
Circuits

Lecture 11
Uniform Circuit Complexity

1

Recall

2

Recall
Non-uniform complexity

2

Recall
Non-uniform complexity

P/1 ⊈ Decidable

2

Recall
Non-uniform complexity

P/1 ⊈ Decidable

NP ⊆ P/log ⇒ NP = P

2

Recall
Non-uniform complexity

P/1 ⊈ Decidable

NP ⊆ P/log ⇒ NP = P

NP ⊆ P/poly ⇒ PH = Σ2P

2

Recall
Non-uniform complexity

P/1 ⊈ Decidable

NP ⊆ P/log ⇒ NP = P

NP ⊆ P/poly ⇒ PH = Σ2P

Circuit Complexity

2

Recall
Non-uniform complexity

P/1 ⊈ Decidable

NP ⊆ P/log ⇒ NP = P

NP ⊆ P/poly ⇒ PH = Σ2P

Circuit Complexity

SIZE(poly) = P/poly

2

Recall
Non-uniform complexity

P/1 ⊈ Decidable

NP ⊆ P/log ⇒ NP = P

NP ⊆ P/poly ⇒ PH = Σ2P

Circuit Complexity

SIZE(poly) = P/poly

SIZE-hierarchy

2

Recall
Non-uniform complexity

P/1 ⊈ Decidable

NP ⊆ P/log ⇒ NP = P

NP ⊆ P/poly ⇒ PH = Σ2P

Circuit Complexity

SIZE(poly) = P/poly

SIZE-hierarchy

SIZE(T’) ⊊ SIZE(T) if T=Ω(t2t) and T’=O(2t/t)

2

Recall
Non-uniform complexity

P/1 ⊈ Decidable

NP ⊆ P/log ⇒ NP = P

NP ⊆ P/poly ⇒ PH = Σ2P

Circuit Complexity

SIZE(poly) = P/poly

SIZE-hierarchy

SIZE(T’) ⊊ SIZE(T) if T=Ω(t2t) and T’=O(2t/t)

Most functions on t bits (that ignore last n-t bits) are
in SIZE(T) but not in SIZE(T’)

2

Uniform Circuits

3

Uniform Circuits

Uniform circuit family: constructed by a TM

3

Uniform Circuits

Uniform circuit family: constructed by a TM

Undecidable languages are undecidable for these circuits
families

3

Uniform Circuits

Uniform circuit family: constructed by a TM

Undecidable languages are undecidable for these circuits
families

Can relate their complexity classes to classes defined using TMs

3

Uniform Circuits

Uniform circuit family: constructed by a TM

Undecidable languages are undecidable for these circuits
families

Can relate their complexity classes to classes defined using TMs

Logspace-uniform:

3

Uniform Circuits

Uniform circuit family: constructed by a TM

Undecidable languages are undecidable for these circuits
families

Can relate their complexity classes to classes defined using TMs

Logspace-uniform:

An O(log n) space TM can compute the circuit

3

NCi and ACi

4

NCi and ACi

NCi: class of languages decided by bounded fan-in
logspace-uniform circuits of polynomial size and depth
O(logi n)

4

NCi and ACi

NCi: class of languages decided by bounded fan-in
logspace-uniform circuits of polynomial size and depth
O(logi n)

ACi: Similar, but unbounded fan-in circuits

4

NCi and ACi

NCi: class of languages decided by bounded fan-in
logspace-uniform circuits of polynomial size and depth
O(logi n)

ACi: Similar, but unbounded fan-in circuits

NC0 and AC0: constant depth circuits

4

NCi and ACi

NCi: class of languages decided by bounded fan-in
logspace-uniform circuits of polynomial size and depth
O(logi n)

ACi: Similar, but unbounded fan-in circuits

NC0 and AC0: constant depth circuits

NC0 output depends on only a constant number of
input bits

4

NCi and ACi

NCi: class of languages decided by bounded fan-in
logspace-uniform circuits of polynomial size and depth
O(logi n)

ACi: Similar, but unbounded fan-in circuits

NC0 and AC0: constant depth circuits

NC0 output depends on only a constant number of
input bits

NC0 ⊊ AC0: Consider L = {1,11,111,...}

4

NC and AC

5

NC and AC

NC = ∪i>0 NCi. Similarly AC.

5

NC and AC

NC = ∪i>0 NCi. Similarly AC.

