Probabilistic Computation

Lecture 12
Flipping coins, taking chances
PP, BPP

Probabilistic Computation

Probabilistic Computation

@ Output depends not only on x,
but also on random “coin flips”

Probabilistic Computation

@ Output depends not only on x,
but also on random “coin flips”

@ M,x define a probability
distribution over outcomes

Probabilistic Computation

@ Output depends not only on x,
but also on random “coin flips”

@ M,x define a probability
distribution over outcomes

o If for all x, M(x) equals f(x)
with very high probability,
could be used as f(x)

Probabilistic Computation

@ Output depends not only on X,
but also on random “coin flips”

@ M,x define a probability
distribution over outcomes

o If for all x, M(x) equals f(x)
with very high probability,
could be used as f(x)

Language Decided by a
Probabilistic Computation

Language Decided by a
Probabilistic Computation

@ Different possible definitions of a prob. TM accepting input

Language Decided by a
Probabilistic Computation

@ Different possible definitions of a prob. TM accepting input

@ M accepts x if pr[M(x)=yes] > O; rejects if pr[M(x)=yes] = O

Language Decided by a
Probabilistic Computation

@ Different possible definitions of a prob. TM accepting input

@ M accepts x if pr[M(x)=yes] > O; rejects if pr[M(x)=yes] = O

@ M accepts x if pr[M(x)=yes] > 1/2; rejects if pr[M(x)=yes] < 1/2

Language Decided by a
Probabilistic Computation

@ Different possible definitions of a prob. TM accepting input
@ M accepts x if pr[M(x)=yes] > O; rejects if pr[M(x)=yes] = O

@ M accepts x if pr[M(x)=yes] > 1/2; rejects if pr[M(x)=yes] < 1/2

@ M accepts x if pr[M(x)=yes] > 2/3; rejects if pr[M(x)=yes] < 1/3

Language Decided by a
Probabilistic Computation

@ Different possible definitions of a prob. TM accepting input

@ M accepts x if pr[M(x)=yes] > O; rejects if pr[M(x)=yes] = O

@ M accepts x if pr[M(x)=yes] > 1/2; rejects if pr[M(x)=yes] < 1/2

@ M accepts x if pr

@ M accepts x if pr

[M(x)=yes]

[M(x)=yes]

> 2/3; rejects if pr

> 2/3; rejects if pr

[M(x)=yes]

[M(x)=yes]

<1/3

=0

Language Decided by a
Probabilistic Computation

@ Different possible definitions of a prob. TM accepting input

@ M accepts x if pr[M(x)=yes] > O; rejects if pr[M(x)=yes] = O

@ M accepts x if pr[M(x)=yes] > 1/2; rejects if pr[M(x)=yes] < 1/2

@ M accepts x if pr

@ M accepts x if pr

[M(x)=yes]

[M(x)=yes]

> 2/3; rejects if pr

> 2/3; rejects if pr

[M(x)=yes]

[M(x)=yes]

<1/3

=0

@ Last two: If on any x neither, M doesnt decide a language!

Language Decided by a
Probabilistic Computation

@ Different possible definitions of a prob. TM accepting input
@ M accepts x if pr[M(x)=yes] > O; rejects if pr[M(x)=yes] = O
@ M accepts x if pr[M(x)=yes] > 1/2; rejects if pr[M(x)=yes] < 1/2

@ M accepts x if pr[M(x)=yes] > 2/3; rejects if pr[M(x)=yes] < 1/3

@ M accepts x if pr[M(x)=yes] > 2/3; rejects if pr[M(x)=yes] = 0
@ Last two: If on any x neither, M doesnt decide a language!

@ When M does decide, much better than random guess

Probabilistic TM

Probabilistic TM

@ Like an NTM, but the two
possible transitions are
considered fo be taken with
equal probability

Probabilistic TM

@ Like an NTM, but the two
possible transitions are
considered fo be taken with
equal probability

Probabilistic TM

® Like an NTM, but the two /
possible transitions are
considered to be taken with

equal probability

Probabilistic TM

@ Like an NTM, but the two
possible transitions are
considered fto be taken with
equal probability

