
Probabilistic Computation

Lecture 13
BPP vs. PH

1

Recap

2

Probabilistic computation

Recap

2

Probabilistic computation

NTM (on “random certificates”) for L:

Recap

2

Probabilistic computation

NTM (on “random certificates”) for L:

Pr[M(x)=yes]:

Recap

2

Probabilistic computation

NTM (on “random certificates”) for L:

Pr[M(x)=yes]:

Recap

x∉L x∈L

2

Probabilistic computation

NTM (on “random certificates”) for L:

Pr[M(x)=yes]:

PTM for L: Pr[yes]:

Recap

x∉L x∈L

x∉L x∈L

2

Probabilistic computation

NTM (on “random certificates”) for L:

Pr[M(x)=yes]:

PTM for L: Pr[yes]:

BPTM for L: Pr[yes]:

Recap

x∉L x∈L

x∉L x∈L

x∉L x∈L

2

Probabilistic computation

NTM (on “random certificates”) for L:

Pr[M(x)=yes]:

PTM for L: Pr[yes]:

BPTM for L: Pr[yes]:

RTM for L: Pr[yes]:

Recap

x∉L x∈L

x∉L x∈L

x∉L x∈L

x∉L x∈L

2

Recap

3

Recap
PP, RP, co-RP, BPP

3

Recap
PP, RP, co-RP, BPP

PP too powerful: NP ⊆ PP

3

Recap
PP, RP, co-RP, BPP

PP too powerful: NP ⊆ PP

RP, BPP, with bounded gap

3

Recap
PP, RP, co-RP, BPP

PP too powerful: NP ⊆ PP

RP, BPP, with bounded gap

Gap can be boosted from 1/poly to 1-1/exp

3

Recap
PP, RP, co-RP, BPP

PP too powerful: NP ⊆ PP

RP, BPP, with bounded gap

Gap can be boosted from 1/poly to 1-1/exp

A realistic/useful computational model

3

Recap
PP, RP, co-RP, BPP

PP too powerful: NP ⊆ PP

RP, BPP, with bounded gap

Gap can be boosted from 1/poly to 1-1/exp

A realistic/useful computational model

Today:

3

Recap
PP, RP, co-RP, BPP

PP too powerful: NP ⊆ PP

RP, BPP, with bounded gap

Gap can be boosted from 1/poly to 1-1/exp

A realistic/useful computational model

Today:

NP ⊈ BPP, unless PH collapses

3

Recap
PP, RP, co-RP, BPP

PP too powerful: NP ⊆ PP

RP, BPP, with bounded gap

Gap can be boosted from 1/poly to 1-1/exp

A realistic/useful computational model

Today:

NP ⊈ BPP, unless PH collapses

BPP ⊆ Σ2P ∩ Π2P

3

BPP vs. NP

4

BPP vs. NP

Can randomized algorithms efficiently decide all NP problems?

4

BPP vs. NP

Can randomized algorithms efficiently decide all NP problems?

Unlikely: NP ⊆ BPP ⇒ PH = Σ2P

4

BPP vs. NP

Can randomized algorithms efficiently decide all NP problems?

Unlikely: NP ⊆ BPP ⇒ PH = Σ2P

Will show BPP ⊆ P/poly

4

BPP vs. NP

Can randomized algorithms efficiently decide all NP problems?

Unlikely: NP ⊆ BPP ⇒ PH = Σ2P

Will show BPP ⊆ P/poly

Then NP ⊆ BPP ⇒ NP ⊆ P/poly

4

BPP vs. NP

Can randomized algorithms efficiently decide all NP problems?

Unlikely: NP ⊆ BPP ⇒ PH = Σ2P

Will show BPP ⊆ P/poly

Then NP ⊆ BPP ⇒ NP ⊆ P/poly

 ⇒ PH = Σ2P

4

BPP ⊆ P/poly

5

BPP ⊆ P/poly
If error probability is
sufficiently small, will show
there should be at least one
random tape which works for
all 2n inputs of length n

5

BPP ⊆ P/poly
If error probability is
sufficiently small, will show
there should be at least one
random tape which works for
all 2n inputs of length n

