
Probabilistic Computation

Lecture 12
Flipping coins, taking chances

PP, BPP

1

Probabilistic Computation

2

Probabilistic Computation

Output depends not only on x,
but also on random “coin flips”

2

Probabilistic Computation

Output depends not only on x,
but also on random “coin flips”

M,x define a probability
distribution over outcomes

2

Probabilistic Computation

Output depends not only on x,
but also on random “coin flips”

M,x define a probability
distribution over outcomes

If for all x, M(x) equals f(x)
with very high probability,
could be used as f(x)

2

Probabilistic Computation

Output depends not only on x,
but also on random “coin flips”

M,x define a probability
distribution over outcomes

If for all x, M(x) equals f(x)
with very high probability,
could be used as f(x)

x
coins

M

2

Language Decided by a
Probabilistic Computation

3

Language Decided by a
Probabilistic Computation

Different possible definitions of a prob. TM accepting input

3

Language Decided by a
Probabilistic Computation

Different possible definitions of a prob. TM accepting input

M accepts x if pr[M(x)=yes] > 0; rejects if pr[M(x)=yes] = 0

3

Language Decided by a
Probabilistic Computation

Different possible definitions of a prob. TM accepting input

M accepts x if pr[M(x)=yes] > 0; rejects if pr[M(x)=yes] = 0

M accepts x if pr[M(x)=yes] > 1/2; rejects if pr[M(x)=yes] ≤ 1/2

3

Language Decided by a
Probabilistic Computation

Different possible definitions of a prob. TM accepting input

M accepts x if pr[M(x)=yes] > 0; rejects if pr[M(x)=yes] = 0

M accepts x if pr[M(x)=yes] > 1/2; rejects if pr[M(x)=yes] ≤ 1/2

M accepts x if pr[M(x)=yes] > 2/3; rejects if pr[M(x)=yes] < 1/3

3

Language Decided by a
Probabilistic Computation

Different possible definitions of a prob. TM accepting input

M accepts x if pr[M(x)=yes] > 0; rejects if pr[M(x)=yes] = 0

M accepts x if pr[M(x)=yes] > 1/2; rejects if pr[M(x)=yes] ≤ 1/2

M accepts x if pr[M(x)=yes] > 2/3; rejects if pr[M(x)=yes] < 1/3

M accepts x if pr[M(x)=yes] > 2/3; rejects if pr[M(x)=yes] = 0

3

Language Decided by a
Probabilistic Computation

Different possible definitions of a prob. TM accepting input

M accepts x if pr[M(x)=yes] > 0; rejects if pr[M(x)=yes] = 0

M accepts x if pr[M(x)=yes] > 1/2; rejects if pr[M(x)=yes] ≤ 1/2

M accepts x if pr[M(x)=yes] > 2/3; rejects if pr[M(x)=yes] < 1/3

M accepts x if pr[M(x)=yes] > 2/3; rejects if pr[M(x)=yes] = 0

Last two: If on any x neither, M doesn’t decide a language!

3

Language Decided by a
Probabilistic Computation

Different possible definitions of a prob. TM accepting input

M accepts x if pr[M(x)=yes] > 0; rejects if pr[M(x)=yes] = 0

M accepts x if pr[M(x)=yes] > 1/2; rejects if pr[M(x)=yes] ≤ 1/2

M accepts x if pr[M(x)=yes] > 2/3; rejects if pr[M(x)=yes] < 1/3

M accepts x if pr[M(x)=yes] > 2/3; rejects if pr[M(x)=yes] = 0

Last two: If on any x neither, M doesn’t decide a language!

When M does decide, much better than random guess

3

Probabilistic TM

4

Probabilistic TM

Like an NTM, but the two
possible transitions are
considered to be taken with
equal probability

4

Probabilistic TM

Like an NTM, but the two
possible transitions are
considered to be taken with
equal probability

4

Probabilistic TM

Like an NTM, but the two
possible transitions are
considered to be taken with
equal probability

4

Probabilistic TM

Like an NTM, but the two
possible transitions are
considered to be taken with
equal probability

4

Probabilistic TM

Like an NTM, but the two
possible transitions are
considered to be taken with
equal probability

4

Probabilistic TM

Like an NTM, but the two
possible transitions are
considered to be taken with
equal probability

Defines a probability with
which an input is accepted
or rejected

4

Probabilistic TM

Like an NTM, but the two
possible transitions are
considered to be taken with
equal probability

