
Probabilistic Computation

Lecture 13
BPP, ZPP

1

Zoo

P

PSPACE
EXP

NP

NEXP

L

NL

NPSPACE

Σ2P

2

Zoo

P

PSPACE
EXP

NP

NEXP

L

NL

NPSPACE

Σ2P

RP

2

BPP

Zoo

P

PSPACE
EXP

NP

NEXP

L

NL

NPSPACE

Σ2P

RP

2

BPP

Zoo

P

PSPACE
EXP

NP

NEXP

L

NL

NPSPACE

Σ2P

RP

2

BPP

Zoo

P

PSPACE
EXP

NP

NEXP

L

NL

NPSPACE

Σ2P

RP

2

Some Probabilistic
Algorithmic Concepts

3

Some Probabilistic
Algorithmic Concepts

Sampling to determine some probability

Checking if determinant of a symbolic matrix is zero:
Substitute random values for the variables and evaluate

Polynomial Identity Testing: polynomial given as an
arithmetic circuit. Like above, but values can be too
large. So work over a random modulus.

Random Walks (for sampling)

Monte Carlo algorithms for calculations

Reachability tests

3

Random Walks

4

Random Walks
Which nodes does the walk touch and with what
probability?

How do these probabilities vary with number of steps

Analyzing a random walk

Probability Vector: P

Transition probability matrix: M

One step of the walk: P’ = MP

After t steps: P(t) = MtP

4

Space-Bounded
Probabilistic Computation

5

Space-Bounded
Probabilistic Computation

PL, RL, BPL

Logspace analogues of PP, RP, BPP

Note: RL ⊆ NL, RL ⊆ BPL

Recall NL ⊆ P (because PATH ∈ P)

So RL ⊆ P

In fact BPL ⊆ P

5

BPL ⊆ P

6

BPL ⊆ P

Consider the BPL algorithm, on input x, as a random walk
over states

Construct the transition matrix M

Size of graph is poly(n), probability values are 0, 0.5
and 1

Calculate Mt for t = max running time = poly(n)

Accept if (MtP)accept > 2/3

6

Zoo

P

PSPACE
EXP

NP

NEXP

L

NL

NPSPACE

Σ2P

7

Zoo

P

PSPACE
EXP

NP

NEXP

L

NL

NPSPACE

Σ2P

RP

7

Zoo

P

PSPACE
EXP

NP

NEXP

L

NL

NPSPACE

Σ2P

RP

RL

7

BPP

Zoo

P

PSPACE
EXP

NP

NEXP

L

NL

NPSPACE

Σ2P

RP

RL

7

BPP

Zoo

P

PSPACE
EXP

NP

NEXP

L

NL

NPSPACE

Σ2P

RP

RL

7

BPP

Zoo

P

PSPACE
EXP

NP

NEXP

L

NL

NPSPACE

Σ2P

RP

RL

7

BPP

Zoo

P

PSPACE
EXP

NP

NEXP

L

NL

NPSPACE

Σ2P

BPL

RP

RL

7

BPP

Zoo

P

PSPACE
EXP

NP

NEXP

L

NL

NPSPACE

Σ2P

BPL

RP

RL

7

BPP

Zoo

P

PSPACE
EXP

NP

NEXP

L

NL

NPSPACE

Σ2P

BPL

RP

RL

7

Expected Running Time

8

Expected Running Time

Running time is a random variable too

As is the outcome of yes/no

Ask for running time being polynomial only in
expectation, or with high probability

Las Vegas algorithms: only expected running time is
polynomial; but when it terminates, it produces the
correct answer

Zero error probability

8

Zero-Error Computation

9

e.g. A simple algorithm for finding median in expected linear time

(There are non-trivial algorithms to do it in deterministic
linear time. Simple sorting takes O(n log n) time.)

Procedure Find-element(L,k) to find kth smallest element in list L

Pick random element x in L. Scan L; divide it into L>x (elements
> x) and L<x (elements < x); also determine position m of x in L.

If m = k, return x. If m > k, call Find-element(L<x,k), else call
Find-element(L>x,k-m)

Correctness obvious. Expected running time?

Zero-Error Computation

9

Zero-Error Computation

10

Expected running time (worst case over all lists of size n, and all
k) be T(n)

Time for non-recursive operations is linear: say bounded by cn.
Will show inductively T(n) at most 4cn (base case n=1).

T(n) ≤ cn + 1/n [Σn>j>kT(j) + Σ0<j<kT(n-j)]

T(n) ≤ cn + 1/n.4c[Σj>k j + Σj<k(n-j)] by inductive hypothesis

Σj>k j + Σj<k(n-j) = Σj>k j + (k-1)n - Σj<k j ≤ Σj j + (k-1)n -2 Σj<k j

≤ n2/2 + (k-1)n - k(k-1) < n2/2 + k(n-k) ≤ 3/4 n2

T(n) ≤ cn + 3cn as required

Zero-Error Computation

10

Zero-Error Computation

11

Zero-Error Computation

Las-Vegas Algorithms: Probabilistic algorithms with
deterministic outcome (but probabilistic run time)

ZPTIME(T): class of languages decided by a zero-
error probabilistic TM, with expected running time
at most T

ZPP = ZPTIME(poly)

ZPP = RP ∩ co-RP

11

ZPP ⊆ RP

12

ZPP ⊆ RP
Truncate after “long enough,” and say “no”

Do we still have bounded (one-sided) error?

Will run for “too long” only with small probability

Because expected running time short

With high probability the running time does not exceed the
expected running time by much

Pr[x > a E[X]] < 1/a (non-negative X)

Markov’s inequality

Pr[error] changes by at most 1/a if truncated after a times
expected running time

12

 RP ∩ co-RP ⊆ ZPP

13

If L ∈ RP ∩ co-RP a ZPP algorithm for L:

Run both RP and coRP algorithms

If former says yes or latter says no, output that
answer

Else, i.e., if former says no and latter yes, repeat

Expected number of repeats = O(1)

 RP ∩ co-RP ⊆ ZPP

13

Today

14

Today

Zoo

BPL ⊆ P

Expected running time

Zero-Error probabilistic computation

ZPP = RP ∩ co-RP

14