NCi ⊆ ACi ⊆ NCi+1

5

NC and AC

NC = ∪i>0 NCi. Similarly AC.

NCi ⊆ ACi ⊆ NCi+1

Clearly NCi ⊆ ACi

5

NC and AC

NC = ∪i>0 NCi. Similarly AC.

NCi ⊆ ACi ⊆ NCi+1

Clearly NCi ⊆ ACi

ACi ⊆ NCi+1 because polynomial fan-in can be

reduced to constant fan-in by using a log depth
tree

5

NC and AC

NC = ∪i>0 NCi. Similarly AC.

NCi ⊆ ACi ⊆ NCi+1

Clearly NCi ⊆ ACi

ACi ⊆ NCi+1 because polynomial fan-in can be

reduced to constant fan-in by using a log depth
tree

So NC = AC

5

NC ⊆ P

6

NC ⊆ P
Generate circuit of the right input size and evaluate on input

6

NC ⊆ P
Generate circuit of the right input size and evaluate on input

Generating the circuit

6

NC ⊆ P
Generate circuit of the right input size and evaluate on input

Generating the circuit

in logspace, so poly time; also circuit size is poly

6

NC ⊆ P
Generate circuit of the right input size and evaluate on input

Generating the circuit

in logspace, so poly time; also circuit size is poly

Evaluating the gates

6

NC ⊆ P
Generate circuit of the right input size and evaluate on input

Generating the circuit

in logspace, so poly time; also circuit size is poly

Evaluating the gates

Poly(n) gates

6

NC ⊆ P
Generate circuit of the right input size and evaluate on input

Generating the circuit

in logspace, so poly time; also circuit size is poly

Evaluating the gates

Poly(n) gates

Per gate takes O(1) time + time to look up output values of
(already evaluated) gates

6

NC ⊆ P
Generate circuit of the right input size and evaluate on input

Generating the circuit

in logspace, so poly time; also circuit size is poly

Evaluating the gates

Poly(n) gates

Per gate takes O(1) time + time to look up output values of
(already evaluated) gates

Open problem: Is NC = P?

6

Motivation for NC

7

Motivation for NC

Fast parallel computation is (loosely) modeled as
having poly many processors and taking poly-log time

7

Motivation for NC

Fast parallel computation is (loosely) modeled as
having poly many processors and taking poly-log time

Corresponds to NC (How?)

7

Motivation for NC

Fast parallel computation is (loosely) modeled as
having poly many processors and taking poly-log time

Corresponds to NC (How?)

Depth translates to time

7

Motivation for NC

Fast parallel computation is (loosely) modeled as
having poly many processors and taking poly-log time

Corresponds to NC (How?)

Depth translates to time

Total “work” is size of the circuit

7

An example

8

An example

PARITY in NC1

8

An example

PARITY in NC1

PARITY = { x | x has odd number of 1s }

8

An example

PARITY in NC1

PARITY = { x | x has odd number of 1s }

Circuit should evaluate x1⊕x2⊕...⊕xn

8

An example

PARITY in NC1

PARITY = { x | x has odd number of 1s }

Circuit should evaluate x1⊕x2⊕...⊕xn

Tree of n-1 XOR gates: log n deep

8

An example

PARITY in NC1

PARITY = { x | x has odd number of 1s }

Circuit should evaluate x1⊕x2⊕...⊕xn

Tree of n-1 XOR gates: log n deep

Each XOR gate implemented in depth 3

8

An example

PARITY in NC1

PARITY = { x | x has odd number of 1s }

Circuit should evaluate x1⊕x2⊕...⊕xn

Tree of n-1 XOR gates: log n deep

Each XOR gate implemented in depth 3

8

Another example

9

Another example
PATH ∈ AC1

9

Another example
PATH ∈ AC1

“Boolean” Matrix Multiplication

9

Another example
PATH ∈ AC1

“Boolean” Matrix Multiplication
Z=XY: zij = ∨k=1..n (xik∧ykj)

9

Another example
PATH ∈ AC1

“Boolean” Matrix Multiplication
Z=XY: zij = ∨k=1..n (xik∧ykj)
AC0 circuit (OR gate with fan-in n, AND gates)

9

Another example
PATH ∈ AC1

“Boolean” Matrix Multiplication
Z=XY: zij = ∨k=1..n (xik∧ykj)
AC0 circuit (OR gate with fan-in n, AND gates)

If X adjacency matrix (with self-loops), Xtij=1 iff path
from i to j of length t or less

