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Non-Uniform Computation
Uniform: Same program for all (the infinitely many) inputs

Non-uniform: A different “program” for each input size

Then complexity of building the program and executing the 
program

Sometimes will focus on the latter alone

Not entirely realistic if the program family is uncomputable 
or very complex to compute
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Non-uniform advice

Program: TM M and advice strings {An}

M given A|x| along with x

An can be the program for inputs of size n

|An|=2n is sufficient

But {An} can be uncomputable (even if just one bit long)

e.g. advice to decide undecidable unary languages
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P/poly and P/log

DTIME(T)/a

Languages decided by a TM in time T(n) using 
non-uniform advice of length a(n)

P/poly = ∪c,d,k>0 DTIME(knc)/knd

P/log = ∪c,k>0 DTIME(knc)/k log n
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NP vs. P/log, P/poly 

P/log (or even DTIME(1)/1) has undecidable languages

e.g. unary undecidable languages

So P/log cannot be contained in any of the 
uniform complexity classes

P/log contains P

Does P/log or P/poly contain NP?
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Recall finding witness for an NP language is Turing 
reducible to deciding the language
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Search using Decision
Suppose given “oracles” for deciding all NP 
languages, can we easily find certificates?

Yes! So, if decision easy (i.e., oracles realizable), 
then search is easy too!

Say need to find w s.t. (x,w) ∈ L’
consider L1 in NP: (x,y) ∈ L1 iff ∃z s.t. (x,yz) ∈ L’. 
(i.e., can y be a prefix of a certificate for x).
Query L1-oracle with (x,0) and (x,1). One of the 
two must be positive: say (x,0) ∈ L1; then first bit 

of w be 0.

For next bit query oracle with (x,00) and (x,01) 

Use L2 so that (x,z,pad) 
in L2 iff (x,z) in L1. Can 
query L2 with same size 

instances
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NP ⊆ P/log ⇒ NP=P

If NP ⊆ P/log, then for each L in NP, there is a poly-time 

TM with log advice which can find witness (via self-
reduction)

Guess advice (poly many), and for each guessed advice, 
run the TM and see if it finds witness

If no advice worked (one of them was correct), then 
input not in language 

Recall finding witness for an NP language is Turing 
reducible to deciding the language
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NP ⊆ P/poly ⇒ PH=Σ2P

Will show Π2P = Σ2P

Consider L = {x| ∀w1 (x,w1) ∈ L’ } ∈ Π2P where            

L’ = {(x,w1)| ∃w2 F(x,w1,w2)} ∈ NP

If NP ⊆ P/poly then consider M with advice {An} 

which finds witness for L’:  i.e. if (x,w1) ∈ L’,  then  
M(x,w1; An) outputs a witness w2 s.t. F(x,w1,w2)

L = {x| ∃z ∀w1 F(x, w1, M(x,w1; z)) }
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Boolean Circuits
Directed acyclic graph

Nodes: AND, OR, NOT, CONST gates, 
inputs, output(s)

Edges: Boolean valued wires

AND/OR fan-ins can be bounded (say 
two) or unbounded

Acyclic: output well-defined

Note: no memory gates

Size of circuit: number of wires

0 1
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Boolean Circuits

Recall: a TM’s execution on inputs 
of fixed length can be captured by 
a Boolean circuit

From proof of Cook’s theorem

Size of circuit polynomially 
related to running time of TM

If poly time TM, then poly 
sized circuit

x q0 x
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Boolean Circuits
Non-uniformity: circuit family {Cn}

Given non-uniform computation 
(M,{An}) can define equivalent {Cn}

Advice An is hard-wired into 
circuit Cn

Doesn’t affect circuit size

Conversely, given {Cn}, can use 
description of Cn as advice An for 
a “universal” TM

|An| comparable to size of 
circuit Cn

An,q0(x,An) x
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SIZE(T)

SIZE(T): languages solved by circuit families of size T(n)

P/poly = SIZE(poly)

SIZE(poly) ⊆ P/poly: Size T circuit can be described in 

O(T log T) bits (advice). Universal TM can evaluate this 
circuit in poly time

P/poly ⊆ SIZE(poly): Transformation from Cook’s 

theorem, with advice string hardwired into circuit
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SIZE bounds

All languages (decidable or not) are in SIZE(T) for T=O(n2n)

Circuit encodes truth-table

Most languages need circuits of size Ω(2n/n)

Number of circuits of size T is at most T2T

If T = 2n/4n, say,  T2T < 2(2^n)/2

Number of languages = 22^n
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SIZE hierarchy

SIZE(T’) ⊊ SIZE(T) if T=Ω(t2t) and T’=O(2t/t)

Consider functions on t bits (ignoring n-t bits)

All of them in SIZE(T), most not in SIZE(T’)

15



Uniform Circuits

16



Uniform Circuits

Circuits are interesting for their structure too (not just size)!

16



Uniform Circuits

Circuits are interesting for their structure too (not just size)!

Uniform circuit family: constructed by a TM 

16



Uniform Circuits

Circuits are interesting for their structure too (not just size)!

Uniform circuit family: constructed by a TM 

Undecidable languages are undecidable for these circuits 
families

16



Uniform Circuits

Circuits are interesting for their structure too (not just size)!

Uniform circuit family: constructed by a TM 

Undecidable languages are undecidable for these circuits 
families

Can relate their complexity classes to classes defined using TMs

16



Uniform Circuits

Circuits are interesting for their structure too (not just size)!

Uniform circuit family: constructed by a TM 

Undecidable languages are undecidable for these circuits 
families

Can relate their complexity classes to classes defined using TMs

Logspace-uniform:

16



Uniform Circuits

Circuits are interesting for their structure too (not just size)!

Uniform circuit family: constructed by a TM 

Undecidable languages are undecidable for these circuits 
families

Can relate their complexity classes to classes defined using TMs

Logspace-uniform:

An O(log n) space TM can compute the circuit
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NC and AC

NC and AC: languages decided by poly size and poly-log 
depth logspace-uniform circuits

NC with bounded fan-in and AC with unbounded fan-in

NCi: decided by bounded fan-in logspace-uniform 
circuits of poly size and depth O(logi n)

NC = ∪i>0 NCi

Similarly ACi and AC = ∪i>0 ACi
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NCi and ACi

NCi ⊆ ACi ⊆ NCi+1

Clearly NCi ⊆ ACi

ACi ⊆ NCi+1 because polynomial fan-in can be 

reduced to constant fan-in by using a log depth 
tree

So NC = AC
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NC and P

NC ⊆ P

Build the circuit in logspace (so poly time) and 
evaluate it in time polynomial in the size of the 
circuit

Open problem: Is NC = P?
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Motivation for NC

Fast parallel computation is (loosely) modeled as 
having poly many processors and taking poly-log time

Corresponds to NC

Depth translates to time

Total “work” is size of the circuit
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