Defines a probability with
which an input is accepted
or rejected

1/8 1/8

1/4

1/4

1/4

4

Random Tape

x
coins

5

Random Tape
Random choice: flipping a fair coin

x
coins

5

Random Tape
Random choice: flipping a fair coin

Coin flip is written on a read-once
“random tape’’

x
coins

5

Random Tape
Random choice: flipping a fair coin

Coin flip is written on a read-once
“random tape’’

Enough coin flips made and written
on the tape first, then start
execution

x
coins

5

Random Tape
Random choice: flipping a fair coin

Coin flip is written on a read-once
“random tape’’

Enough coin flips made and written
on the tape first, then start
execution

When considering bounded time
TMs length of random tape (max
coins used) also bounded

x
coins

5

Random Tape

6

Random Tape

0 0 0

6

Random Tape

1/8

0 0 0

6

Random Tape

1/8

0 0 0

0 0 1

6

Random Tape

1/8 1/8

0 0 0

0 0 1

6

Random Tape

1/8 1/8

0 0 0

0 0 1

0 1

6

Random Tape

1/8 1/8

1/4

0 0 0

0 0 1

0 1

6

Random Tape

1/8 1/8

1/4

0 0 0

0 0 1

0 1

1 0

6

Random Tape

1/8 1/8

1/4

1/4

0 0 0

0 0 1

0 1

1 0

6

Random Tape

1/8 1/8

1/4

1/4

0 0 0

0 0 1

0 1

1 0

1 1

6

Random Tape

1/8 1/8

1/4

1/4

1/4

0 0 0

0 0 1

0 1

1 0

1 1

6

Random Tape

1/8 1/8

1/4

1/4

1/4

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1

1 0

1 1

6

Language Decided by a
Probabilistic Computation

7

Language Decided by a
Probabilistic Computation

Different possible definitions of accepting input

7

Language Decided by a
Probabilistic Computation

Different possible definitions of accepting input

Accept if pr[yes] > 0; reject if pr[yes] = 0

7

Language Decided by a
Probabilistic Computation

Different possible definitions of accepting input

Accept if pr[yes] > 0; reject if pr[yes] = 0 NTM

7

Language Decided by a
Probabilistic Computation

Different possible definitions of accepting input

Accept if pr[yes] > 0; reject if pr[yes] = 0

Accept if pr[yes] > 1/2; reject if pr[yes] ≤ 1/2

NTM

7

Language Decided by a
Probabilistic Computation

Different possible definitions of accepting input

Accept if pr[yes] > 0; reject if pr[yes] = 0

Accept if pr[yes] > 1/2; reject if pr[yes] ≤ 1/2

NTM

PTM

7

Language Decided by a
Probabilistic Computation

Different possible definitions of accepting input

Accept if pr[yes] > 0; reject if pr[yes] = 0

Accept if pr[yes] > 1/2; reject if pr[yes] ≤ 1/2

Accept if pr[yes] > 2/3; reject if pr[yes] < 1/3

NTM

PTM

7

Language Decided by a
Probabilistic Computation

Different possible definitions of accepting input

Accept if pr[yes] > 0; reject if pr[yes] = 0

Accept if pr[yes] > 1/2; reject if pr[yes] ≤ 1/2

Accept if pr[yes] > 2/3; reject if pr[yes] < 1/3

NTM

PTM
BPTM

7

Language Decided by a
Probabilistic Computation

Different possible definitions of accepting input

Accept if pr[yes] > 0; reject if pr[yes] = 0

Accept if pr[yes] > 1/2; reject if pr[yes] ≤ 1/2

Accept if pr[yes] > 2/3; reject if pr[yes] < 1/3

Accept if pr[yes] > 2/3; reject if pr[yes] = 0

NTM

PTM
BPTM

7

Language Decided by a
Probabilistic Computation

Different possible definitions of accepting input

Accept if pr[yes] > 0; reject if pr[yes] = 0

Accept if pr[yes] > 1/2; reject if pr[yes] ≤ 1/2

Accept if pr[yes] > 2/3; reject if pr[yes] < 1/3

Accept if pr[yes] > 2/3; reject if pr[yes] = 0

NTM

PTM
BPTM
RTM

7

Language Decided by a
Probabilistic Computation

Different possible definitions of accepting input

Accept if pr[yes] > 0; reject if pr[yes] = 0

Accept if pr[yes] > 1/2; reject if pr[yes] ≤ 1/2

Accept if pr[yes] > 2/3; reject if pr[yes] < 1/3

Accept if pr[yes] > 2/3; reject if pr[yes] = 0

(Not standard nomenclature!)

