
Non-Uniform
Computation

Lecture 10
Non-Uniform Computational Models:

Circuits

1

Non-Uniform Computation

2

Non-Uniform Computation
Uniform: Same program for all (the infinitely many) inputs

2

Non-Uniform Computation
Uniform: Same program for all (the infinitely many) inputs

Non-uniform: A different “program” for each input size

2

Non-Uniform Computation
Uniform: Same program for all (the infinitely many) inputs

Non-uniform: A different “program” for each input size

Then complexity of building the program and executing the
program

2

Non-Uniform Computation
Uniform: Same program for all (the infinitely many) inputs

Non-uniform: A different “program” for each input size

Then complexity of building the program and executing the
program

Sometimes will focus on the latter alone

2

Non-Uniform Computation
Uniform: Same program for all (the infinitely many) inputs

Non-uniform: A different “program” for each input size

Then complexity of building the program and executing the
program

Sometimes will focus on the latter alone

Not entirely realistic if the program family is uncomputable
or very complex to compute

2

Non-uniform advice

3

Non-uniform advice

Program: TM M and advice strings {An}

3

Non-uniform advice

Program: TM M and advice strings {An}

M given A|x| along with x

3

Non-uniform advice

Program: TM M and advice strings {An}

M given A|x| along with x

An can be the program for inputs of size n

3

Non-uniform advice

Program: TM M and advice strings {An}

M given A|x| along with x

An can be the program for inputs of size n

|An|=2n is sufficient

3

Non-uniform advice

Program: TM M and advice strings {An}

M given A|x| along with x

An can be the program for inputs of size n

|An|=2n is sufficient

But {An} can be uncomputable (even if just one bit long)

3

Non-uniform advice

Program: TM M and advice strings {An}

M given A|x| along with x

An can be the program for inputs of size n

|An|=2n is sufficient

But {An} can be uncomputable (even if just one bit long)

e.g. advice to decide undecidable unary languages

3

P/poly and P/log

4

P/poly and P/log

DTIME(T)/a

4

P/poly and P/log

DTIME(T)/a

Languages decided by a TM in time T(n) using
non-uniform advice of length a(n)

4

P/poly and P/log

DTIME(T)/a

Languages decided by a TM in time T(n) using
non-uniform advice of length a(n)

P/poly = ∪c,d,k>0 DTIME(knc)/knd

4

P/poly and P/log

DTIME(T)/a

Languages decided by a TM in time T(n) using
non-uniform advice of length a(n)

P/poly = ∪c,d,k>0 DTIME(knc)/knd

P/log = ∪c,k>0 DTIME(knc)/k log n

4

NP vs. P/log, P/poly

5

NP vs. P/log, P/poly

P/log (or even DTIME(1)/1) has undecidable languages

5

NP vs. P/log, P/poly

P/log (or even DTIME(1)/1) has undecidable languages

e.g. unary undecidable languages

5

NP vs. P/log, P/poly

P/log (or even DTIME(1)/1) has undecidable languages

e.g. unary undecidable languages

So P/log cannot be contained in any of the
uniform complexity classes

5

NP vs. P/log, P/poly

P/log (or even DTIME(1)/1) has undecidable languages

e.g. unary undecidable languages

So P/log cannot be contained in any of the
uniform complexity classes

P/log contains P

5

NP vs. P/log, P/poly

P/log (or even DTIME(1)/1) has undecidable languages

e.g. unary undecidable languages

So P/log cannot be contained in any of the
uniform complexity classes

P/log contains P

Does P/log or P/poly contain NP?

5

NP ⊆ P/log ⇒ NP=P

6

NP ⊆ P/log ⇒ NP=P

Recall finding witness for an NP language is Turing
reducible to deciding the language

6

Search using Decision

7

Search using Decision
Suppose given “oracles” for deciding all NP
languages, can we easily find certificates?

7

Search using Decision
Suppose given “oracles” for deciding all NP
languages, can we easily find certificates?