☑ ☒ ☒ ☑ ☑ ☑
☑ ☑ ☑ ☑ ☑ ☒
☑ ☑ ☑ ☑ ☑ ☑
☑ ☑ ☒ ☑ ☑ ☑
☑ ☑ ☑ ☑ ☒ ☑
☒ ☒ ☑ ☑ ☑ ☑
☒ ☑ ☑ ☑ ☑ ☑
☑ ☑ ☑ ☒ ☑ ☑
☑ ☑ ☑ ☑ ☒ ☑
☑ ☑ ☑ ☒ ☑ ☑
☑ ☑ ☑ ☑ ☑ ☑
☑ ☑ ☑ ☑ ☑ ☒
☑ ☑ ☑ ☑ ☑ ☑

xr

5

BPP ⊆ P/poly
If error probability is
sufficiently small, will show
there should be at least one
random tape which works for
all 2n inputs of length n

Then, can give that
random tape as advice

☑ ☒ ☒ ☑ ☑ ☑
☑ ☑ ☑ ☑ ☑ ☒
☑ ☑ ☑ ☑ ☑ ☑
☑ ☑ ☒ ☑ ☑ ☑
☑ ☑ ☑ ☑ ☒ ☑
☒ ☒ ☑ ☑ ☑ ☑
☒ ☑ ☑ ☑ ☑ ☑
☑ ☑ ☑ ☒ ☑ ☑
☑ ☑ ☑ ☑ ☒ ☑
☑ ☑ ☑ ☒ ☑ ☑
☑ ☑ ☑ ☑ ☑ ☑
☑ ☑ ☑ ☑ ☑ ☒
☑ ☑ ☑ ☑ ☑ ☑

xr

5

BPP ⊆ P/poly
If error probability is
sufficiently small, will show
there should be at least one
random tape which works for
all 2n inputs of length n

Then, can give that
random tape as advice

One such random tape if
average (over x) error
probability is less than 2-n

☑ ☒ ☒ ☑ ☑ ☑
☑ ☑ ☑ ☑ ☑ ☒
☑ ☑ ☑ ☑ ☑ ☑
☑ ☑ ☒ ☑ ☑ ☑
☑ ☑ ☑ ☑ ☒ ☑
☒ ☒ ☑ ☑ ☑ ☑
☒ ☑ ☑ ☑ ☑ ☑
☑ ☑ ☑ ☒ ☑ ☑
☑ ☑ ☑ ☑ ☒ ☑
☑ ☑ ☑ ☒ ☑ ☑
☑ ☑ ☑ ☑ ☑ ☑
☑ ☑ ☑ ☑ ☑ ☒
☑ ☑ ☑ ☑ ☑ ☑

xr

5

BPP ⊆ P/poly
If error probability is
sufficiently small, will show
there should be at least one
random tape which works for
all 2n inputs of length n

Then, can give that
random tape as advice

One such random tape if
average (over x) error
probability is less than 2-n

BPP: can make worst
error probability < 2-n

☑ ☒ ☒ ☑ ☑ ☑
☑ ☑ ☑ ☑ ☑ ☒
☑ ☑ ☑ ☑ ☑ ☑
☑ ☑ ☒ ☑ ☑ ☑
☑ ☑ ☑ ☑ ☒ ☑
☒ ☒ ☑ ☑ ☑ ☑
☒ ☑ ☑ ☑ ☑ ☑
☑ ☑ ☑ ☒ ☑ ☑
☑ ☑ ☑ ☑ ☒ ☑
☑ ☑ ☑ ☒ ☑ ☑
☑ ☑ ☑ ☑ ☑ ☑
☑ ☑ ☑ ☑ ☑ ☒
☑ ☑ ☑ ☑ ☑ ☑

