Probabilistic Computation

Lecture 12
Flipping coins, taking chances
PP, BPP
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@ Different possible definitions of a prob. TM accepting input
@ M accepts x if pr[M(x)=yes] > O; rejects if pr[M(x)=yes] = O
@ M accepts x if pr[M(x)=yes] > 1/2; rejects if pr[M(x)=yes] < 1/2

@ M accepts x if pr[M(x)=yes] > 2/3; rejects if pr[M(x)=yes] < 1/3

@ M accepts x if pr[M(x)=yes] > 2/3; rejects if pr[M(x)=yes] = 0
@ Last two: If on any x neither, M doesnt decide a language!

@ When M does decide, much better than random guess
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® Like an NTM, but the two
possible transitions are
considered to be taken with

@ Defines a probability with &

equal probability
which an input is accepted U4 1/4

or rejected : X
1/8 1/8

1/4
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@ Random choice: flipping a fair coin

@ Coin flip is written on a read-once
“random tape”

X
@ Enough coin flips made and written

on the tape first, then start
execution

@ When considering bounded time
TMs length of random tape (max
coins used) also bounded
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@ Different possible definitions of accepting input
@ Accept if prlyes] > O; reject if prlyes] = 0 NTM

& Accept if prlyes] > 1/2; reject if prlyes] < 1/2 PTM

@ Accept if prlyes] > 2/3; reject if prlyes] < 1/3 BPTM

@ Accept if prlyes] > 2/3; reject if prlyes] = 0 RTM

@ (Not standard nomenclature!)
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@ T-time probabilistic TM

@ On all inputs x, on any random tape, terminates in
T(Ix]) time and outputs “yes” or “no.”

@ Just like NTIME(T)

@ BPTIME(T) = class of languages decided by BPTMs in
time T

@ Similarly PTIME(T) and RTIME(T)
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@ One sided error ("bounded error” versions of NP and co-NP)
@ RP: if yes, may still say no w/p at most 1/3
@ i.e., if RTM says no, can be wrong

@ co-RP: if no, may still say yes w/p at most 1/3

@ i.e., if co-RTM says yes, can be wrong
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@ BPP = co-BPP
@ co-BPTMs are same as BPTMs
@ In fact PP = co-PP

@ PTMs and co-PTMs differ on accepting inputs with Pr
[yes]=1/2

@ But can modify a PTM so that Pr[M(x)=yes] # 1/2 for
all x, without changing language accepted
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@ Modifying a PTM M to an equivalent PTM M, so that for all x
PriM’'(x)=yes] # 1/2

@ Consider M'(x): w.p. 1/2 run M(x); w.p. 1/2, ignore input and
say yes w.p. 1/2 - €, and say no w.p. 1/2 + €

o pr[M'(x)=yes] = pr[M(x)=yes]/2 + (1/2 - €)/2

o If pr[M(x)=yes] > 1/2 = pr[M(x)=yes] > 1/2 + € &
M\

then M and M’ equivalent N
@ What is such an €?

o 2-™m) where no. of coins used by M is at most m

& M’ tosses at most m+2 coins
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PP and NP /0
@ NP Cc PP ‘

@ Use random-tape as non- /
deterministic choices of
NTM M

s

@ If M rejects, accept with
1/2 prob., else accept

@ If even one thread of M(x) O‘/ O
accepts, priM(x)=yes] > 1/2

@ Accepting gap can be
exponentially small
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@ Gap

@ MinkeL PriM(x)=yes] - MaxxeL PriM(x)=yes]

@ BPP, RP, coRP require M to have gap some
constant (1/3, 2/3)

@ Setting gap = 1/n¢is enough
@ Can be boosted to gap =1 - 1/2"¢ in

polynomial fime
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for RP

@ M'(x): Repeat M(x) t times and if any ves, say yes
& If x&L: Pr[M(x)=no] = 1. So Pr[M'(x)=no] =1
o If xeL: Pr[M(x)=no] < 1-0 (when gap = d). Then
Pr(M’(x)=no] ¢ (1-0)'

® With t = n?/0, Pr[M'(x)=no] < e (1-5 < e™°)

@ For d = n¢, t=nd*¢ is polynomial




Soundness Amplification
for BPP




Soundness Amplification
for BPP

@ Repeat M(x) t times and take majority




Soundness Amplification
for BPP

@ Repeat M(x) t times and take majority

@ i.e. estimate Pr[M(x)=yes] and check if it is > 1/2




Soundness Amplification
for BPP

@ Repeat M(x) t times and take majority

@ i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

@ Error only if |estimate - reall > gap/2




Soundness Amplification
for BPP

@ Repeat M(x) t times and take majority
@ i.e. estimate Pr[M(x)=yes] and check if it is > 1/2

@ Error only if |estimate - reall > gap/2

@ Estimation error goes down exponentially with ft:
Chernoff bound




Soundness Amplification
for BPP

@ Repeat M(x) t times and take majority
@ i.e. estimate Pr[M(x)=yes] and check if it is > 1/2
@ Error only if |estimate - reall > gap/2

@ Estimation error goes down exponentially with ft:
Chernoff bound

@ Pr[ lestimate - real] > /2 ] ¢ 2-2t272)




Soundness Amplification
for BPP

@ Repeat M(x) t times and take majority
@ i.e. estimate Pr[M(x)=yes] and check if it is > 1/2
@ Error only if |estimate - reall > gap/2

@ Estimation error goes down exponentially with ft:
Chernoff bound

@ Pr[ lestimate - real] > /2 ] ¢ 2-2t272)

@ t = O(n?/d?) enough for Prlerror] ¢ 2"¢
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Today

@ Probabilistic computation
@ PP, RP, co-RP, BPP

@ PP too powerful: NP C PP

@ Constant gap: BPP, RP, co-RP
® RP, co-RP one-sided error

@ Soundness Amplification: for RP, for BPP
@ From gap 1/poly to 1-1/exp

@ Next: more on BPP and relatives