NTM

PTM
BPTM
RTM

7

PTIME, BPTIME and
RTIME

8

PTIME, BPTIME and
RTIME

T-time probabilistic TM

8

PTIME, BPTIME and
RTIME

T-time probabilistic TM

On all inputs x, on any random tape, terminates in
T(|x|) time and outputs “yes” or “no.”

8

PTIME, BPTIME and
RTIME

T-time probabilistic TM

On all inputs x, on any random tape, terminates in
T(|x|) time and outputs “yes” or “no.”

Just like NTIME(T)

8

PTIME, BPTIME and
RTIME

T-time probabilistic TM

On all inputs x, on any random tape, terminates in
T(|x|) time and outputs “yes” or “no.”

Just like NTIME(T)

BPTIME(T) = class of languages decided by BPTMs in
time T

8

PTIME, BPTIME and
RTIME

T-time probabilistic TM

On all inputs x, on any random tape, terminates in
T(|x|) time and outputs “yes” or “no.”

Just like NTIME(T)

BPTIME(T) = class of languages decided by BPTMs in
time T

Similarly PTIME(T) and RTIME(T)

8

PP, BPP and RP

9

PP, BPP and RP

PP = ∪c>0 PTIME(O(nc))

9

PP, BPP and RP

PP = ∪c>0 PTIME(O(nc))

BPP = ∪c>0 BPTIME(O(nc))

9

PP, BPP and RP

PP = ∪c>0 PTIME(O(nc))

BPP = ∪c>0 BPTIME(O(nc))

RP = ∪c>0 RTIME(O(nc))

9

PP, BPP and RP

PP = ∪c>0 PTIME(O(nc))

BPP = ∪c>0 BPTIME(O(nc))

RP = ∪c>0 RTIME(O(nc))