Probabilistic TM
Q

® Like an NTM, but the two

possible transitions are / \
considered to be taken with
equal probability / \

Probabilistic TM

® Like an NTM, but the two
possible transitions are
considered to be taken with

@ Defines a probability with &

equal probability
which an input is accepted

or rejected : X

Probabilistic TM

® Like an NTM, but the two
possible transitions are
considered to be taken with

@ Defines a probability with &

equal probability
which an input is accepted U4 1/4

or rejected : X
1/8 1/8

1/4

Random Tape

coins
X

Random Tape

@ Random choice: flipping a fair coin

coins

Random Tape

@ Random choice: flipping a fair coin

coins

@ Coin flip is written on a read-once
“random tape”

Random Tape

@ Random choice: flipping a fair coin

@ Coin flip is written on a read-once coins

“random tape”
X

@ Enough coin flips made and written
on the tape first, then start
execution

Random Tape

@ Random choice: flipping a fair coin

@ Coin flip is written on a read-once
“random tape”

X
@ Enough coin flips made and written

on the tape first, then start
execution

@ When considering bounded time
TMs length of random tape (max
coins used) also bounded

Random Tape

Random Tape

Random Tape

Random Tape

Random Tape

Random Tape

Random Tape

Random Tape

Random Tape

O

2@

Random Tape

O

2@

Random Tape

O

2@

Random Tape

0

0

1

O

0

0

1

0

1

O

|

Language Decided by a
Probabilistic Computation

Language Decided by a
Probabilistic Computation

@ Different possible definitions of accepting input

Language Decided by a
Probabilistic Computation

@ Different possible definitions of accepting input

@ Accept if prlyes] > O; reject if pryes] = 0

Language Decided by a
Probabilistic Computation

@ Different possible definitions of accepting input

@ Accept if prlyes] > O; reject if prlyes] = 0 NTM

Language Decided by a
Probabilistic Computation

@ Different possible definitions of accepting input

@ Accept if prlyes] > O; reject if prlyes] = 0 NTM

@ Accept if prlyes] > 1/2; reject if prlyes] < 1/2

Language Decided by a
Probabilistic Computation

@ Different possible definitions of accepting input

@ Accept if prlyes] > O; reject if prlyes] = 0 NTM

& Accept if prlyes] > 1/2; reject if prlyes] < 1/2 PTM

Language Decided by a
Probabilistic Computation

@ Different possible definitions of accepting input

@ Accept if prlyes] > O; reject if prlyes] = 0 NTM

@ Accept if pr

@ Accept if pr

yes]

yes]

> 1/2; reject if prlyes] < 1/2 PTM

> 2/3; reject if prlyes] < 1/3

Language Decided by a
Probabilistic Computation

@ Different possible definitions of accepting input
@ Accept if prlyes] > O; reject if prlyes] = 0 NTM

& Accept if prlyes] > 1/2; reject if prlyes] < 1/2 PTM

@ Accept if prlyes] > 2/3; reject if prlyes] < 1/3 BPTM

Language Decided by a
Probabilistic Computation

@ Different possible definitions of accepting input

@ Accept if prlyes] > O; reject if pryes] = 0

@ Accept if pr

@ Accept if pr

@ Accept if pr

yes]
yes]

yes]

> 1/2; reject if prlyes] < 1/2

> 2/3; reject if pr

> 2/3; reject if pr

yes]

yes)]

<1/3

=0

NTM
PTM
BPTM

Language Decided by a
Probabilistic Computation

@ Different possible definitions of accepting input
@ Accept if prlyes] > O; reject if prlyes] = 0 NTM

& Accept if prlyes] > 1/2; reject if prlyes] < 1/2 PTM

@ Accept if prlyes] > 2/3; reject if prlyes] < 1/3 BPTM

@ Accept if prlyes] > 2/3; reject if prlyes] = 0 RTM

Language Decided by a
Probabilistic Computation

@ Different possible definitions of accepting input
@ Accept if prlyes] > O; reject if prlyes] = 0 NTM

& Accept if prlyes] > 1/2; reject if prlyes] < 1/2 PTM

@ Accept if prlyes] > 2/3; reject if prlyes] < 1/3 BPTM

@ Accept if prlyes] > 2/3; reject if prlyes] = 0 RTM

@ (Not standard nomenclature!)

PTIME, BPTIME and
RTIME

PTIME, BPTIME and
RTIME

@ T-time probabilistic TM

PTIME, BPTIME and
RTIME

@ T-time probabilistic TM

@ On all inputs x, on any random tape, terminates in
T(Ix]) time and outputs “yes” or “no.”

