, but Pr[bi=0], Pr[bi=1] ∈ [1/2-δ/2, 1/2+δ/2],
even conditioned on all previous bits (i.e., sufficiently
unpredictable)

Weaker guarantees: e.g. Block source

8

BPP using imperfect
randomness

9

BPP using imperfect
randomness

Small bias (1/m, where m coins in all) SV source is
harmless:

9

BPP using imperfect
randomness

Small bias (1/m, where m coins in all) SV source is
harmless:

Any string has weight at most (1/2+δ/2)m

9

BPP using imperfect
randomness

Small bias (1/m, where m coins in all) SV source is
harmless:

Any string has weight at most (1/2+δ/2)m

Using bound on

conditional probability

9

BPP using imperfect
randomness

Small bias (1/m, where m coins in all) SV source is
harmless:

Any string has weight at most (1/2+δ/2)m

t strings can have weight at most t.(1/2+δ/2)m

Using bound on

conditional probability

9

BPP using imperfect
randomness

Small bias (1/m, where m coins in all) SV source is
harmless:

Any string has weight at most (1/2+δ/2)m

t strings can have weight at most t.(1/2+δ/2)m

t.(1/2+δ/2)m = (t/2m).(1+δ)m < (t/2m).e if δ < 1/m

Using bound on

conditional probability

9

BPP using imperfect
randomness

Small bias (1/m, where m coins in all) SV source is
harmless:

Any string has weight at most (1/2+δ/2)m

t strings can have weight at most t.(1/2+δ/2)m

t.(1/2+δ/2)m = (t/2m).(1+δ)m < (t/2m).e if δ < 1/m

Using bound on

conditional probability

(1+x)1/x ≤ e

9

BPP using imperfect
randomness

Small bias (1/m, where m coins in all) SV source is
harmless:

Any string has weight at most (1/2+δ/2)m

t strings can have weight at most t.(1/2+δ/2)m

t.(1/2+δ/2)m = (t/2m).(1+δ)m < (t/2m).e if δ < 1/m

If on perfect randomness, Pr[error] < 1/(e2n), then on
imperfect randomness with bias < 1/m, Pr[error] < 1/2n

Using bound on

conditional probability

(1+x)1/x ≤ e

9

BPP using imperfect
randomness

10

BPP using imperfect
randomness

Handling more imperfectness

10

BPP using imperfect
randomness

Handling more imperfectness

by pre-processing the randomness

10

BPP using imperfect
randomness

Handling more imperfectness

by pre-processing the randomness

Randomness extraction

10

BPP using imperfect
randomness

Handling more imperfectness

by pre-processing the randomness

Randomness extraction

Simple Extractor:

10

BPP using imperfect
randomness

Handling more imperfectness

by pre-processing the randomness

Randomness extraction

Simple Extractor:
Ext

10

BPP using imperfect
randomness

Handling more imperfectness

by pre-processing the randomness

Randomness extraction

Simple Extractor:
ExtBiased input

10

BPP using imperfect
randomness

Handling more imperfectness

by pre-processing the randomness

Randomness extraction

Simple Extractor:
ExtBiased input

Almost unbiased
output

10

Simple extractor for
von Neumann Sources

11

Extraction for von Neumann sources

Simple extractor for
von Neumann Sources

11

Extraction for von Neumann sources

Simple extractor for
von Neumann Sources

11

Extraction for von Neumann sources

Simple extractor for
von Neumann Sources

Case r2i r2i+1:
01: output 0
10: output 1
*: discard

11

Extraction for von Neumann sources

Perfectly random output

Simple extractor for
von Neumann Sources

Case r2i r2i+1:
01: output 0
10: output 1
*: discard

11

Extraction for von Neumann sources

Perfectly random output

Fewer output bits

Simple extractor for
von Neumann Sources

Case r2i r2i+1:
01: output 0
10: output 1
*: discard

11

Extraction for von Neumann sources

Perfectly random output

Fewer output bits

Running time (per bit): constant number of tries, expected

Simple extractor for
von Neumann Sources

Case r2i r2i+1:
01: output 0
10: output 1
*: discard

11

Extraction for von Neumann sources

Perfectly random output

Fewer output bits

Running time (per bit): constant number of tries, expected

Can be generalized to sources which are (hidden) Markov chains

Simple extractor for
von Neumann Sources

Case r2i r2i+1:
01: output 0
10: output 1
*: discard

11

Extractor for SV
sources?