Yes! So, if decision easy (i.e., oracles realizable),
then search is easy too!

7

Search using Decision
Suppose given “oracles” for deciding all NP
languages, can we easily find certificates?

Yes! So, if decision easy (i.e., oracles realizable),
then search is easy too!

Say need to find w s.t. (x,w) ∈ L’

7

Search using Decision
Suppose given “oracles” for deciding all NP
languages, can we easily find certificates?

Yes! So, if decision easy (i.e., oracles realizable),
then search is easy too!

Say need to find w s.t. (x,w) ∈ L’
consider L1 in NP: (x,y) ∈ L1 iff ∃z s.t. (x,yz) ∈ L’.
(i.e., can y be a prefix of a certificate for x).

7

Search using Decision
Suppose given “oracles” for deciding all NP
languages, can we easily find certificates?

Yes! So, if decision easy (i.e., oracles realizable),
then search is easy too!

Say need to find w s.t. (x,w) ∈ L’
consider L1 in NP: (x,y) ∈ L1 iff ∃z s.t. (x,yz) ∈ L’.
(i.e., can y be a prefix of a certificate for x).
Query L1-oracle with (x,0) and (x,1). One of the
two must be positive: say (x,0) ∈ L1; then first bit

of w be 0.

7

Search using Decision
Suppose given “oracles” for deciding all NP
languages, can we easily find certificates?

Yes! So, if decision easy (i.e., oracles realizable),
then search is easy too!

Say need to find w s.t. (x,w) ∈ L’
consider L1 in NP: (x,y) ∈ L1 iff ∃z s.t. (x,yz) ∈ L’.
(i.e., can y be a prefix of a certificate for x).
Query L1-oracle with (x,0) and (x,1). One of the
two must be positive: say (x,0) ∈ L1; then first bit

of w be 0.

For next bit query oracle with (x,00) and (x,01)
7

Search using Decision
Suppose given “oracles” for deciding all NP
languages, can we easily find certificates?

Yes! So, if decision easy (i.e., oracles realizable),
then search is easy too!

Say need to find w s.t. (x,w) ∈ L’
consider L1 in NP: (x,y) ∈ L1 iff ∃z s.t. (x,yz) ∈ L’.
(i.e., can y be a prefix of a certificate for x).
Query L1-oracle with (x,0) and (x,1). One of the
two must be positive: say (x,0) ∈ L1; then first bit

of w be 0.

For next bit query oracle with (x,00) and (x,01)

Use L2 so that (x,z,pad)
in L2 iff (x,z) in L1. Can
query L2 with same size

instances

7

NP ⊆ P/log ⇒ NP=P

Recall finding witness for an NP language is Turing
reducible to deciding the language

8

NP ⊆ P/log ⇒ NP=P

If NP ⊆ P/log, then for each L in NP, there is a poly-time

TM with log advice which can find witness (via self-
reduction)

Recall finding witness for an NP language is Turing
reducible to deciding the language

8

NP ⊆ P/log ⇒ NP=P

If NP ⊆ P/log, then for each L in NP, there is a poly-time

TM with log advice which can find witness (via self-
reduction)

Guess advice (poly many), and for each guessed advice,
run the TM and see if it finds witness

Recall finding witness for an NP language is Turing
reducible to deciding the language

8

NP ⊆ P/log ⇒ NP=P

If NP ⊆ P/log, then for each L in NP, there is a poly-time

TM with log advice which can find witness (via self-
reduction)

Guess advice (poly many), and for each guessed advice,
run the TM and see if it finds witness

If no advice worked (one of them was correct), then
input not in language

Recall finding witness for an NP language is Turing
reducible to deciding the language