9

Another example
PATH ∈ AC1

“Boolean” Matrix Multiplication
Z=XY: zij = ∨k=1..n (xik∧ykj)
AC0 circuit (OR gate with fan-in n, AND gates)

If X adjacency matrix (with self-loops), Xtij=1 iff path
from i to j of length t or less

Xmij for m ≥ n is the transitive closure

9

Another example
PATH ∈ AC1

“Boolean” Matrix Multiplication
Z=XY: zij = ∨k=1..n (xik∧ykj)
AC0 circuit (OR gate with fan-in n, AND gates)

If X adjacency matrix (with self-loops), Xtij=1 iff path
from i to j of length t or less

Xmij for m ≥ n is the transitive closure

O(log n) matrix multiplications to compute Xnij

9

Another example
PATH ∈ AC1

“Boolean” Matrix Multiplication
Z=XY: zij = ∨k=1..n (xik∧ykj)
AC0 circuit (OR gate with fan-in n, AND gates)

If X adjacency matrix (with self-loops), Xtij=1 iff path
from i to j of length t or less

Xmij for m ≥ n is the transitive closure

O(log n) matrix multiplications to compute Xnij

Total depth O(log n)

9

NC1 ⊆ L

10

NC1 ⊆ L
Generate circuit (implicitly) and evaluate

10

NC1 ⊆ L
Generate circuit (implicitly) and evaluate

cf. NC ⊆ P. But now, to conserve space, a recursive evaluation

(rather than bottom-up).

10

NC1 ⊆ L
Generate circuit (implicitly) and evaluate

cf. NC ⊆ P. But now, to conserve space, a recursive evaluation

(rather than bottom-up).

For each gate, recursively evaluate each input wire

10

NC1 ⊆ L
Generate circuit (implicitly) and evaluate

cf. NC ⊆ P. But now, to conserve space, a recursive evaluation

(rather than bottom-up).

For each gate, recursively evaluate each input wire

Storage: A path to the current node, from the output node:
since bounded fan-in, takes O(1) bits per node; since logspace
uniform that is sufficient to compute the node id in logspace

10

NC1 ⊆ L
Generate circuit (implicitly) and evaluate

cf. NC ⊆ P. But now, to conserve space, a recursive evaluation

(rather than bottom-up).

For each gate, recursively evaluate each input wire

Storage: A path to the current node, from the output node:
since bounded fan-in, takes O(1) bits per node; since logspace
uniform that is sufficient to compute the node id in logspace

And at each node along the path, the input wire values
evaluated results so far (again O(1) bits per node)

10

NC1 ⊆ L
Generate circuit (implicitly) and evaluate

cf. NC ⊆ P. But now, to conserve space, a recursive evaluation

(rather than bottom-up).

For each gate, recursively evaluate each input wire

Storage: A path to the current node, from the output node:
since bounded fan-in, takes O(1) bits per node; since logspace
uniform that is sufficient to compute the node id in logspace

And at each node along the path, the input wire values
evaluated results so far (again O(1) bits per node)

Length of path = depth of circuit = O(log n)
10

NL ⊆ AC1

11

NL ⊆ AC1

Recall PATH ∈ AC1

11

NL ⊆ AC1

Recall PATH ∈ AC1

Also recall PATH is NL-complete

11

NL ⊆ AC1

Recall PATH ∈ AC1

Also recall PATH is NL-complete

with respect to log-space reductions

11

NL ⊆ AC1

Recall PATH ∈ AC1

Also recall PATH is NL-complete

with respect to log-space reductions

in fact, with respect to NC1 reductions

11

NL ⊆ AC1

Recall PATH ∈ AC1

Also recall PATH is NL-complete

with respect to log-space reductions

in fact, with respect to NC1 reductions

Exercise! (For NL machine M, can build (in log-space)
NC1 circuit which on input x, outputs (i,j)th entry of
the adjacency matrix of configuration graph of M(x).)

11

NL ⊆ AC1

Recall PATH ∈ AC1

Also recall PATH is NL-complete

with respect to log-space reductions

in fact, with respect to NC1 reductions

Exercise! (For NL machine M, can build (in log-space)
NC1 circuit which on input x, outputs (i,j)th entry of
the adjacency matrix of configuration graph of M(x).)

