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Recall
Non-uniform complexity

P/1 ⊈ Decidable

NP ⊆ P/log  ⇒ NP = P

NP ⊆ P/poly ⇒ PH = Σ2P

Circuit Complexity

SIZE(poly) = P/poly

SIZE-hierarchy

SIZE(T’) ⊊ SIZE(T) if T=Ω(t2t) and T’=O(2t/t)

Most functions on t bits (that ignore last n-t bits) are 
in SIZE(T) but not in SIZE(T’)
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Uniform Circuits

Uniform circuit family: constructed by a TM 

Undecidable languages are undecidable for these circuits 
families

Can relate their complexity classes to classes defined using TMs

Logspace-uniform:

An O(log n) space TM can compute the circuit
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NCi and ACi

NCi: class of languages decided by bounded fan-in 
logspace-uniform circuits of polynomial size and depth 
O(logi n)

ACi: Similar, but unbounded fan-in circuits

NC0 and AC0: constant depth circuits

NC0 output depends on only a constant number of 
input bits

NC0 ⊊ AC0: Consider L = {1,11,111,...}
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NC and AC

NC = ∪i>0 NCi. Similarly AC.

NCi ⊆ ACi ⊆ NCi+1

Clearly NCi ⊆ ACi

ACi ⊆ NCi+1 because polynomial fan-in can be 

reduced to constant fan-in by using a log depth 
tree

So NC = AC
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NC ⊆ P
Generate circuit of the right input size and evaluate on input

Generating the circuit

in logspace, so poly time; also circuit size is poly

Evaluating the gates

Poly(n) gates

Per gate takes O(1) time + time to look up output values of 
(already evaluated) gates

Open problem: Is NC = P?
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Motivation for NC

Fast parallel computation is (loosely) modeled as 
having poly many processors and taking poly-log time

Corresponds to NC (How?)

Depth translates to time

Total “work” is size of the circuit
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Another example
PATH ∈ AC1

“Boolean” Matrix Multiplication
Z=XY: zij = ∨k=1..n (xik∧ykj)
AC0 circuit (OR gate with fan-in n, AND gates)

If X adjacency matrix (with self-loops), Xtij=1 iff path 
from i to j of length t or less

Xmij for m ≥ n is the transitive closure

O(log n) matrix multiplications to compute Xnij

Total depth O(log n)
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NC1 ⊆ L
Generate circuit (implicitly) and evaluate

cf. NC ⊆ P. But now, to conserve space, a recursive evaluation 

(rather than bottom-up).

For each gate, recursively evaluate each input wire

Storage: A path to the current node, from the output node: 
since bounded fan-in, takes O(1) bits per node; since logspace 
uniform that is sufficient to compute the node id in logspace

And at each node along the path, the input wire values 
evaluated results so far (again O(1) bits per node)

Length of path = depth of circuit = O(log n)
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NL ⊆ AC1

Recall PATH ∈ AC1

Also recall PATH is NL-complete

with respect to log-space reductions

in fact, with respect to NC1 reductions

Exercise! (For NL machine M, can build (in log-space) 
NC1 circuit which on input x, outputs (i,j)th entry of 
the adjacency matrix of configuration graph of M(x).)

Combining the NC1 circuits for reduction and  the AC1 
circuit for PATH, we get an AC1 circuit
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Summary: NCi and ACi

NCi ⊆ ACi ⊆ NCi+1 ⊆ NC = AC ⊆ P

NC0 ⊊ AC0 ⊊ NC1 ⊆ L ⊆ NL ⊆ AC1

AC0 ⊊ NC1 as  PARITY ∉ AC0 (later)

Open: whether NCi ⊊ ACi ⊊ NCi+1 for larger i

Open: Is NC = P? (Can all polynomial time decidable 
languages be sped up to poly-log time using 
parallelization?)

12



Zoo

P

PSPACE

EXP

NP

NEXP

L

NL

NPSPACE

ΣkP
PH

NC0

NC1

AC0

AC1

NC AC

NCK

ACK-1

ACK

13



DC Uniform

14



DC Uniform

Recall Uniform circuit family: circuits in the family can 
be generated by a TM

14



DC Uniform

Recall Uniform circuit family: circuits in the family can 
be generated by a TM

Suppose circuits are super-polynomially large. Cannot 
be logspace-uniform or P-uniform.

14



DC Uniform

Recall Uniform circuit family: circuits in the family can 
be generated by a TM

Suppose circuits are super-polynomially large. Cannot 
be logspace-uniform or P-uniform.

DC uniform allows exponentially large circuits

14



DC Uniform

Recall Uniform circuit family: circuits in the family can 
be generated by a TM

Suppose circuits are super-polynomially large. Cannot 
be logspace-uniform or P-uniform.

DC uniform allows exponentially large circuits

Still requires polynomial time implicit computation 
of the circuit

14



DC Uniform

Recall Uniform circuit family: circuits in the family can 
be generated by a TM

Suppose circuits are super-polynomially large. Cannot 
be logspace-uniform or P-uniform.

DC uniform allows exponentially large circuits

Still requires polynomial time implicit computation 
of the circuit

Coincides with EXP (Why?)
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Restricted to depth k, 2poly(n) size, unbounded fan-in 
DC uniform circuit families decide exactly languages 
in ΣkP ∪ ΠkP

Given a DC uniform circuit (w.l.o.g alternating 
levels of AND and OR gates, and NOT gates only 
at the input level) of depth k, an equivalent 
quantified expression with k alternations

Given a quantified expression with k alternations, 
an equivalent DC uniform circuit of depth k

O(1) depth DC Uniform
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From circuit to quantified expression

Consider game played on the circuit: adversary picks an 
edge going into the AND level and Alice picks an edge going 
into the OR level, going through levels top to bottom

Alice wins if adversary “breaks off the path” (by picking 
either a non-wire edge or a wire not continuing the path), 
or if the path terminates at literal of value 1 (w/o breaking)

Input accepted by the circuit iff Alice has a winning strategy 
(i.e., if the quantified expression is true)

Each edge has a polynomially long label, and quantified 
variables take values from the same domain. Checking if 
edge is a correct wire in poly time (uniformity)

Can 
check in 
poly time
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From quantified expression to circuit:

Circuit has sub-circuits evaluating the poly-time 
condition for each possible assignment of the 
quantified variables.

Hang these sub-circuits at the leaves of a k-level 
AND-OR tree appropriately

Circuit can be implicitly computed in polynomial 
time. Size 2O(total length of variables)

O(1) depth DC Uniform
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Today
NCi and ACi

DC-uniform

PH levels and EXP

Later, more circuits and non-uniform 
computation (time permitting)

PARITY ∉ AC0

Decision trees, Branching programs

Connections between circuit 
lowerbounds and other complexity class 
separations
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