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Non-Uniform Computation

@ Uniform: Same program for all (the infinitely many) inputs
@ Non-uniform: A different "program” for each input size

@ Then complexity of building the program and executing the
program

@ Sometimes will focus on the latter alone

@ Not entirely realistic if the program family is uncomputable
or very complex to compute
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Non-uniform advice

@ Program: TM M and advice strings {An}
@ M given Ajx along with x
® An can be the program for inputs of size n
o |Anl=2" is sufficient

@ But {An} can be uncomputable (even if just one bit long)

@ e.g. advice to decide undecidable unary languages
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P/poly and P/log

@ DTIME(T)/a

@ Languages decided by a TM in time T(n) using
non-uniform advice of length a(n)

D p/POly = UC,d,k>O DTIME(knC)/knd

@ P/log = Ucxso DTIME(kn®)/k log n
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NP vs. P/log, P/poly

@ P/log (or even DTIME(1)/1) has undecidable languages
@ e.g. unary undecidable languages

@ So P/log cannot be contained in any of the
uniform complexity classes

@ P/log contains P

@ Does P/log or P/poly contain NP?
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Search using Decision

@ Suppose given “oracles” for deciding all NP
languages, can we easily find certificates?

@ Yes! So, if decision easy (i.e., oracles
then search is easy too!

Use Lz so that (x,z,pad)
in L2 iff (x,z) in L;. Can
query Lz with same size
instances

@ Say need to find w s.t. (x,w) € L

@ consider L; in NP: (x,y) € L, iff dz s.t. (x,yz) € L.
(i.e., can y be a prefix of a certificate for x).

@ Query Li-oracle with (x,0) and (x,1). One of the
two must be positive: say (x,0) € Li; then first bi’ri

of w be 0.

@ For next bit query oracle with (x,00) and (x,01)
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NP € P/log = NP=P

@ Recall finding witness for an NP language is Turing
reducible to deciding the language

@ If NP € P/log, then for each L in NP, there is a poly-time

TM with log advice which can find witness (via self-
reduction)

@ Guess advice (poly many), and for each guessed advice,
run the TM and see if it finds witness

@ If no advice worked (one of them was correct), then
input not in language
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NP c P/poly = PH=3,"

@ Will show nzp - Zzp
@ Consider L = {x| Vw; (x,w1) € L' } € M,° where

L' = {(X,W1)| E|W2 F(X,Wl,Wz)} e NP

@ If NP < P/poly then consider M with advice {An}
which finds witness for L: i.e. if (x,w;) € L', then

M(x,w1; An) outputs a witness wz s.t. F(x,wi,wz)

o L = {x| dz Vw; F(x, w1, M(x,w1; 2)) }
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Boolean Circuits

@ Directed acyclic graph

@ Nodes: AND, OR, NOT, CONST gates,
inputs, output(s)

@ Edges: Boolean valued wires

@ AND/OR fan-ins can be bounded (say
two) or unbounded

@ Acyclic: output well-defined

@ Note: no memory gates

® Size of circuit: number of wires
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Boolean Circuits

@ Recall: a TMs execution on inputs
of fixed length can be captured by
a Boolean circuit

@ From proof of Cook's theorem

@ Size of circuit polynomially
related to running time of TM

@ If poly time TM, then poly
sized circuit
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@ Non-uniformity: circuit family {Cn}

@ Given non-uniform computation

(M,1An}) can define equivalent {C.} N 4
@ Advice Ay is hard-wired into
circuit C,
A 4

@ Doesnt affect circuit size

@ Conversely, given {Cn}, can use
description of C, as advice A, for
a “universal” TM

@ |Aql comparable to size of

circuit C, J—
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SIZE(T)

@ SIZE(T): languages solved by circuit families of size T(n)
@ P/poly = SIZE(poly)

@ SIZE(poly) € P/poly: Size T circuit can be described in

O(T log T) bits (advice). Universal TM can evaluate this
circuit in poly time

@ P/poly c SIZE(poly): Transformation from Cook's

theorem, with advice string hardwired into circuit
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SIZE bounds

@ All languages (decidable or not) are in SIZE(T) for T=0(n2")
@ Circuit encodes truth-table

@ Most languages need circuits of size Q(2"/n)
@ Number of circuits of size T is at most T¢'
o If T = 2"/4n, say, T?T < 2(2'n/2

@ Number of languages = 22"
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SIZE hierarchy

@ SIZE(T') ¢ SIZE(T) if T=Q(+2%) and T'=0(2!/1)

@ Consider functions on t bits (ignoring n-t bits)

@ All of them in SIZE(T), most not in SIZE(T')
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Uniform Circuits

@ Circuits are interesting for their structure too (not just size)!
@ Uniform circuit family: constructed by a TM

@ Undecidable languages are undecidable for these circuits
families

@ Can relate their complexity classes to classes defined using TMs
@ Logspace-uniform:

@ An O(log n) space TM can compute the circuit
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NC and AC

@ NC and AC: languages decided by poly size and poly-log
depth logspace-uniform circuits

@ NC with bounded fan-in and AC with unbounded fan-in

@ NC': decided by bounded fan-in logspace-uniform
circuits of poly size and depth O(log' n)

% NC - Ui>O NCI

@ Similarly AC' and AC = Uj,o AC!
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NC' and AC!

@ NC' c AC' € NC'*!
@ Clearly NC'c AC

@ AC' < NC*! because polynomial fan-in can be

reduced to constant fan-in by using a log depth
tree

@ So NC = AC
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NC and P

@ NCCc P

@ Build the circuit in logspace (so poly time) and
evaluate it in time polynomial in the size of the
circuit

@ Open problem: Is NC = P?
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Motivation for NC

@ Fast parallel computation is (loosely) modeled as
having poly many processors and taking poly-log time

@ Corresponds to NC

@ Depth translates to time

@ Total “work” is size of the circuit