Combining the NC1 circuits for reduction and the AC1
circuit for PATH, we get an AC1 circuit

11

Summary: NCi and ACi

12

Summary: NCi and ACi

NCi ⊆ ACi ⊆ NCi+1 ⊆ NC = AC ⊆ P

12

Summary: NCi and ACi

NCi ⊆ ACi ⊆ NCi+1 ⊆ NC = AC ⊆ P

NC0 ⊊ AC0 ⊊ NC1 ⊆ L ⊆ NL ⊆ AC1

12

Summary: NCi and ACi

NCi ⊆ ACi ⊆ NCi+1 ⊆ NC = AC ⊆ P

NC0 ⊊ AC0 ⊊ NC1 ⊆ L ⊆ NL ⊆ AC1

AC0 ⊊ NC1 as PARITY ∉ AC0 (later)

12

Summary: NCi and ACi

NCi ⊆ ACi ⊆ NCi+1 ⊆ NC = AC ⊆ P

NC0 ⊊ AC0 ⊊ NC1 ⊆ L ⊆ NL ⊆ AC1

AC0 ⊊ NC1 as PARITY ∉ AC0 (later)

Open: whether NCi ⊊ ACi ⊊ NCi+1 for larger i

12

Summary: NCi and ACi

NCi ⊆ ACi ⊆ NCi+1 ⊆ NC = AC ⊆ P

NC0 ⊊ AC0 ⊊ NC1 ⊆ L ⊆ NL ⊆ AC1

AC0 ⊊ NC1 as PARITY ∉ AC0 (later)

Open: whether NCi ⊊ ACi ⊊ NCi+1 for larger i

Open: Is NC = P? (Can all polynomial time decidable
languages be sped up to poly-log time using
parallelization?)

12

Zoo

P

PSPACE

EXP

NP

NEXP

L

NL

NPSPACE

ΣkP
PH

NC0

NC1

AC0

AC1

NC AC

NCK

ACK-1

ACK

13

DC Uniform

14

DC Uniform

Recall Uniform circuit family: circuits in the family can
be generated by a TM

14

DC Uniform

Recall Uniform circuit family: circuits in the family can
be generated by a TM

Suppose circuits are super-polynomially large. Cannot
be logspace-uniform or P-uniform.

14

DC Uniform

Recall Uniform circuit family: circuits in the family can
be generated by a TM

Suppose circuits are super-polynomially large. Cannot
be logspace-uniform or P-uniform.

DC uniform allows exponentially large circuits

14

DC Uniform

Recall Uniform circuit family: circuits in the family can
be generated by a TM

Suppose circuits are super-polynomially large. Cannot
be logspace-uniform or P-uniform.

DC uniform allows exponentially large circuits

Still requires polynomial time implicit computation
of the circuit

14

DC Uniform

Recall Uniform circuit family: circuits in the family can
be generated by a TM

Suppose circuits are super-polynomially large. Cannot
be logspace-uniform or P-uniform.

DC uniform allows exponentially large circuits

Still requires polynomial time implicit computation
of the circuit

Coincides with EXP (Why?)

14

O(1) depth DC Uniform

15

Restricted to depth k, 2poly(n) size, unbounded fan-in
DC uniform circuit families decide exactly languages
in ΣkP ∪ ΠkP

O(1) depth DC Uniform

15

Restricted to depth k, 2poly(n) size, unbounded fan-in
DC uniform circuit families decide exactly languages
in ΣkP ∪ ΠkP

Given a DC uniform circuit (w.l.o.g alternating
levels of AND and OR gates, and NOT gates only
at the input level) of depth k, an equivalent
quantified expression with k alternations

O(1) depth DC Uniform

15

Restricted to depth k, 2poly(n) size, unbounded fan-in
DC uniform circuit families decide exactly languages
in ΣkP ∪ ΠkP

Given a DC uniform circuit (w.l.o.g alternating
levels of AND and OR gates, and NOT gates only
at the input level) of depth k, an equivalent
quantified expression with k alternations

Given a quantified expression with k alternations,
an equivalent DC uniform circuit of depth k

O(1) depth DC Uniform

15

O(1) depth DC Uniform

16

O(1) depth DC Uniform
From circuit to quantified expression

16

O(1) depth DC Uniform
From circuit to quantified expression

Consider game played on the circuit: adversary picks an
edge going into the AND level and Alice picks an edge going
into the OR level, going through levels top to bottom