PTIME, BPTIME and
RTIME

@ T-time probabilistic TM

@ On all inputs x, on any random tape, terminates in
T(Ix]) time and outputs “yes” or “no.”

@ Just like NTIME(T)

PTIME, BPTIME and
RTIME

@ T-time probabilistic TM

@ On all inputs x, on any random tape, terminates in
T(Ix]) time and outputs “yes” or “no.”

@ Just like NTIME(T)

@ BPTIME(T) = class of languages decided by BPTMs in
time T

PTIME, BPTIME and
RTIME

@ T-time probabilistic TM

@ On all inputs x, on any random tape, terminates in
T(Ix]) time and outputs “yes” or “no.”

@ Just like NTIME(T)

@ BPTIME(T) = class of languages decided by BPTMs in
time T

@ Similarly PTIME(T) and RTIME(T)

PP, BPP and RP

PP, BPP and RP

@ PP = Uco PTIME(O(n®))

PP, BPP and RP

@ PP = Uco PTIME(O(n®))

@ BPP = Ucso BPTIME(O(n®))

PP, BPP and RP

@ PP = Uco PTIME(O(n®))

@ BPP = Ucso BPTIME(O(n®))

@ RP = Ucso RTIME(O(HC))

PP, BPP and RP

@ PP = Ugo PTIME(O(Nn®))
@ BPP = Ucso BPTIME(O(n®))

@ RP = Ucso RTIME(O(HC))

® co-RP

co-RTM

co-RTM

@ Accept if prlyes] > O; reject if prlyes] = 0 NTM

co-RTM

@ Accept if prlyes] > O; reject if prlyes] = 0 NTM

@ Accept if prlyes] = 1; reject if prlyes] < 1 co-NTM

co-RTM

@ Accept if prlyes] > O; reject if prlyes] = 0 NTM

@ Accept if prlyes] = 1; reject if prlyes] < 1 co-NTM

@ Accept if prlyes] > 1/2; reject if prlyes] < 1/2 PTM

co-RTM

@ Accept if prlyes] > O; reject if prlyes] = 0 NTM
@ Accept if prlyes] = 1; reject if prlyes] < 1 co-NTM

@ Accept if prlyes] > 1/2; reject if prlyes] < 1/2 PTM

@ Accept if prlyes] > 1/2; reject if prlyes] < 1/2 co-PTM

co-RTM

@ Accept if prlyes] > O; reject if prlyes] = 0 NTM
@ Accept if prlyes] = 1; reject if prlyes] < 1 co-NTM
@ Accept if prlyes] > 1/2; reject if prlyes] < 1/2 PTM

@ Accept if prlyes] > 1/2; reject if prlyes] < 1/2 co-PTM

@ Accept if prlyes] > 2/3; reject if prlyes] < 1/3 BPTM

co-RTM

@ Accept if prlyes] > O; reject if prlyes] = 0 NTM

@ Accept if prlyes] = 1; reject if prlyes] < 1 co-NTM
@ Accept if prlyes] > 1/2; reject if prlyes] < 1/2 PTM

@ Accept if prlyes] > 1/2; reject if prlyes] < 1/2 co-PTM

@ Accept if prlyes] > 2/3; reject if prlyes] < 1/3 BPTM

o Accept if prlyes] > 2/3; reject if prlyes] < 1/3 co-BPTM

co-RTM

@ Accept if prlyes] > O; reject if prlyes] = 0 NTM

@ Accept if prlyes] = 1; reject if prlyes] < 1 co-NTM
@ Accept if prlyes] > 1/2; reject if prlyes] < 1/2 PTM

@ Accept if prlyes] > 1/2; reject if prlyes] < 1/2 co-PTM
@ Accept if prlyes] > 2/3; reject if prlyes] < 1/3 BPTM

o Accept if prlyes] > 2/3; reject if prlyes] < 1/3 co-BPTM

@ Accept if prlyes] > 2/3; reject if prlyes] = O RTM

co-RTM

@ Accept if prlyes] > O; reject if prlyes] = 0 NTM

@ Accept if prlyes] = 1; reject if prlyes] < 1 co-NTM
@ Accept if prlyes] > 1/2; reject if prlyes] < 1/2 PTM

@ Accept if prlyes] > 1/2; reject if prlyes] < 1/2 co-PTM
@ Accept if prlyes] > 2/3; reject if prlyes] < 1/3 BPTM

o Accept if prlyes] > 2/3; reject if prlyes] < 1/3 co-BPTM
@ Accept if prlyes] > 2/3; reject if prlyes] = O RTM