co-RP

9

co-RTM

10

co-RTM
Accept if pr[yes] > 0; reject if pr[yes] = 0 NTM

10

co-RTM
Accept if pr[yes] > 0; reject if pr[yes] = 0 NTM

Accept if pr[yes] = 1; reject if pr[yes] < 1 co-NTM

10

co-RTM
Accept if pr[yes] > 0; reject if pr[yes] = 0 NTM

Accept if pr[yes] = 1; reject if pr[yes] < 1 co-NTM

Accept if pr[yes] > 1/2; reject if pr[yes] ≤ 1/2 PTM

10

co-RTM
Accept if pr[yes] > 0; reject if pr[yes] = 0 NTM

Accept if pr[yes] = 1; reject if pr[yes] < 1 co-NTM

Accept if pr[yes] > 1/2; reject if pr[yes] ≤ 1/2 PTM

Accept if pr[yes] ≥ 1/2; reject if pr[yes] < 1/2 co-PTM

10

co-RTM
Accept if pr[yes] > 0; reject if pr[yes] = 0 NTM

Accept if pr[yes] = 1; reject if pr[yes] < 1 co-NTM

Accept if pr[yes] > 1/2; reject if pr[yes] ≤ 1/2 PTM

Accept if pr[yes] ≥ 1/2; reject if pr[yes] < 1/2 co-PTM

Accept if pr[yes] > 2/3; reject if pr[yes] < 1/3 BPTM

10

co-RTM
Accept if pr[yes] > 0; reject if pr[yes] = 0 NTM

Accept if pr[yes] = 1; reject if pr[yes] < 1 co-NTM

Accept if pr[yes] > 1/2; reject if pr[yes] ≤ 1/2 PTM

Accept if pr[yes] ≥ 1/2; reject if pr[yes] < 1/2 co-PTM

Accept if pr[yes] > 2/3; reject if pr[yes] < 1/3 BPTM

Accept if pr[yes] > 2/3; reject if pr[yes] < 1/3 co-BPTM

10

co-RTM
Accept if pr[yes] > 0; reject if pr[yes] = 0 NTM

Accept if pr[yes] = 1; reject if pr[yes] < 1 co-NTM

Accept if pr[yes] > 1/2; reject if pr[yes] ≤ 1/2 PTM

Accept if pr[yes] ≥ 1/2; reject if pr[yes] < 1/2 co-PTM

Accept if pr[yes] > 2/3; reject if pr[yes] < 1/3 BPTM

Accept if pr[yes] > 2/3; reject if pr[yes] < 1/3 co-BPTM

Accept if pr[yes] > 2/3; reject if pr[yes] = 0 RTM

10

co-RTM
Accept if pr[yes] > 0; reject if pr[yes] = 0 NTM

Accept if pr[yes] = 1; reject if pr[yes] < 1 co-NTM

Accept if pr[yes] > 1/2; reject if pr[yes] ≤ 1/2 PTM

Accept if pr[yes] ≥ 1/2; reject if pr[yes] < 1/2 co-PTM

Accept if pr[yes] > 2/3; reject if pr[yes] < 1/3 BPTM

Accept if pr[yes] > 2/3; reject if pr[yes] < 1/3 co-BPTM

Accept if pr[yes] > 2/3; reject if pr[yes] = 0 RTM

Accept if pr[yes] = 1; reject if pr[yes] < 1/3 co-RTM
10

RP and co-RP

11

RP and co-RP

One sided error (“bounded error” versions of NP and co-NP)

11

RP and co-RP

One sided error (“bounded error” versions of NP and co-NP)

RP: if yes, may still say no w/p at most 1/3

11

RP and co-RP

One sided error (“bounded error” versions of NP and co-NP)

RP: if yes, may still say no w/p at most 1/3

i.e., if RTM says no, can be wrong

11

RP and co-RP

One sided error (“bounded error” versions of NP and co-NP)

RP: if yes, may still say no w/p at most 1/3

i.e., if RTM says no, can be wrong

co-RP: if no, may still say yes w/p at most 1/3

11

RP and co-RP

One sided error (“bounded error” versions of NP and co-NP)

RP: if yes, may still say no w/p at most 1/3

i.e., if RTM says no, can be wrong

co-RP: if no, may still say yes w/p at most 1/3

i.e., if co-RTM says yes, can be wrong

11

co-BPP, co-PP

12

co-BPP, co-PP
BPP = co-BPP

12

co-BPP, co-PP
BPP = co-BPP

co-BPTMs are same as BPTMs

12

co-BPP, co-PP
BPP = co-BPP

co-BPTMs are same as BPTMs

In fact PP = co-PP

12

co-BPP, co-PP
BPP = co-BPP

co-BPTMs are same as BPTMs

In fact PP = co-PP

PTMs and co-PTMs differ on accepting inputs with Pr
[yes]=1/2

12

co-BPP, co-PP
BPP = co-BPP

co-BPTMs are same as BPTMs

In fact PP = co-PP

PTMs and co-PTMs differ on accepting inputs with Pr
[yes]=1/2

But can modify a PTM so that Pr[M(x)=yes] ≠ 1/2 for
all x, without changing language accepted

12

PP = co-PP

13

PP = co-PP
Modifying a PTM M to an equivalent PTM M’, so that for all x
Pr[M’(x)=yes] ≠ 1/2

13

PP = co-PP
Modifying a PTM M to an equivalent PTM M’, so that for all x
Pr[M’(x)=yes] ≠ 1/2

Consider M’(x): w.p. 1/2 run M(x); w.p. 1/2, ignore input and
say yes w.p. 1/2 - ε, and say no w.p. 1/2 + ε

13

PP = co-PP
Modifying a PTM M to an equivalent PTM M’, so that for all x
Pr[M’(x)=yes] ≠ 1/2

Consider M’(x): w.p. 1/2 run M(x); w.p. 1/2, ignore input and
say yes w.p. 1/2 - ε, and say no w.p. 1/2 + ε

13

PP = co-PP
Modifying a PTM M to an equivalent PTM M’, so that for all x
Pr[M’(x)=yes] ≠ 1/2

Consider M’(x): w.p. 1/2 run M(x); w.p. 1/2, ignore input and
say yes w.p. 1/2 - ε, and say no w.p. 1/2 + ε

M

13

PP = co-PP
Modifying a PTM M to an equivalent PTM M’, so that for all x
Pr[M’(x)=yes] ≠ 1/2

Consider M’(x): w.p. 1/2 run M(x); w.p. 1/2, ignore input and
say yes w.p. 1/2 - ε, and say no w.p. 1/2 + ε

M

13

PP = co-PP
Modifying a PTM M to an equivalent PTM M’, so that for all x
Pr[M’(x)=yes] ≠ 1/2

Consider M’(x): w.p. 1/2 run M(x); w.p. 1/2, ignore input and
say yes w.p. 1/2 - ε, and say no w.p. 1/2 + ε

pr[M’(x)=yes] = pr[M(x)=yes]/2 + (1/2 - ε)/2

M

13

PP = co-PP
Modifying a PTM M to an equivalent PTM M’, so that for all x
Pr[M’(x)=yes] ≠ 1/2