xr

5

BPP vs. PH

6

BPP vs. PH

BPP ⊆ Σ2P

6

BPP vs. PH

BPP ⊆ Σ2P

So BPP ⊆ Σ2P ∩ Π2P

6

BPP ⊆ Σ2P

7

BPP ⊆ Σ2P

x∈L: “for almost all” r, M(x,r)=yes

7

BPP ⊆ Σ2P

x∈L: “for almost all” r, M(x,r)=yes

x∉L: M(x,r)=yes for very few r

7

BPP ⊆ Σ2P

x∈L: “for almost all” r, M(x,r)=yes

x∉L: M(x,r)=yes for very few r

L = { x| for almost all r, M(x,r)=yes }

7

BPP ⊆ Σ2P

x∈L: “for almost all” r, M(x,r)=yes

x∉L: M(x,r)=yes for very few r

L = { x| for almost all r, M(x,r)=yes }

If it were “for all”, in coNP

7

BPP ⊆ Σ2P

x∈L: “for almost all” r, M(x,r)=yes

x∉L: M(x,r)=yes for very few r

L = { x| for almost all r, M(x,r)=yes }

If it were “for all”, in coNP

L = { x| ∃a small “neighborhood”, ∀r’, for some r “near” r’,

M(x,r)=yes }

7

BPP ⊆ Σ2P

x∈L: “for almost all” r, M(x,r)=yes

x∉L: M(x,r)=yes for very few r

L = { x| for almost all r, M(x,r)=yes }

If it were “for all”, in coNP

L = { x| ∃a small “neighborhood”, ∀r’, for some r “near” r’,

M(x,r)=yes }

Note: Neighborhood of r is small (polynomially large), so
can go through all of them in polynomial time

7

BPP ⊆ Σ2P

Space of random tapes = {0,1}m
Yesx = {r| M(x,r)=yes }

8

BPP ⊆ Σ2P
x∈L: |Yesx|>(1-2-n)2m

Space of random tapes = {0,1}m
Yesx = {r| M(x,r)=yes }

8

BPP ⊆ Σ2P x∉L: |Yesx|<2-n2m
x∈L: |Yesx|>(1-2-n)2m

Space of random tapes = {0,1}m
Yesx = {r| M(x,r)=yes }

8

BPP ⊆ Σ2P

x∈L: Will show that there exist a small set of shifts of

Yesx that cover all r’s

x∉L: |Yesx|<2-n2m
x∈L: |Yesx|>(1-2-n)2m

Space of random tapes = {0,1}m
Yesx = {r| M(x,r)=yes }

8

BPP ⊆ Σ2P

x∈L: Will show that there exist a small set of shifts of

Yesx that cover all r’s

x∉L: Yesx very small, so its few shifts cover only a small

region

x∉L: |Yesx|<2-n2m
x∈L: |Yesx|>(1-2-n)2m

Space of random tapes = {0,1}m
Yesx = {r| M(x,r)=yes }

8

BPP ⊆ Σ2P

9

BPP ⊆ Σ2P

“A small set of shifts”: P = {u1,u2,...,uk}

9

BPP ⊆ Σ2P

“A small set of shifts”: P = {u1,u2,...,uk}

P(r)={ r⊕u1,r⊕u2,...,r⊕uk} where r, ui are m-bit strings, and k is

“small” (poly(n))

9

BPP ⊆ Σ2P

“A small set of shifts”: P = {u1,u2,...,uk}

P(r)={ r⊕u1,r⊕u2,...,r⊕uk} where r, ui are m-bit strings, and k is

“small” (poly(n))

For each x∈L, does there exist a P s.t. P(Yesx) := ∪r∈Yes(x) P(r) = {0,1}m?

9

BPP ⊆ Σ2P

“A small set of shifts”: P = {u1,u2,...,uk}

P(r)={ r⊕u1,r⊕u2,...,r⊕uk} where r, ui are m-bit strings, and k is

“small” (poly(n))

For each x∈L, does there exist a P s.t. P(Yesx) := ∪r∈Yes(x) P(r) = {0,1}m?

Yes! For all large S (like Yesx) can indeed find a P s.t. P(S) = {0,1}m

9

BPP ⊆ Σ2P

“A small set of shifts”: P = {u1,u2,...,uk}

P(r)={ r⊕u1,r⊕u2,...,r⊕uk} where r, ui are m-bit strings, and k is

“small” (poly(n))

For each x∈L, does there exist a P s.t. P(Yesx) := ∪r∈Yes(x) P(r) = {0,1}m?

Yes! For all large S (like Yesx) can indeed find a P s.t. P(S) = {0,1}m

In fact, most P work (if k big enough)!