8

NP ⊆ P/poly ⇒ PH=Σ2P

9

NP ⊆ P/poly ⇒ PH=Σ2P

Will show Π2P = Σ2P

9

NP ⊆ P/poly ⇒ PH=Σ2P

Will show Π2P = Σ2P

Consider L = {x| ∀w1 (x,w1) ∈ L’ } ∈ Π2P where

L’ = {(x,w1)| ∃w2 F(x,w1,w2)} ∈ NP

9

NP ⊆ P/poly ⇒ PH=Σ2P

Will show Π2P = Σ2P

Consider L = {x| ∀w1 (x,w1) ∈ L’ } ∈ Π2P where

L’ = {(x,w1)| ∃w2 F(x,w1,w2)} ∈ NP

If NP ⊆ P/poly then consider M with advice {An}

which finds witness for L’: i.e. if (x,w1) ∈ L’, then
M(x,w1; An) outputs a witness w2 s.t. F(x,w1,w2)

9

NP ⊆ P/poly ⇒ PH=Σ2P

Will show Π2P = Σ2P

Consider L = {x| ∀w1 (x,w1) ∈ L’ } ∈ Π2P where

L’ = {(x,w1)| ∃w2 F(x,w1,w2)} ∈ NP

If NP ⊆ P/poly then consider M with advice {An}

which finds witness for L’: i.e. if (x,w1) ∈ L’, then
M(x,w1; An) outputs a witness w2 s.t. F(x,w1,w2)

L = {x| ∃z ∀w1 F(x, w1, M(x,w1; z)) }

9

Boolean Circuits
0 1

10

Boolean Circuits
Directed acyclic graph

0 1

10

Boolean Circuits
Directed acyclic graph

Nodes: AND, OR, NOT, CONST gates,
inputs, output(s)

0 1

10

Boolean Circuits
Directed acyclic graph

Nodes: AND, OR, NOT, CONST gates,
inputs, output(s)

Edges: Boolean valued wires

0 1

10

Boolean Circuits
Directed acyclic graph

Nodes: AND, OR, NOT, CONST gates,
inputs, output(s)

Edges: Boolean valued wires

AND/OR fan-ins can be bounded (say
two) or unbounded

0 1

10

Boolean Circuits
Directed acyclic graph

Nodes: AND, OR, NOT, CONST gates,
inputs, output(s)

Edges: Boolean valued wires

AND/OR fan-ins can be bounded (say
two) or unbounded

Acyclic: output well-defined

0 1

10

Boolean Circuits
Directed acyclic graph

Nodes: AND, OR, NOT, CONST gates,
inputs, output(s)

Edges: Boolean valued wires

AND/OR fan-ins can be bounded (say
two) or unbounded

Acyclic: output well-defined

Note: no memory gates

0 1

10

Boolean Circuits
Directed acyclic graph

Nodes: AND, OR, NOT, CONST gates,
inputs, output(s)

Edges: Boolean valued wires

AND/OR fan-ins can be bounded (say
two) or unbounded

Acyclic: output well-defined

Note: no memory gates

Size of circuit: number of wires

0 1

10

Boolean Circuits
x q0 x

11

Boolean Circuits

Recall: a TM’s execution on inputs
of fixed length can be captured by
a Boolean circuit

x q0 x

11

Boolean Circuits

Recall: a TM’s execution on inputs
of fixed length can be captured by
a Boolean circuit

From proof of Cook’s theorem

x q0 x

11

Boolean Circuits

Recall: a TM’s execution on inputs
of fixed length can be captured by
a Boolean circuit

From proof of Cook’s theorem

Size of circuit polynomially
related to running time of TM

x q0 x

11

Boolean Circuits

Recall: a TM’s execution on inputs
of fixed length can be captured by
a Boolean circuit