@ Accept if prlyes] = 1; reject if prlyes] < 1/3 co-RTM

RP and co-RP

RP and co-RP

@ One sided error ("bounded error” versions of NP and co-NP)

RP and co-RP

@ One sided error ("bounded error” versions of NP and co-NP)

@ RP: if yes, may still say no w/p at most 1/3

RP and co-RP

@ One sided error ("bounded error” versions of NP and co-NP)

@ RP: if yes, may still say no w/p at most 1/3

@ i.e., if RTM says no, can be wrong

RP and co-RP

@ One sided error ("bounded error” versions of NP and co-NP)
@ RP: if yes, may still say no w/p at most 1/3

@ i.e., if RTM says no, can be wrong

@ co-RP: if no, may still say yes w/p at most 1/3

RP and co-RP

@ One sided error ("bounded error” versions of NP and co-NP)
@ RP: if yes, may still say no w/p at most 1/3
@ i.e., if RTM says no, can be wrong

@ co-RP: if no, may still say yes w/p at most 1/3

@ i.e., if co-RTM says yes, can be wrong

co-BPP, co-PP

co-BPP, co-PP

o BPP = co-BPP

co-BPP, co-PP

@ BPP = co-BPP

® co-BPTMs are same as BPTMs

co-BPP, co-PP

@ BPP = co-BPP

® co-BPTMs are same as BPTMs

@ In fact PP = co-PP

co-BPP, co-PP

@ BPP = co-BPP
@ co-BPTMs are same as BPTMs

@ In fact PP = co-PP

@ PTMs and co-PTMs differ on accepting inputs with Pr
[yes]=1/2

co-BPP, co-PP

@ BPP = co-BPP
@ co-BPTMs are same as BPTMs
@ In fact PP = co-PP

@ PTMs and co-PTMs differ on accepting inputs with Pr
[yes]=1/2

@ But can modify a PTM so that Pr[M(x)=yes] # 1/2 for
all x, without changing language accepted

PP = co-PP

PP = co-PP

@ Modifying a PTM M to an equivalent PTM M, so that for all x
PriM’'(x)=yes] # 1/2

PP = co-PP

@ Modifying a PTM M to an equivalent PTM M, so that for all x
PriM’'(x)=yes] # 1/2

@ Consider M'(x): w.p. 1/2 run M(x); w.p. 1/2, ignore input and
say yes w.p. 1/2 - €, and say no w.p. 1/2 + €

PP = co-PP

@ Modifying a PTM M to an equivalent PTM M, so that for all x
PriM’'(x)=yes] # 1/2

@ Consider M'(x): w.p. 1/2 run M(x); w.p. 1/2, ignore input and

say yes w.p. 1/2 - €, and say no w.p. 1/2 + €

PP = co-PP

@ Modifying a PTM M to an equivalent PTM M, so that for all x
PriM’'(x)=yes] # 1/2

@ Consider M'(x): w.p. 1/2 run M(x); w.p. 1/2, ignore input and
say yes w.p. 1/2 - €, and say no w.p. 1/2 + €

A ’\
Az - £
,;‘ \ m)""“ \'.\

PP = co-PP

@ Modifying a PTM M to an equivalent PTM M, so that for all x
PriM’'(x)=yes] # 1/2

@ Consider M'(x): w.p. 1/2 run M(x); w.p. 1/2, ignore input and
say yes w.p. 1/2 - €, and say no w.p. 1/2 + €

A ’\
Az - £
,;‘ \ m)""“ \'.\

PP = co-PP

@ Modifying a PTM M to an equivalent PTM M, so that for all x
PriM’'(x)=yes] # 1/2

@ Consider M'(x): w.p. 1/2 run M(x); w.p. 1/2, ignore input and
say yes w.p. 1/2 - €, and say no w.p. 1/2 + €

o pr[M'(x)=yes] = pr[M(x)=yes]/2 + (1/2 - €)/2

A ’\
Az - £
,;‘ \ m)""“ \'.\

PP = co-PP

@ Modifying a PTM M to an equivalent PTM M, so that for all x
PriM’'(x)=yes] # 1/2