9

BPP ⊆ Σ2P

10

BPP ⊆ Σ2P

Probabilistic Method (finding hay in haystack)

10

BPP ⊆ Σ2P

Probabilistic Method (finding hay in haystack)

To prove ∃P with some property

10

BPP ⊆ Σ2P

Probabilistic Method (finding hay in haystack)

To prove ∃P with some property

Define a probability distribution over all candidate
P’s and prove that the property holds with
positive probability (often even close to one)

10

BPP ⊆ Σ2P

Probabilistic Method (finding hay in haystack)

To prove ∃P with some property

Define a probability distribution over all candidate
P’s and prove that the property holds with
positive probability (often even close to one)

Distribution s.t. easy to prove positive
probability of property holding

10

BPP ⊆ Σ2P

11

BPP ⊆ Σ2P

Probabilistic method to find P = {u1,u2,...,uk}, s.t. for all large
S, P(S) = {0,1}m

11

BPP ⊆ Σ2P

Probabilistic method to find P = {u1,u2,...,uk}, s.t. for all large
S, P(S) = {0,1}m

Distribution over P’s: randomized experiment to generate P

11

BPP ⊆ Σ2P

Probabilistic method to find P = {u1,u2,...,uk}, s.t. for all large
S, P(S) = {0,1}m

Distribution over P’s: randomized experiment to generate P

Pick each ui independently, and uniformly at random
from {0,1}m

11

BPP ⊆ Σ2P

Probabilistic method to find P = {u1,u2,...,uk}, s.t. for all large
S, P(S) = {0,1}m

Distribution over P’s: randomized experiment to generate P

Pick each ui independently, and uniformly at random
from {0,1}m

Pr(over P)[P(S) ≠ {0,1}m] = Pr(over P)[∃z z∉P(S)]

11

BPP ⊆ Σ2P

Probabilistic method to find P = {u1,u2,...,uk}, s.t. for all large
S, P(S) = {0,1}m

Distribution over P’s: randomized experiment to generate P

Pick each ui independently, and uniformly at random
from {0,1}m

Pr(over P)[P(S) ≠ {0,1}m] = Pr(over P)[∃z z∉P(S)]

11

BPP ⊆ Σ2P

Probabilistic method to find P = {u1,u2,...,uk}, s.t. for all large
S, P(S) = {0,1}m

Distribution over P’s: randomized experiment to generate P

Pick each ui independently, and uniformly at random
from {0,1}m

Pr(over P)[P(S) ≠ {0,1}m] = Pr(over P)[∃z z∉P(S)]

11

BPP ⊆ Σ2P

Probabilistic method to find P = {u1,u2,...,uk}, s.t. for all large
S, P(S) = {0,1}m

Distribution over P’s: randomized experiment to generate P

Pick each ui independently, and uniformly at random
from {0,1}m

Pr(over P)[P(S) ≠ {0,1}m] = Pr(over P)[∃z z∉P(S)]
≤ Σz Pr(over P)[z∉P(S)]

11

BPP ⊆ Σ2P

Probabilistic method to find P = {u1,u2,...,uk}, s.t. for all large
S, P(S) = {0,1}m

Distribution over P’s: randomized experiment to generate P

Pick each ui independently, and uniformly at random
from {0,1}m

Pr(over P)[P(S) ≠ {0,1}m] = Pr(over P)[∃z z∉P(S)]
≤ Σz Pr(over P)[z∉P(S)] = Σz Pr(over u1..uk)[∀i z⊕ui ∉ S]

11

BPP ⊆ Σ2P

Probabilistic method to find P = {u1,u2,...,uk}, s.t. for all large
S, P(S) = {0,1}m

Distribution over P’s: randomized experiment to generate P

Pick each ui independently, and uniformly at random
from {0,1}m

Pr(over P)[P(S) ≠ {0,1}m] = Pr(over P)[∃z z∉P(S)]
≤ Σz Pr(over P)[z∉P(S)] = Σz Pr(over u1..uk)[∀i z⊕ui ∉ S]
= Σz Πi Pr (over ui)[z⊕ui ∉ S]

11

BPP ⊆ Σ2P

Probabilistic method to find P = {u1,u2,...,uk}, s.t. for all large
S, P(S) = {0,1}m

