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Pr[M(x)=yes]:              
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Recap
PP, RP, co-RP, BPP

PP too powerful: NP ⊆ PP

RP, BPP, with bounded gap

Gap can be boosted from 1/poly to 1-1/exp

A realistic/useful computational model

Today:

NP ⊈ BPP, unless PH collapses

BPP ⊆ Σ2P ∩ Π2P
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there should be at least one 
random tape which works for 
all 2n inputs of length n

Then, can give that 
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If it were “for all”, in coNP

L = { x| ∃a small “neighborhood”, ∀r’, for some r “near” r’, 

M(x,r)=yes  }

Note: Neighborhood of r is small (polynomially large), so 
can go through all of them in polynomial time
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For each x∈L, does there exist a P s.t. P(Yesx) := ∪r∈Yes(x) P(r) = {0,1}m? 

Yes! For all large S (like Yesx) can indeed find a P s.t. P(S) = {0,1}m

In fact, most P work (if k big enough)!
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Probabilistic Method (finding hay in haystack)

To prove ∃P with some property

Define a probability distribution over all candidate 
P’s and prove that the property holds with 
positive probability (often even close to one)

Distribution s.t. easy to prove positive 
probability of property holding
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BPP-Complete Problem?
Not known!

Usual attempt: L = { (M,x,1t) | M(x)=yes in time t with 
probability > 2/3}

Is indeed BPP-Hard

But in BPP?

Just run M(x) for t steps and accept if it accepts? 

If (M.x.1t) in L, we will indeed accept with prob. > 2/3

But M may not have a bounded gap. Then, if (M,x,1t) not 
in L, we may accept with prob. very close to 2/3. 
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Not known!

But is true for BPTIME(T)/1 
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BPP ⊆ Σ2P ∩ Π2P

Coming up

Basic randomized algorithmic techniques

Saving on randomness

15


