Circuits

Lecture 11
Uniform Circuit Complexity
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Recall

@ Non-uniform complexity

@ P/1 ¢ Decidable
@ NP c P/log = NP =P
@ NP c P/poly = PH = %,°
@ Circuit Complexity
o SIZE(poly) = P/poly
® SIZE-hierarchy
o SIZE(T') & SIZE(T) if T=Q(t2') and T'=0(2'/t)

@ Most functions on t bits (that ignore last n-t bits) are
in SIZE(T) but not in SIZE(T)
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Uniform Circuits

@ Uniform circuit family: constructed by a TM

@ Undecidable languages are undecidable for these circuits
families

@ Can relate their complexity classes to classes defined using TMs

@ Logspace-uniform:

@ An O(log n) space TM can compute the circuit
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@ NC': class of languages decided by bounded fan-in
logspace-uniform circuits of polynomial size and depth
O(log' n)

® AC': Similar, but unbounded fan-in circuits
@ NC° and AC°: constant depth circuits

@ NCP output depends on only a constant number of
input bits

@ NC° ¢ ACO: Consider L = {1,11,111,...}
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NC and AC

@ NC = Uj;o NC'. Similarly AC.
@ NC' c AC' € NC*!
@ Clearly NC' c AC

@ AC' C NC*! because polynomial fan-in can be

reduced to constant fan-in by using a log depth
tree

@ So NC = AC
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@ Generate circuit of the right input size and evaluate on input
@ Generating the circuit

@ in logspace, so poly time; also circuit size is poly
@ Evaluating the gates

@ Poly(n) gates

@ Per gate takes O(1) time + time to look up output values of
(already evaluated) gates

@ Open problem: Is NC = P?
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Motivation for NC

@ Fast parallel computation is (loosely) modeled as
having poly many processors and taking poly-log time

@ Corresponds to NC (How?)

@ Depth translates to time

@ Total “work” is size of the circuit
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An example

A

@ PARITY in NC!

@ PARITY = { x | x has odd number of 1s } i i

@ Circuit should evaluate x1®x2@®...0Xn
@ Tree of n-1 XOR gates: log n deep # A é é
@ Each XOR gate implemented in depth 3

ot R
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@ PATH € AC!

@ "Boolean” Matrix Multiplication
® Z=XY: Zij = Vkat.n (XikAYk;)

@ ACO circuit (OR gate with fan-in n, AND gates)

@ If X adjacency matrix (with self-loops), X'j=1 iff path
from i to j of length t or less

@ XM; for m 2 nis the transitive closure
@ O(log n) matrix multiplications to compute X";

@ Total depth O(log n)
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@ Generate circuit (implicitly) and evaluate

@ cf. NC € P. But now, to conserve space, a recursive evaluation

(rather than bottom-up).
@ For each gate, recursively evaluate each input wire

@ Storage: A path to the current node, from the output node:
since bounded fan-in, takes O(1) bits per node; since logspace
uniform that is sufficient to compute the node id in logspace

@ And at each node along the path, the input wire values
evaluated results so far (again O(1) bits per node)

@ Length of path = depth of circuit = O(log n)
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@ Recall PATH € AC!

@ Also recall PATH is NL-complete
@ with respect to log-space reductions
@ in fact, with respect to NC! reductions

@ Exercise! (For NL machine M, can build (in log-space)
NC! circuit which on input x, outputs (i,j)™ entry of
the adjacency matrix of configuration graph of M(x).)

@ Combining the NC! circuits for reduction and the AC!
circuit for PATH, we get an AC! circuit
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Summary: NC' and AC

@ NC'C AC' S NCHC NC=ACCP
@ NC°C ACPS NC'c L € NL € AC!
@ ACC° S NC! as PARITY & ACP (later)
@ Open: whether NC'¢ AC' G NC™*! for larger i
@ Open: Is NC = P? (Can all polynomial time decidable

languages be sped up to poly-log time using
parallelization?)
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DC Uniform

@ Recall Uniform circuit family: circuits in the family can
be generated by a TM

@ Suppose circuits are super-polynomially large. Cannot
be logspace-uniform or P-uniform.

@ DC uniform allows exponentially large circuits

@ Still requires polynomial time implicit computation
of the circuit

@ Coincides with EXP (Why?)
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@ Restricted to depth k, 2PV size, unbounded fan-in

DC uniform circuit families decide exactly languages
in 2k U TP

@ Given a DC uniform circuit (w.l.o.g alternating
levels of AND and OR gates, and NOT gates only
at the input level) of depth k, an equivalent
quantified expression with k alternations

@ Given a quantified expression with k alternations,
an equivalent DC uniform circuit of depth k
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@ From circuit to quantified expression

@ Consider game played on the circuit: adversary picks an
edge going into the AND level and Alice picks an edge going
info the OR level, going through levels top to bottom

Can
check in
poly time

@ Alice wins if adversary "breaks off the path” (by picking
either a non-wire edge or a wire not continuing the path),
or if the path terminates at literal of value 1 (w/o breaking)

@ Input accepted by the circuit iff Alice has a winning strategy
(i.e., if the quantified expression is true)

@ Each edge has a polynomially long label, and quantified
variables take values from the same domain. Checking if
edge is a correct wire in poly time (uniformity)
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O(1) depth DC Uniform

@ From quantified expression to circuit:

@ Circuit has sub-circuits evaluating the poly-time
condition for each possible assignment of the
quantified variables.

® Hang these sub-circuits at the leaves of a k-level
AND-OR tree appropriately

@ Circuit can be implicitly computed in polynomial
time. Size ZO(fo’ral length of variables)
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c.

@ NC' and AC'
@ DC-uniform
@ PH levels and EXP

@ Later, more circuits and non-uniform
computation (time permitting)

@ PARITY & AC° c

@ Decision trees, Branching programs

@ Connections between circuit
lowerbounds and other complexity class
separations