Distribution over P’s: randomized experiment to generate P

Pick each ui independently, and uniformly at random
from {0,1}m

Pr(over P)[P(S) ≠ {0,1}m] = Pr(over P)[∃z z∉P(S)]
≤ Σz Pr(over P)[z∉P(S)] = Σz Pr(over u1..uk)[∀i z⊕ui ∉ S]
= Σz Πi Pr (over ui)[z⊕ui ∉ S] = Σz Πi Pr (over ui)[ui ∉ z⊕S]

11

BPP ⊆ Σ2P

Probabilistic method to find P = {u1,u2,...,uk}, s.t. for all large
S, P(S) = {0,1}m

Distribution over P’s: randomized experiment to generate P

Pick each ui independently, and uniformly at random
from {0,1}m

Pr(over P)[P(S) ≠ {0,1}m] = Pr(over P)[∃z z∉P(S)]
≤ Σz Pr(over P)[z∉P(S)] = Σz Pr(over u1..uk)[∀i z⊕ui ∉ S]
= Σz Πi Pr (over ui)[z⊕ui ∉ S]
= Σz Πi (|Sc|/2m)

= Σz Πi Pr (over ui)[ui ∉ z⊕S]

11

BPP ⊆ Σ2P

Probabilistic method to find P = {u1,u2,...,uk}, s.t. for all large
S, P(S) = {0,1}m

Distribution over P’s: randomized experiment to generate P

Pick each ui independently, and uniformly at random
from {0,1}m

Pr(over P)[P(S) ≠ {0,1}m] = Pr(over P)[∃z z∉P(S)]

< Σz Πi 2-n

≤ Σz Pr(over P)[z∉P(S)] = Σz Pr(over u1..uk)[∀i z⊕ui ∉ S]
= Σz Πi Pr (over ui)[z⊕ui ∉ S]
= Σz Πi (|Sc|/2m)

= Σz Πi Pr (over ui)[ui ∉ z⊕S]

11

BPP ⊆ Σ2P

Probabilistic method to find P = {u1,u2,...,uk}, s.t. for all large
S, P(S) = {0,1}m

Distribution over P’s: randomized experiment to generate P

Pick each ui independently, and uniformly at random
from {0,1}m

Pr(over P)[P(S) ≠ {0,1}m] = Pr(over P)[∃z z∉P(S)]

< Σz Πi 2-n

≤ Σz Pr(over P)[z∉P(S)] = Σz Pr(over u1..uk)[∀i z⊕ui ∉ S]
= Σz Πi Pr (over ui)[z⊕ui ∉ S]
= Σz Πi (|Sc|/2m) = 2m.(2-n)k = 1

= Σz Πi Pr (over ui)[ui ∉ z⊕S]

11

BPP ⊆ Σ2P

Probabilistic method to find P = {u1,u2,...,uk}, s.t. for all large
S, P(S) = {0,1}m

Distribution over P’s: randomized experiment to generate P

Pick each ui independently, and uniformly at random
from {0,1}m

Pr(over P)[P(S) ≠ {0,1}m] = Pr(over P)[∃z z∉P(S)]

So (with |S|>(1-2-n)2m and k=m/n), ∃P, P(S) = {0,1}m

< Σz Πi 2-n

≤ Σz Pr(over P)[z∉P(S)] = Σz Pr(over u1..uk)[∀i z⊕ui ∉ S]
= Σz Πi Pr (over ui)[z⊕ui ∉ S]
= Σz Πi (|Sc|/2m) = 2m.(2-n)k = 1

= Σz Πi Pr (over ui)[ui ∉ z⊕S]

