Probabilistic Computation

Lecture 13
BPP vs. PH
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@ PP, RP, co-RP, BPP

@ PP too powerful: NP C PP

@ RP, BPP, with bounded gap
@ Gap can be boosted from 1/poly to 1-1/exp
@ A realistic/useful computational model
@ Today:
@ NP ¢ BPP, unless PH collapses

@ BPP c 2,°n I,°
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@ Can randomized algorithms efficiently decide all NP problems?

@ Unlikely: NP € BPP = PH = 2,°
@ Will show BPP < P/poly

@ Then NP € BPP = NP < P/poly

% =>PH=ZZP
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@ If error probability is
sufficiently small, will show N
there should be at least one
random tape which works for
all 2" inputs of length n

@ Then, can give that
random tape as advice

@ One such random tape if
average (over x) error
probability is less than 2™

@ BPP: can make worst
error probability < 2"
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@ xeL: “for almost all” r, M(x,r)=yes
@ x€L: M(x,r)=yes for very few r

@ L = { x| for almost all r, M(x,r)=yes }
@ If it were “for all”, in coNP

o L = { x| Ja small "neighborhood”, Vr’, for some r “near” r’,
M(x,r)=yes }

@ Note: Neighborhood of r is small (polynomially large), so
can go through all of them in polynomial time
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xeL: |Yesy|>(1-2-")2™m

x&EL: |Yesy|<2-n2m

Space of random tapes = {0,1}"

@ x€L: Will show that there exist a small set of shifts of

Yes, that cover all r's

@ x€&L: Yesy very small, so its few shifts cover only a small

region
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@ “A small set of shifts”: P = {uy,u,,...,ux}

o P(r)=1 rPu;,rPus,...,rPust where r, u; are m-bit strings, and k is

“small” (poly(n))

@ For each x€L, does there exist a P s.t. P(Yesx) := Urevesix) P(r) = {0,1}™?

@ Yes! For all large S (like Yesx) can indeed find a P s.t. P(S) = {0,1}"

@ In fact, most P work (if k big enough)!
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@ Probabilistic Method (finding hay in haystack)

@ To prove P with some property

@ Define a probability distribution over all candidate
P's and prove that the property holds with
positive probability (often even close to one)

@ Distribution s.t. easy to prove positive
probability of property holding
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@ Probabilistic method to find P = {uj,uz,...,ux}, s.t. for all large
S, P(S) = {O,1}"

@ Distribution over Ps: randomized experiment to generate P

@ Pick each u; independently, and uniformly at random
from {0,1}™

® Priover p[P(S) # {0,1}™ = Priover p[dz z&P(S)]
< 22 Priover p[ZEP(S)] = 22 Priover w.u[Vi zDui & S]
= 2, [T Pr over w)[zPUi &€ S] = Z, Tl Pr over wh[Ui & zDST]
=2, M (Is¢|l/2m) < 2, T1; 2" =, 202"k = |

@ So (with |SI>(1-2-)2™ and k=m/n), 3P, P(S) = {0O,1}™
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xeL: |Yesy|>(1-2-")2™m

x&EL: |Yesy|<2-n2m

Space of random strings = {0,1}™
@ For each xeL, dP (of size k=m/n) s.t. P(Yesy)={0,1}™
@ For each x€L, P(Yesy) € {0,1}™

o | P(Yesx) | < k|l Yesx| = (m/n) 2-n2m < 2m

o L = { x| P Vr’ for some reP}(r') M(x,r)=yes }
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BPP-Complete Problem?

@& Not known!

@ Usual attempt: L = { (M,x,1) | M(x)=yes in time t with
probability > 2/3}

@ Is indeed BPP-Hard
@ Buf in BPP?
@ Just run M(x) for t steps and accept if it accepts?
o If (M.x.1") in L, we will indeed accept with prob. > 2/3

@ But M may not have a bounded gap. Then, if (M,x,1) not
in L, we may accept with prob. very close to 2/3.
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BPTIME-Hierarchy Theorem?

@ BPTIME(n) & BPTIME(n!%9)?

® Not known!

@ But is true for BPTIME(T)/1
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Today

@ Probabilistic computation

@ BPP c P/poly (so if NP € BPP, then PH=3,)
@ BPP C 2,°n NP

@ Coming up

@ Basic randomized algorithmic techniques

@ Saving on randomness