12

Extractor for SV
sources?

No simple extractor, for even one bit output

12

Extractor for SV
sources?

No simple extractor, for even one bit output

For any extractor, can find an SV-source on which
the extractor “fails”

12

Extractor for SV
sources?

No simple extractor, for even one bit output

For any extractor, can find an SV-source on which
the extractor “fails”

Output bias no better than input bias

12

Extractor for SV
sources?

No simple extractor, for even one bit output

For any extractor, can find an SV-source on which
the extractor “fails”

Output bias no better than input bias

Exercise

12

Randomized Extractors

13

Randomized Extractors
Randomized extractor

13

Randomized Extractors
Randomized extractor

Some perfect randomness as a catalyst

13

Randomized Extractors
Randomized extractor

Some perfect randomness as a catalyst

ExtBiased input

Almost unbiased
output

13

Randomized Extractors
Randomized extractor

Some perfect randomness as a catalyst

ExtBiased input

Almost unbiased
output

Seed randomness

13

Randomized Extractors
Randomized extractor

Some perfect randomness as a catalyst

Running a BPP algorithm with
only the imperfect source ExtBiased input

Almost unbiased
output

Seed randomness

13

Randomized Extractors
Randomized extractor

Some perfect randomness as a catalyst

Running a BPP algorithm with
only the imperfect source

Draw one string from the biased source
and generate random tapes, one for each seed.
If the algorithm accepts on more than half the
random tapes, accept.

ExtBiased input

Almost unbiased
output

Seed randomness

13

Randomized Extractors
Randomized extractor

Some perfect randomness as a catalyst

Running a BPP algorithm with
only the imperfect source

Draw one string from the biased source
and generate random tapes, one for each seed.
If the algorithm accepts on more than half the
random tapes, accept.

Polynomial time, if seed logarithmically short

ExtBiased input

Almost unbiased
output

Seed randomness

13

Randomized Extractors
Randomized extractor

Some perfect randomness as a catalyst

Running a BPP algorithm with
only the imperfect source

Draw one string from the biased source
and generate random tapes, one for each seed.
If the algorithm accepts on more than half the
random tapes, accept.

Polynomial time, if seed logarithmically short

Error probability remains bounded [Exercise]

ExtBiased input

Almost unbiased
output

Seed randomness

13

Extractor for SV sources

14

Extractor for SV sources
Randomized extractor

14

Extractor for SV sources
Randomized extractor

Input: SV(δ) for a constant δ<1

14

Extractor for SV sources
Randomized extractor

Input: SV(δ) for a constant δ<1
R1, R2,...

14

Extractor for SV sources
Randomized extractor

Input: SV(δ) for a constant δ<1

Plan: to get to a small (conditional) bias
(O(1/m)) for each output bit.

R1, R2,...

14

Extractor for SV sources
Randomized extractor

Input: SV(δ) for a constant δ<1

Plan: to get to a small (conditional) bias
(O(1/m)) for each output bit.

Weak extraction

R1, R2,...

14

Extractor for SV sources
Randomized extractor

Input: SV(δ) for a constant δ<1

Plan: to get to a small (conditional) bias
(O(1/m)) for each output bit.

Weak extraction

R1, R2,...
S

14

Extractor for SV sources
Randomized extractor

Input: SV(δ) for a constant δ<1

Plan: to get to a small (conditional) bias
(O(1/m)) for each output bit.

Weak extraction

R1, R2,...
S

a1, a2,...

14

Extractor for SV sources
Randomized extractor

Input: SV(δ) for a constant δ<1

Plan: to get to a small (conditional) bias
(O(1/m)) for each output bit.

Weak extraction

ai = <Ri,S>

R1, R2,...
S

a1, a2,...

14

Extractor for SV sources
Randomized extractor

Input: SV(δ) for a constant δ<1

Plan: to get to a small (conditional) bias
(O(1/m)) for each output bit.

