Probabilistic Computation

Lecture 13
BPP, ZPP

Some Probabilistic
Algorithmic Concepts

Some Probabilistic
Algorithmic Concepts

@ Sampling to determine some probability

@ Checking if determinant of a symbolic matrix is zero:
Substitute random values for the variables and evaluate

@ Polynomial Identity Testing: polynomial given as an
arithmetic circuit. Like above, but values can be too
large. So work over a random modulus.

® Random Walks (for sampling)
@ Monte Carlo algorithms for calculations
® Reachability tests

Random Walks

Random Walks

@ Which nodes does the walk touch and with what
probability?

@ How do these probabilities vary with number of steps
@ Analyzing a random walk

@ Probability Vector: P

@ Transition probability matrix: M

@ One step of the walk: P* = MP

@ After t steps: P = M'P

Space-Bounded
Probabilistic Computation

Space-Bounded
Probabilistic Computation

@ PL, RL, BPL
@ Logspace analogues of PP, RP, BPP

@ Note: RL € NL, RL € BPL
@ Recall NL € P (because PATH € P)
@ SORLCP

® In fact BPL C P

BPLC P

BPLC P

@ Consider the BPL algorithm, on input x, as a random walk
over states

@ Construct the transition matrix M

@ Size of graph is poly(n), probability values are O, 0.5
and 1

@ Calculate M' for t = max running time = poly(n)

o Accept if (M™P)accept > 2/3

NPSPACE PSPACE

* ﬁ

e

IO

NPSPACE PSPACE

* ﬁ

e

IO

NPSPACE PSPACE

* ﬁ

<y

NPSPACE PSPACE

* ﬁ

<y

NPSPACE PSPACE

* ﬁ

<y

NPSPACE PSPACE

* ﬁ

<y

NPSPACE PSPACE

* ﬁ

NPSPACE PSPACE

* ﬁ

eI

Z00

Expected Running Time

Expected Running Time

@ Running fime is a random variable too
@ As is the outcome of yes/no

@ Ask for running time being polynomial only in
expectation, or with high probability

@ Las Vegas algorithms: only expected running fime is
polynomial; but when it terminates, it produces the
correct answer

@ Zero error probability

Zero-Error Computation

Zero-Error Computation

@ e.g. A simple algorithm for finding median in expected linear time

@ (There are non-trivial algorithms to do it in deterministic
linear time. Simple sorting takes O(n log n) time.)

@ Procedure Find-element(L,k) to find k" smallest element in list L

@ Pick random element x in L. Scan L; divide it into L,x (elements
> X) and L« (elements < x); also determine position m of x in L.

@ If m =k, return x. If m > k, call Find-element(L«,k), else call
Find-element(L,x,k-m)

@ Correctness obvious. Expected running time?

Zero-Error Computation

Zero-Error Computation

® Expected running time (worst case over all lists of size n, and all
k) be T(n)

@ Time for non-recursive operations is linear: say bounded by cn.
Will show inductively T(n) at most 4cn (base case n=l).

@ T(n) < cn + 1/n [ZnsjskT(j) + 2ocjekT(n-j)]

@ T(n) < cn + 1/n.4c[Zjk j + Zj(n-j)] by inductive hypothesis

@ 2jkj + 2jk(n-j) = Zjk j + (K-1)n - Zjex j € Zj j + (K-1)n -2 Zjk
@ < n%/2 + (k-1)n - k(k-1) < n2/2 + k(n-k) ¢ 3/4 n?

@ T(n) < cn + 3cn as required

Zero-Error Computation

Zero-Error Computation

@ Las-Vegas Algorithms: Probabilistic algorithms with
deterministic outcome (but probabilistic run time)

@ ZPTIME(T): class of languages decided by a zero-
error probabilistic TM, with expected running time
at most T

& ZPP = ZPTIME(poly)

@ ZPP = RP N co-RP

ZPP C RP

ZPP C RP

@ Truncate after “long enough,” and say “no”

@ Do we still have bounded (one-sided) error?

@ Will run for “too long” only with small probability
@ Because expected running time short

@ With high probability the running time does not exceed the
expected running time by much

@ Pr[x> aE[X]]<1/a (non-negative X)
@ Markov's inequality

@ Prl[error] changes by at most 1/a if truncated after a times
expected running time

RP N co-RP € ZPP

RP N co-RP € ZPP

@ If L € RP N co-RP a ZPP algorithm for L:

@ Run both RP and coRP algorithms

@ If former says yes or latter says no, output that
answer

@ Else, i.e., if former says no and latter yes, repeat

@ Expected number of repeats = O(1)

Today

Today

d@ Z00

@ BPLC P

@ Expected running time

@ Zero-Error probabilistic computation

@ ZPP = RP N co-RP