Consider M’(x): w.p. 1/2 run M(x); w.p. 1/2, ignore input and
say yes w.p. 1/2 - ε, and say no w.p. 1/2 + ε

pr[M’(x)=yes] = pr[M(x)=yes]/2 + (1/2 - ε)/2

If pr[M(x)=yes] > 1/2 ⇒ pr[M(x)=yes] > 1/2 + ε
then M and M’ equivalent M

13

PP = co-PP
Modifying a PTM M to an equivalent PTM M’, so that for all x
Pr[M’(x)=yes] ≠ 1/2

Consider M’(x): w.p. 1/2 run M(x); w.p. 1/2, ignore input and
say yes w.p. 1/2 - ε, and say no w.p. 1/2 + ε

pr[M’(x)=yes] = pr[M(x)=yes]/2 + (1/2 - ε)/2

If pr[M(x)=yes] > 1/2 ⇒ pr[M(x)=yes] > 1/2 + ε
then M and M’ equivalent

What is such an ε?

M

13

PP = co-PP
Modifying a PTM M to an equivalent PTM M’, so that for all x
Pr[M’(x)=yes] ≠ 1/2

Consider M’(x): w.p. 1/2 run M(x); w.p. 1/2, ignore input and
say yes w.p. 1/2 - ε, and say no w.p. 1/2 + ε

pr[M’(x)=yes] = pr[M(x)=yes]/2 + (1/2 - ε)/2

If pr[M(x)=yes] > 1/2 ⇒ pr[M(x)=yes] > 1/2 + ε
then M and M’ equivalent

What is such an ε?

2-(m+1) where no. of coins used by M is at most m

M

13

PP = co-PP
Modifying a PTM M to an equivalent PTM M’, so that for all x
Pr[M’(x)=yes] ≠ 1/2

Consider M’(x): w.p. 1/2 run M(x); w.p. 1/2, ignore input and
say yes w.p. 1/2 - ε, and say no w.p. 1/2 + ε

pr[M’(x)=yes] = pr[M(x)=yes]/2 + (1/2 - ε)/2

If pr[M(x)=yes] > 1/2 ⇒ pr[M(x)=yes] > 1/2 + ε
then M and M’ equivalent

What is such an ε?

2-(m+1) where no. of coins used by M is at most m

M’ tosses at most m+2 coins

M

13

PP and NP

14

NP ⊆ PP

PP and NP

14

NP ⊆ PP

Use random-tape as non-
deterministic choices of
NTM M

PP and NP

14

NP ⊆ PP

Use random-tape as non-
deterministic choices of
NTM M

PP and NP

14

NP ⊆ PP

Use random-tape as non-
deterministic choices of
NTM M

If M rejects, accept with
1/2 prob., else accept

PP and NP

14

NP ⊆ PP

Use random-tape as non-
deterministic choices of
NTM M

If M rejects, accept with
1/2 prob., else accept

PP and NP

14

NP ⊆ PP

Use random-tape as non-
deterministic choices of
NTM M

If M rejects, accept with
1/2 prob., else accept

If even one thread of M(x)
accepts, pr[M(x)=yes] > 1/2

PP and NP

14

NP ⊆ PP

Use random-tape as non-
deterministic choices of
NTM M

If M rejects, accept with
1/2 prob., else accept

If even one thread of M(x)
accepts, pr[M(x)=yes] > 1/2

Accepting gap can be
exponentially small

PP and NP

14

Bounding Probability Gap

15

Bounding Probability Gap

Gap

15

Bounding Probability Gap

Gap

Minx∈L Pr[M(x)=yes] - Maxx∉L Pr[M(x)=yes]

15

Bounding Probability Gap

Gap

Minx∈L Pr[M(x)=yes] - Maxx∉L Pr[M(x)=yes]

BPP, RP, coRP require M to have gap some
constant (1/3, 2/3)

15

Bounding Probability Gap

Gap

Minx∈L Pr[M(x)=yes] - Maxx∉L Pr[M(x)=yes]

BPP, RP, coRP require M to have gap some
constant (1/3, 2/3)

Setting gap = 1/nc is enough

15

Bounding Probability Gap

Gap

Minx∈L Pr[M(x)=yes] - Maxx∉L Pr[M(x)=yes]