From proof of Cook’s theorem

Size of circuit polynomially
related to running time of TM

If poly time TM, then poly
sized circuit

x q0 x

11

Boolean Circuits
An,q0(x,An) x

12

Boolean Circuits
Non-uniformity: circuit family {Cn} An,q0(x,An) x

12

Boolean Circuits
Non-uniformity: circuit family {Cn}

Given non-uniform computation
(M,{An}) can define equivalent {Cn}

An,q0(x,An) x

12

Boolean Circuits
Non-uniformity: circuit family {Cn}

Given non-uniform computation
(M,{An}) can define equivalent {Cn}

Advice An is hard-wired into
circuit Cn

An,q0(x,An) x

12

Boolean Circuits
Non-uniformity: circuit family {Cn}

Given non-uniform computation
(M,{An}) can define equivalent {Cn}

Advice An is hard-wired into
circuit Cn

Doesn’t affect circuit size

An,q0(x,An) x

12

Boolean Circuits
Non-uniformity: circuit family {Cn}

Given non-uniform computation
(M,{An}) can define equivalent {Cn}

Advice An is hard-wired into
circuit Cn

Doesn’t affect circuit size

Conversely, given {Cn}, can use
description of Cn as advice An for
a “universal” TM

An,q0(x,An) x

12

Boolean Circuits
Non-uniformity: circuit family {Cn}

Given non-uniform computation
(M,{An}) can define equivalent {Cn}

Advice An is hard-wired into
circuit Cn

Doesn’t affect circuit size

Conversely, given {Cn}, can use
description of Cn as advice An for
a “universal” TM

|An| comparable to size of
circuit Cn

An,q0(x,An) x

12

SIZE(T)

13

SIZE(T)

SIZE(T): languages solved by circuit families of size T(n)

13

SIZE(T)

SIZE(T): languages solved by circuit families of size T(n)

P/poly = SIZE(poly)

13

SIZE(T)

SIZE(T): languages solved by circuit families of size T(n)

P/poly = SIZE(poly)

SIZE(poly) ⊆ P/poly: Size T circuit can be described in

O(T log T) bits (advice). Universal TM can evaluate this
circuit in poly time

13

SIZE(T)

SIZE(T): languages solved by circuit families of size T(n)

P/poly = SIZE(poly)

SIZE(poly) ⊆ P/poly: Size T circuit can be described in

O(T log T) bits (advice). Universal TM can evaluate this
circuit in poly time

P/poly ⊆ SIZE(poly): Transformation from Cook’s

theorem, with advice string hardwired into circuit

13

SIZE bounds

14

SIZE bounds

All languages (decidable or not) are in SIZE(T) for T=O(n2n)

14

SIZE bounds

All languages (decidable or not) are in SIZE(T) for T=O(n2n)

Circuit encodes truth-table

14

SIZE bounds

All languages (decidable or not) are in SIZE(T) for T=O(n2n)

Circuit encodes truth-table

Most languages need circuits of size Ω(2n/n)

14

SIZE bounds

All languages (decidable or not) are in SIZE(T) for T=O(n2n)

Circuit encodes truth-table

Most languages need circuits of size Ω(2n/n)

Number of circuits of size T is at most T2T

14

SIZE bounds

All languages (decidable or not) are in SIZE(T) for T=O(n2n)

Circuit encodes truth-table

Most languages need circuits of size Ω(2n/n)

Number of circuits of size T is at most T2T

If T = 2n/4n, say, T2T < 2(2^n)/2

14

SIZE bounds

All languages (decidable or not) are in SIZE(T) for T=O(n2n)

Circuit encodes truth-table

Most languages need circuits of size Ω(2n/n)

Number of circuits of size T is at most T2T

If T = 2n/4n, say, T2T < 2(2^n)/2

Number of languages = 22^n

14

SIZE hierarchy

15

SIZE hierarchy

SIZE(T’) ⊊ SIZE(T) if T=Ω(t2t) and T’=O(2t/t)

15

SIZE hierarchy

SIZE(T’) ⊊ SIZE(T) if T=Ω(t2t) and T’=O(2t/t)

Consider functions on t bits (ignoring n-t bits)

15

SIZE hierarchy

SIZE(T’) ⊊ SIZE(T) if T=Ω(t2t) and T’=O(2t/t)

Consider functions on t bits (ignoring n-t bits)

All of them in SIZE(T), most not in SIZE(T’)

15

Uniform Circuits

16

Uniform Circuits

Circuits are interesting for their structure too (not just size)!