@ Consider M'(x): w.p. 1/2 run M(x); w.p. 1/2, ignore input and
say yes w.p. 1/2 - €, and say no w.p. 1/2 + €

o pr[M'(x)=yes] = pr[M(x)=yes]/2 + (1/2 - €)/2

o If pr[M(x)=yes] > 1/2 = pr[M(x)=yes] > 1/2 + € &
M\

then M and M’ equivalent N

PP = co-PP

@ Modifying a PTM M to an equivalent PTM M, so that for all x
PriM’'(x)=yes] # 1/2

@ Consider M'(x): w.p. 1/2 run M(x); w.p. 1/2, ignore input and
say yes w.p. 1/2 - €, and say no w.p. 1/2 + €

o pr[M'(x)=yes] = pr[M(x)=yes]/2 + (1/2 - €)/2

o If pr[M(x)=yes] > 1/2 = pr[M(x)=yes] > 1/2 + € &
M\

then M and M’ equivalent N

@ What is such an €?

PP = co-PP

@ Modifying a PTM M to an equivalent PTM M, so that for all x
PriM’'(x)=yes] # 1/2

@ Consider M'(x): w.p. 1/2 run M(x); w.p. 1/2, ignore input and
say yes w.p. 1/2 - €, and say no w.p. 1/2 + €

o pr[M'(x)=yes] = pr[M(x)=yes]/2 + (1/2 - €)/2

o If pr[M(x)=yes] > 1/2 = pr[M(x)=yes] > 1/2 + € &
M\

then M and M’ equivalent N

@ What is such an €?

o 2-™m) where no. of coins used by M is at most m

PP = co-PP

@ Modifying a PTM M to an equivalent PTM M, so that for all x
PriM’'(x)=yes] # 1/2

@ Consider M'(x): w.p. 1/2 run M(x); w.p. 1/2, ignore input and
say yes w.p. 1/2 - €, and say no w.p. 1/2 + €

o pr[M'(x)=yes] = pr[M(x)=yes]/2 + (1/2 - €)/2

o If pr[M(x)=yes] > 1/2 = pr[M(x)=yes] > 1/2 + € &
M\

then M and M’ equivalent N
@ What is such an €?

o 2-™m) where no. of coins used by M is at most m

& M’ tosses at most m+2 coins

PP and NP

PP and NP

@ NP c PP

PP and NP

@ NP c PP

@ Use random-tape as non-
deterministic choices of

NTM M

PP and NP /O

@ NP c PP

@ Use random-tape as non- /
deterministic choices of
NTM M ’

PP and NP /O

@ NP c PP

@ Use random-tape as non- /
deterministic choices of

@ If M rejects, accept with
1/2 prob., else accept

PP and NP /O
@ NP Cc PP ‘

@ Use random-tape as non- /
deterministic choices of
NTM M ’
@ If M rejects, accept with 66}3

1/2 prob., else accept

SO

PP and NP /O
@ NP Cc PP ‘

@ Use random-tape as non- /
deterministic choices of
NTM M

s

@ If M rejects, accept with
1/2 prob., else accept

@ If even one thread of M(x) O‘/ O
accepts, priM(x)=yes] > 1/2

PP and NP /0
@ NP Cc PP ‘

@ Use random-tape as non- /
deterministic choices of
NTM M

s

@ If M rejects, accept with
1/2 prob., else accept

@ If even one thread of M(x) O‘/ O
accepts, priM(x)=yes] > 1/2

@ Accepting gap can be
exponentially small

Bounding Probability Gap

Bounding Probability Gap

@ Gap

Bounding Probability Gap

@ Gap

@ MinkeL PriM(x)=yes] - MaxxeL PriM(x)=yes]

Bounding Probability Gap

@ Gap

@ MinkeL PriM(x)=yes] - MaxxeL PriM(x)=yes]

@ BPP, RP, coRP require M to have gap some
constant (1/3, 2/3)

Bounding Probability Gap

@ Gap

@ MinkeL PriM(x)=yes] - MaxxeL PriM(x)=yes]

@ BPP, RP, coRP require M to have gap some
constant (1/3, 2/3)

@ Setting gap = 1/n¢is enough

Bounding Probability Gap

@ Gap

@ MinkeL PriM(x)=yes] - MaxxeL PriM(x)=yes]

@ BPP, RP, coRP require M to have gap some
constant (1/3, 2/3)

