
Probabilistic Computation

Lecture 12
Flipping coins, taking chances
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Different possible definitions of a prob. TM accepting input

M accepts x if pr[M(x)=yes] > 0; rejects if pr[M(x)=yes] = 0

M accepts x if pr[M(x)=yes] > 1/2; rejects if pr[M(x)=yes] ≤ 1/2 

M accepts x if pr[M(x)=yes] > 2/3; rejects if pr[M(x)=yes] < 1/3

M accepts x if pr[M(x)=yes] > 2/3; rejects if pr[M(x)=yes] = 0

Last two: If on any x neither, M doesn’t decide a language!

When M does decide, much better than random guess
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Random Tape
Random choice: flipping a fair coin

Coin flip is written on a read-once 
“random tape’’

Enough coin flips made and written 
on the tape first, then start 
execution

When considering bounded time 
TMs length of random tape (max 
coins used) also bounded

x
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Accept if pr[yes] > 0; reject if pr[yes] = 0        

Accept if pr[yes] > 1/2; reject if pr[yes] ≤ 1/2     

Accept if pr[yes] > 2/3; reject if pr[yes] < 1/3

Accept if pr[yes] > 2/3; reject if pr[yes] = 0 

(Not standard nomenclature!)
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BPTM
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If pr[M(x)=yes] > 1/2 ⇒ pr[M(x)=yes] > 1/2 + ε              
then M and M’ equivalent

What is such an ε?

2-(m+1) where no. of coins used by M is at most m

M’ tosses at most m+2 coins

M  
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NP ⊆ PP

Use random-tape as non-
deterministic choices of 
NTM M

If M rejects, accept with 
1/2 prob., else accept

If even one thread of M(x) 
accepts, pr[M(x)=yes] > 1/2

Accepting gap can be 
exponentially small

PP and NP
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Bounding Probability Gap

Gap

Minx∈L Pr[M(x)=yes] - Maxx∉L Pr[M(x)=yes]

BPP, RP, coRP require M to have gap some 
constant (1/3, 2/3)

Setting gap = 1/nc is enough

Can be boosted to gap = 1 - 1/2n^d in 
polynomial time
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Pr[M’(x)=no] ≤ (1-δ)t

With t = nd/δ, Pr[M’(x)=no] < e-(n^d)   (1-δ < e-δ)

For δ = n-c, t=nd+c is polynomial
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Soundness Amplification 
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i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

Error only if |estimate - real| ≥ gap/2

Estimation error goes down exponentially with t: 
Chernoff bound

Pr[ |estimate - real| ≥ δ/2 ] ≤ 2-Ω(t.δ^2)

t = O(nd/δ2) enough for Pr[error] ≤  2-n^d
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Probabilistic computation

PP, RP, co-RP, BPP

PP too powerful: NP ⊆ PP

Constant gap: BPP, RP, co-RP

RP, co-RP one-sided error

Soundness Amplification: for RP, for BPP

From gap 1/poly to 1-1/exp

Next: more on BPP and relatives
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