Weak extraction

Using seed-length d = O(log m)

ai = <Ri,S>

R1, R2,...
S

a1, a2,...

14

Extractor for SV sources
Randomized extractor

Input: SV(δ) for a constant δ<1

Plan: to get to a small (conditional) bias
(O(1/m)) for each output bit.

Weak extraction

Using seed-length d = O(log m)

Analysis: Need to bound only the collision probability
for an input block of length d [Exercise]

ai = <Ri,S>

R1, R2,...
S

a1, a2,...

14

Extractor for SV sources
Randomized extractor

Input: SV(δ) for a constant δ<1

Plan: to get to a small (conditional) bias
(O(1/m)) for each output bit.

Weak extraction

Using seed-length d = O(log m)

Analysis: Need to bound only the collision probability
for an input block of length d [Exercise]

Collision prob ≤ max prob ≤ (1/2 + δ/2)d = 1/poly(m)

ai = <Ri,S>

R1, R2,...
S

a1, a2,...

14

Extractors

15

Extractors

Extractors with logarithmic seed-length known for more
general classes of sources (block sources)

15

Extractors

Extractors with logarithmic seed-length known for more
general classes of sources (block sources)

Which extract “almost all” the entropy in the input

15

Extractors

Extractors with logarithmic seed-length known for more
general classes of sources (block sources)

Which extract “almost all” the entropy in the input

Output can be made “arbitrarily close” to uniform

15

Extractors

Extractors with logarithmic seed-length known for more
general classes of sources (block sources)

Which extract “almost all” the entropy in the input

Output can be made “arbitrarily close” to uniform

Bottom line: Can efficiently run BPP algorithms using very
general classes of sources of randomness

15

Extracting from
independent sources

16

Extracting from
independent sources

Simple (deterministic)
extraction possible!

16

Extracting from
independent sources

Simple (deterministic)
extraction possible!

16

Extracting from
independent sources

Simple (deterministic)
extraction possible!

16

Extracting from
independent sources

Simple (deterministic)
extraction possible! R

16

Extracting from
independent sources

Simple (deterministic)
extraction possible! R

16

Extracting from
independent sources

Simple (deterministic)
extraction possible! R

S

16

Extracting from
independent sources

Simple (deterministic)
extraction possible! R

S

16

Extracting from
independent sources

Simple (deterministic)
extraction possible! R

S

a

16

Extracting from
independent sources

Simple (deterministic)
extraction possible!

a = <R,S>

R

S

a

16

Extracting from
independent sources

Simple (deterministic)
extraction possible!

Challenge: extract almost all
the entropy from two
independent sources

a = <R,S>

R

S

a

16

Extracting from
independent sources

Simple (deterministic)
extraction possible!

Challenge: extract almost all
the entropy from two
independent sources

Known, with a few more
sources

a = <R,S>

R

S

a

16

Today

17

Today
Efficient soundness amplification using expanders

17

Today
Efficient soundness amplification using expanders

Imperfect random sources

17

Today
Efficient soundness amplification using expanders

Imperfect random sources

von Neumann, SV, and more

17

Today
Efficient soundness amplification using expanders

Imperfect random sources

von Neumann, SV, and more

Extractors

17

Today
Efficient soundness amplification using expanders

Imperfect random sources

von Neumann, SV, and more

Extractors

For von Neumann, SV sources and more

17

Today
Efficient soundness amplification using expanders

Imperfect random sources

von Neumann, SV, and more

Extractors

For von Neumann, SV sources and more

Can extract almost all entropy into almost uniform output
using log seed-length

17

Today
Efficient soundness amplification using expanders

Imperfect random sources

von Neumann, SV, and more

Extractors

For von Neumann, SV sources and more

Can extract almost all entropy into almost uniform output
using log seed-length

Closely related to other tools: pseudorandomness generators,
list decodable codes

17

Today
Efficient soundness amplification using expanders

Imperfect random sources

von Neumann, SV, and more

Extractors

For von Neumann, SV sources and more

Can extract almost all entropy into almost uniform output
using log seed-length

Closely related to other tools: pseudorandomness generators,
list decodable codes

Useful in “derandomization”
17