@ Setting gap = 1/n¢is enough
@ Can be boosted to gap =1 - 1/2"¢ in

polynomial fime

Soundness Amplification
for RP

Soundness Amplification
for RP

@ M'(x): Repeat M(x) t times and if any yes, say yes

Soundness Amplification
for RP

@ M'(x): Repeat M(x) t times and if any yes, say yes

& If x&L: Pr[M(x)=no] = 1. So Pr[M'(x)=no] =1

Soundness Amplification
for RP

@ M'(x): Repeat M(x) t times and if any yes, say yes

& If x&L: Pr[M(x)=no] = 1. So Pr[M'(x)=no] =1

o If xeL: Pr[M(x)=no] < 1-0 (when gap = d). Then
Pr(M’(x)=no] ¢ (1-0)'

Soundness Amplification
for RP

@ M'(x): Repeat M(x) t times and if any ves, say yes

& If x&L: Pr[M(x)=no] = 1. So Pr[M'(x)=no] =1

o If xeL: Pr[M(x)=no] < 1-0 (when gap = d). Then
Pr(M’(x)=no] ¢ (1-0)'

® With t = n?/0, Pr[M'(x)=no] < e (1-5 < e™°)

Soundness Amplification
for RP

@ M'(x): Repeat M(x) t times and if any ves, say yes
& If x&L: Pr[M(x)=no] = 1. So Pr[M'(x)=no] =1
o If xeL: Pr[M(x)=no] < 1-0 (when gap = d). Then
Pr(M’(x)=no] ¢ (1-0)'

® With t = n?/0, Pr[M'(x)=no] < e (1-5 < e™°)

@ For d = n¢, t=nd*¢ is polynomial

Soundness Amplification
for BPP

Soundness Amplification
for BPP

@ Repeat M(x) t times and take majority

Soundness Amplification
for BPP

@ Repeat M(x) t times and take majority

@ i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

Soundness Amplification
for BPP

@ Repeat M(x) t times and take majority

@ i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

@ Error only if |estimate - reall > gap/2

Soundness Amplification
for BPP

@ Repeat M(x) t times and take majority
@ i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

@ Error only if |estimate - reall > gap/2

@ Estimation error goes down exponentially with ft:
Chernoff bound

Soundness Amplification
for BPP

@ Repeat M(x) t times and take majority
@ i.e. estimate Pr[M(x)=yes] and check if it is > 1/2
@ Error only if |estimate - reall > gap/2

@ Estimation error goes down exponentially with ft:
Chernoff bound

@ Pr[lestimate - real] > /2] ¢ 2-2t272)

Soundness Amplification
for BPP

@ Repeat M(x) t times and take majority
@ i.e. estimate Pr[M(x)=yes] and check if it is > 1/2
@ Error only if |estimate - reall > gap/2

@ Estimation error goes down exponentially with ft:
Chernoff bound

@ Pr[lestimate - real] > /2] ¢ 2-2t272)

@ t = O(n?/d?) enough for Prlerror] ¢ 2"¢

Today

Today

@ Probabilistic computation

Today

@ Probabilistic computation

@ PP, RP, co-RP, BPP

Today

@ Probabilistic computation

@ PP, RP, co-RP, BPP

@ PP too powerful: NP C PP

Today

@ Probabilistic computation
@ PP, RP, co-RP, BPP

@ PP too powerful: NP C PP

@ Constant gap: BPP, RP, co-RP

Today

@ Probabilistic computation
@ PP, RP, co-RP, BPP

@ PP too powerful: NP C PP

@ Constant gap: BPP, RP, co-RP

® RP, co-RP one-sided error

Today

@ Probabilistic computation
@ PP, RP, co-RP, BPP

@ PP too powerful: NP C PP

@ Constant gap: BPP, RP, co-RP

® RP, co-RP one-sided error

@ Soundness Amplification: for RP, for BPP

Today

@ Probabilistic computation
@ PP, RP, co-RP, BPP

@ PP too powerful: NP C PP

@ Constant gap: BPP, RP, co-RP
® RP, co-RP one-sided error
@ Soundness Amplification: for RP, for BPP

@ From gap 1/poly to 1-1/exp

Today

@ Probabilistic computation
@ PP, RP, co-RP, BPP

@ PP too powerful: NP C PP

@ Constant gap: BPP, RP, co-RP
® RP, co-RP one-sided error

@ Soundness Amplification: for RP, for BPP
@ From gap 1/poly to 1-1/exp

@ Next: more on BPP and relatives