16

Uniform Circuits

Circuits are interesting for their structure too (not just size)!

Uniform circuit family: constructed by a TM

16

Uniform Circuits

Circuits are interesting for their structure too (not just size)!

Uniform circuit family: constructed by a TM

Undecidable languages are undecidable for these circuits
families

16

Uniform Circuits

Circuits are interesting for their structure too (not just size)!

Uniform circuit family: constructed by a TM

Undecidable languages are undecidable for these circuits
families

Can relate their complexity classes to classes defined using TMs

16

Uniform Circuits

Circuits are interesting for their structure too (not just size)!

Uniform circuit family: constructed by a TM

Undecidable languages are undecidable for these circuits
families

Can relate their complexity classes to classes defined using TMs

Logspace-uniform:

16

Uniform Circuits

Circuits are interesting for their structure too (not just size)!

Uniform circuit family: constructed by a TM

Undecidable languages are undecidable for these circuits
families

Can relate their complexity classes to classes defined using TMs

Logspace-uniform:

An O(log n) space TM can compute the circuit

16

NC and AC

17

NC and AC

NC and AC: languages decided by poly size and poly-log
depth logspace-uniform circuits

17

NC and AC

NC and AC: languages decided by poly size and poly-log
depth logspace-uniform circuits

NC with bounded fan-in and AC with unbounded fan-in

17

NC and AC

NC and AC: languages decided by poly size and poly-log
depth logspace-uniform circuits

NC with bounded fan-in and AC with unbounded fan-in

NCi: decided by bounded fan-in logspace-uniform
circuits of poly size and depth O(logi n)

17

NC and AC

NC and AC: languages decided by poly size and poly-log
depth logspace-uniform circuits

NC with bounded fan-in and AC with unbounded fan-in

NCi: decided by bounded fan-in logspace-uniform
circuits of poly size and depth O(logi n)

NC = ∪i>0 NCi

17

NC and AC

NC and AC: languages decided by poly size and poly-log
depth logspace-uniform circuits

NC with bounded fan-in and AC with unbounded fan-in

NCi: decided by bounded fan-in logspace-uniform
circuits of poly size and depth O(logi n)

NC = ∪i>0 NCi

Similarly ACi and AC = ∪i>0 ACi

17

NCi and ACi

18

NCi and ACi

NCi ⊆ ACi ⊆ NCi+1

18

NCi and ACi

NCi ⊆ ACi ⊆ NCi+1

Clearly NCi ⊆ ACi

18

NCi and ACi

NCi ⊆ ACi ⊆ NCi+1

Clearly NCi ⊆ ACi

ACi ⊆ NCi+1 because polynomial fan-in can be

reduced to constant fan-in by using a log depth
tree

18

NCi and ACi

NCi ⊆ ACi ⊆ NCi+1

Clearly NCi ⊆ ACi

ACi ⊆ NCi+1 because polynomial fan-in can be

reduced to constant fan-in by using a log depth
tree

So NC = AC

18

NC and P

19

NC and P

NC ⊆ P

19

NC and P

NC ⊆ P

Build the circuit in logspace (so poly time) and
evaluate it in time polynomial in the size of the
circuit

19

NC and P

NC ⊆ P

Build the circuit in logspace (so poly time) and
evaluate it in time polynomial in the size of the
circuit

Open problem: Is NC = P?

19

Motivation for NC

20

Motivation for NC

Fast parallel computation is (loosely) modeled as
having poly many processors and taking poly-log time

20

Motivation for NC

Fast parallel computation is (loosely) modeled as
having poly many processors and taking poly-log time

Corresponds to NC

20

Motivation for NC

Fast parallel computation is (loosely) modeled as
having poly many processors and taking poly-log time

Corresponds to NC

Depth translates to time

20

Motivation for NC

Fast parallel computation is (loosely) modeled as
having poly many processors and taking poly-log time

Corresponds to NC

Depth translates to time

Total “work” is size of the circuit

20