16

O(1) depth DC Uniform
From circuit to quantified expression

Consider game played on the circuit: adversary picks an
edge going into the AND level and Alice picks an edge going
into the OR level, going through levels top to bottom

Alice wins if adversary “breaks off the path” (by picking
either a non-wire edge or a wire not continuing the path),
or if the path terminates at literal of value 1 (w/o breaking)

16

O(1) depth DC Uniform
From circuit to quantified expression

Consider game played on the circuit: adversary picks an
edge going into the AND level and Alice picks an edge going
into the OR level, going through levels top to bottom

Alice wins if adversary “breaks off the path” (by picking
either a non-wire edge or a wire not continuing the path),
or if the path terminates at literal of value 1 (w/o breaking)

Can
check in
poly time

16

O(1) depth DC Uniform
From circuit to quantified expression

Consider game played on the circuit: adversary picks an
edge going into the AND level and Alice picks an edge going
into the OR level, going through levels top to bottom

Alice wins if adversary “breaks off the path” (by picking
either a non-wire edge or a wire not continuing the path),
or if the path terminates at literal of value 1 (w/o breaking)

Input accepted by the circuit iff Alice has a winning strategy
(i.e., if the quantified expression is true)

Can
check in
poly time

16

O(1) depth DC Uniform
From circuit to quantified expression

Consider game played on the circuit: adversary picks an
edge going into the AND level and Alice picks an edge going
into the OR level, going through levels top to bottom

Alice wins if adversary “breaks off the path” (by picking
either a non-wire edge or a wire not continuing the path),
or if the path terminates at literal of value 1 (w/o breaking)

Input accepted by the circuit iff Alice has a winning strategy
(i.e., if the quantified expression is true)

Each edge has a polynomially long label, and quantified
variables take values from the same domain. Checking if
edge is a correct wire in poly time (uniformity)

Can
check in
poly time

16

O(1) depth DC Uniform

17

From quantified expression to circuit:

O(1) depth DC Uniform

17

From quantified expression to circuit:

Circuit has sub-circuits evaluating the poly-time
condition for each possible assignment of the
quantified variables.

O(1) depth DC Uniform

17

From quantified expression to circuit:

Circuit has sub-circuits evaluating the poly-time
condition for each possible assignment of the
quantified variables.

Hang these sub-circuits at the leaves of a k-level
AND-OR tree appropriately

O(1) depth DC Uniform

17

From quantified expression to circuit:

Circuit has sub-circuits evaluating the poly-time
condition for each possible assignment of the
quantified variables.

Hang these sub-circuits at the leaves of a k-level
AND-OR tree appropriately

Circuit can be implicitly computed in polynomial
time. Size 2O(total length of variables)

O(1) depth DC Uniform

17

Today

L

NL

NC0

NC1

AC0

AC1

NC AC

NCK

ACK-1

ACK

P

18

Today
NCi and ACi

L

NL

NC0

NC1

AC0

AC1

NC AC

NCK

ACK-1

ACK

P

18

Today
NCi and ACi

DC-uniform

L

NL

NC0

NC1

AC0

AC1

NC AC

NCK

ACK-1

ACK

P

18

Today
NCi and ACi

DC-uniform

PH levels and EXP

L

NL

NC0

NC1

AC0

AC1

NC AC

NCK

ACK-1

ACK

P

18

Today
NCi and ACi

DC-uniform

PH levels and EXP

Later, more circuits and non-uniform
computation (time permitting)

L

NL

NC0

NC1

AC0

AC1

NC AC

NCK

ACK-1

ACK

P

18

Today
NCi and ACi

DC-uniform

PH levels and EXP

Later, more circuits and non-uniform
computation (time permitting)

PARITY ∉ AC0
L

NL

NC0

NC1

AC0

AC1

NC AC

NCK

ACK-1

ACK

P

18

Today
NCi and ACi

DC-uniform

PH levels and EXP

Later, more circuits and non-uniform
computation (time permitting)

PARITY ∉ AC0

Decision trees, Branching programs

L

NL

NC0

NC1

AC0

AC1

NC AC

NCK

ACK-1

ACK

P

18

Today
NCi and ACi

DC-uniform

PH levels and EXP

Later, more circuits and non-uniform
computation (time permitting)

PARITY ∉ AC0

Decision trees, Branching programs

Connections between circuit
lowerbounds and other complexity class
separations

L

NL

NC0

NC1

AC0

AC1

NC AC

NCK

ACK-1

ACK

P

18