11

BPP ⊆ Σ2P x∉L: |Yesx|<2-n2m
x∈L: |Yesx|>(1-2-n)2m

Space of random strings = {0,1}m
Yesx = {r| M(x,r)=yes }

12

For each x∈L, ∃P (of size k=m/n) s.t. P(Yesx)={0,1}m

BPP ⊆ Σ2P x∉L: |Yesx|<2-n2m
x∈L: |Yesx|>(1-2-n)2m

Space of random strings = {0,1}m
Yesx = {r| M(x,r)=yes }

12

For each x∈L, ∃P (of size k=m/n) s.t. P(Yesx)={0,1}m

For each x∉L, P(Yesx) ⊊ {0,1}m

BPP ⊆ Σ2P x∉L: |Yesx|<2-n2m
x∈L: |Yesx|>(1-2-n)2m

Space of random strings = {0,1}m
Yesx = {r| M(x,r)=yes }

12

For each x∈L, ∃P (of size k=m/n) s.t. P(Yesx)={0,1}m

For each x∉L, P(Yesx) ⊊ {0,1}m

| P(Yesx) | ≤ k| Yesx | = (m/n) 2-n2m < 2m

BPP ⊆ Σ2P x∉L: |Yesx|<2-n2m
x∈L: |Yesx|>(1-2-n)2m

Space of random strings = {0,1}m
Yesx = {r| M(x,r)=yes }

12

For each x∈L, ∃P (of size k=m/n) s.t. P(Yesx)={0,1}m

For each x∉L, P(Yesx) ⊊ {0,1}m

| P(Yesx) | ≤ k| Yesx | = (m/n) 2-n2m < 2m

L = { x| ∃P ∀r’ for some r∈P-1(r’) M(x,r)=yes }

BPP ⊆ Σ2P x∉L: |Yesx|<2-n2m
x∈L: |Yesx|>(1-2-n)2m

Space of random strings = {0,1}m
Yesx = {r| M(x,r)=yes }

12

BPP-Complete Problem?

13

BPP-Complete Problem?
Not known!

13

BPP-Complete Problem?
Not known!

Usual attempt: L = { (M,x,1t) | M(x)=yes in time t with
probability > 2/3}

13

BPP-Complete Problem?
Not known!

Usual attempt: L = { (M,x,1t) | M(x)=yes in time t with
probability > 2/3}

Is indeed BPP-Hard

13

BPP-Complete Problem?
Not known!

Usual attempt: L = { (M,x,1t) | M(x)=yes in time t with
probability > 2/3}

Is indeed BPP-Hard

But in BPP?

13

BPP-Complete Problem?
Not known!

Usual attempt: L = { (M,x,1t) | M(x)=yes in time t with
probability > 2/3}

Is indeed BPP-Hard

But in BPP?

Just run M(x) for t steps and accept if it accepts?

13

BPP-Complete Problem?
Not known!

Usual attempt: L = { (M,x,1t) | M(x)=yes in time t with
probability > 2/3}

Is indeed BPP-Hard

But in BPP?

Just run M(x) for t steps and accept if it accepts?

If (M.x.1t) in L, we will indeed accept with prob. > 2/3

13

BPP-Complete Problem?
Not known!

Usual attempt: L = { (M,x,1t) | M(x)=yes in time t with
probability > 2/3}

Is indeed BPP-Hard

But in BPP?

Just run M(x) for t steps and accept if it accepts?

If (M.x.1t) in L, we will indeed accept with prob. > 2/3

But M may not have a bounded gap. Then, if (M,x,1t) not
in L, we may accept with prob. very close to 2/3.

13

BPTIME-Hierarchy Theorem?

14

BPTIME-Hierarchy Theorem?

BPTIME(n) ⊊ BPTIME(n100)?

14

BPTIME-Hierarchy Theorem?

BPTIME(n) ⊊ BPTIME(n100)?

Not known!

14

BPTIME-Hierarchy Theorem?

BPTIME(n) ⊊ BPTIME(n100)?

Not known!

But is true for BPTIME(T)/1

14

Today

15

Today
Probabilistic computation

15

Today
Probabilistic computation

BPP ⊆ P/poly (so if NP ⊆ BPP, then PH=Σ2P)

15

Today
Probabilistic computation

BPP ⊆ P/poly (so if NP ⊆ BPP, then PH=Σ2P)

BPP ⊆ Σ2P ∩ Π2P

15

Today
Probabilistic computation

BPP ⊆ P/poly (so if NP ⊆ BPP, then PH=Σ2P)

BPP ⊆ Σ2P ∩ Π2P

Coming up

15

Today
Probabilistic computation

BPP ⊆ P/poly (so if NP ⊆ BPP, then PH=Σ2P)

BPP ⊆ Σ2P ∩ Π2P

Coming up

Basic randomized algorithmic techniques

15

Today
Probabilistic computation

BPP ⊆ P/poly (so if NP ⊆ BPP, then PH=Σ2P)

BPP ⊆ Σ2P ∩ Π2P

Coming up

Basic randomized algorithmic techniques

Saving on randomness

15