BPP, RP, coRP require M to have gap some
constant (1/3, 2/3)

Setting gap = 1/nc is enough

Can be boosted to gap = 1 - 1/2n^d in
polynomial time

15

Soundness Amplification
for RP

16

Soundness Amplification
for RP

M’(x): Repeat M(x) t times and if any yes, say yes

16

Soundness Amplification
for RP

M’(x): Repeat M(x) t times and if any yes, say yes

If x∉L: Pr[M(x)=no] = 1. So Pr[M’(x)=no] = 1

16

Soundness Amplification
for RP

M’(x): Repeat M(x) t times and if any yes, say yes

If x∉L: Pr[M(x)=no] = 1. So Pr[M’(x)=no] = 1

If x∈L: Pr[M(x)=no] ≤ 1-δ (when gap = δ). Then
Pr[M’(x)=no] ≤ (1-δ)t

16

Soundness Amplification
for RP

M’(x): Repeat M(x) t times and if any yes, say yes

If x∉L: Pr[M(x)=no] = 1. So Pr[M’(x)=no] = 1

If x∈L: Pr[M(x)=no] ≤ 1-δ (when gap = δ). Then
Pr[M’(x)=no] ≤ (1-δ)t

With t = nd/δ, Pr[M’(x)=no] < e-(n^d) (1-δ < e-δ)

16

Soundness Amplification
for RP

M’(x): Repeat M(x) t times and if any yes, say yes

If x∉L: Pr[M(x)=no] = 1. So Pr[M’(x)=no] = 1

If x∈L: Pr[M(x)=no] ≤ 1-δ (when gap = δ). Then
Pr[M’(x)=no] ≤ (1-δ)t

With t = nd/δ, Pr[M’(x)=no] < e-(n^d) (1-δ < e-δ)

For δ = n-c, t=nd+c is polynomial

16

Soundness Amplification
for BPP

17

Soundness Amplification
for BPP

Repeat M(x) t times and take majority

17

Soundness Amplification
for BPP

Repeat M(x) t times and take majority

i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

17

Soundness Amplification
for BPP

Repeat M(x) t times and take majority

i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

Error only if |estimate - real| ≥ gap/2

17

Soundness Amplification
for BPP

Repeat M(x) t times and take majority

i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

Error only if |estimate - real| ≥ gap/2

Estimation error goes down exponentially with t:
Chernoff bound

17

Soundness Amplification
for BPP

Repeat M(x) t times and take majority

i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

Error only if |estimate - real| ≥ gap/2

Estimation error goes down exponentially with t:
Chernoff bound

Pr[|estimate - real| ≥ δ/2] ≤ 2-Ω(t.δ^2)

17

Soundness Amplification
for BPP

Repeat M(x) t times and take majority

i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

Error only if |estimate - real| ≥ gap/2

Estimation error goes down exponentially with t:
Chernoff bound

Pr[|estimate - real| ≥ δ/2] ≤ 2-Ω(t.δ^2)

t = O(nd/δ2) enough for Pr[error] ≤ 2-n^d

17

Today

18

Today
Probabilistic computation

18

Today
Probabilistic computation

PP, RP, co-RP, BPP

18

Today
Probabilistic computation

PP, RP, co-RP, BPP

PP too powerful: NP ⊆ PP

18

Today
Probabilistic computation

PP, RP, co-RP, BPP

PP too powerful: NP ⊆ PP

Constant gap: BPP, RP, co-RP

18

Today
Probabilistic computation

PP, RP, co-RP, BPP

PP too powerful: NP ⊆ PP

Constant gap: BPP, RP, co-RP

RP, co-RP one-sided error

18

Today
Probabilistic computation

PP, RP, co-RP, BPP

PP too powerful: NP ⊆ PP

Constant gap: BPP, RP, co-RP

RP, co-RP one-sided error

Soundness Amplification: for RP, for BPP

18

Today
Probabilistic computation

PP, RP, co-RP, BPP

PP too powerful: NP ⊆ PP

Constant gap: BPP, RP, co-RP

RP, co-RP one-sided error

Soundness Amplification: for RP, for BPP

From gap 1/poly to 1-1/exp

18

Today
Probabilistic computation

PP, RP, co-RP, BPP

PP too powerful: NP ⊆ PP

Constant gap: BPP, RP, co-RP

RP, co-RP one-sided error

Soundness Amplification: for RP, for BPP

From gap 1/poly to 1-1/exp

Next: more on BPP and relatives

18

