Computational
Complexity

Lecture 9
More of the Polynomial Hierarchy
Alternation

PH is in terms of
verification

PH is in terms of
verification

® Recall 2¢P

PH is in terms of
verification

® Recall 2¢P

@ Languages L = x| dwiVw...Qwk F(x;wi,wsz,..,wk)}, where F in P

PH is in terms of
verification

® Recall 2¢P

@ Languages L = x| dwiVw...Qwk F(x;wi,wsz,..,wk)}, where F in P

@ Consider deterministic polynomial time machine M for F, with k
read-once tapes for the certificates

PH is in terms of
verification

® Recall 2¢P

@ Languages L = x| dwiVw...Qwk F(x;wi,wsz,..,wk)}, where F in P

@ Consider deterministic polynomial time machine M for F, with k
read-once tapes for the certificates

@ Tapes read one after the other

PH is in terms of
verification

® Recall 2¢P

@ Languages L = x| dwiVw...Qwk F(x;wi,wsz,..,wk)}, where F in P

@ Consider deterministic polynomial time machine M for F, with k
read-once tapes for the certificates

@ Tapes read one after the other

@ x in L if dw; Vwz ... Qwk such that M(x;wi,wz,..,wk) accepts

PH is in terms of
verification

® Recall 2¢P

@ Languages L = x| dwiVw...Qwk F(x;wi,wsz,..,wk)}, where F in P

@ Consider deterministic polynomial time machine M for F, with k
read-once tapes for the certificates

@ Tapes read one after the other

@ x in L if dw; Vwz ... Qwk such that M(x;wi,wz,..,wk) accepts

@ Plan: Formulate in terms of a non-deterministic TM (with no
certificates)

Verification —
Non-determinism

Verification —
Non-determinism

Verification —
Non-determinism

Verification —
Non-determinism

Read from Tape 1

Verification —
Non-determinism

Read from Tape 1

Read from Tape 1

Verification —
Non-determinism

Read from Tape 1

Read from Tape 1

Verification —
Non-determinism

Read from Tape 1

Read from Tape 1

Verification —
Non-determinism

Verification —
Non-determinism

Gue?/ 0]

o

ead from Tape 1

Verification —
Non-determinism

Verification —
Non-determinism

Read from Tape 1

Read from Tape 1

VRead from Tape 2

O

Verification —
Non-determinism

Read from Tape 1

Read from Tape 1

VRead from Tape 2

O

Verification —
Non-determinism

Read from Tape 1

Read from Tape 1

VRead from Tape 2

O

Verification —
Non-determinism

Read from Tape 1

Read from Tape 1

VRead from Tape 2

O

Verification —
Non-determinism

Read from Tape 1

Read from Tape 1

VRead from Tape 2

O

Verification —
Non-determinism

Read from Tape 1

Read from Tape 1

O

Verification —
Non-determinism

j/ 0] uess

G?/;
Y |

2

Gue

Read from Tape 1
3 W1

|

Read from Tape 1

Vw

VRead from Tape 2

O o0 O

Verification —
Non-determinism

j/ 0] uess

G?/;
Y |

2

Gue

Read from Tape 1
3 W1

|

Read from Tape 1

Vw

VRead from Tape 2

O o0 O

Verification —
Non-determinism

j/ 0] uess

G?/;
Y |

&

Gue

Read from Tape 1
3 W1

|

Read from Tape 1

Vw

VRead from Tape 2

O o0 O

ATM

ATM

0

Gues uess 1

Guess Cy Gyess 1 \

Guess; Gu&ssl \

@ Alternating Turing Machine

\4

60 O¢

ATM

0

Gues uess 1

@ Alternating Turing Machine

@ At each step, execution can fork ‘
intfo two Guess O Gyess 1 \

Guess; Gu&ssl \

\4

60 O¢

ATM

0

Gues ess 1

@ Alternating Turing Machine

@ At each step, execution can fork ‘
intfo two Guess O Gyess 1 \

@ Exactly like an NTM or co-NTM
Guess Gu&ssl \

\4

60 O¢

ATM

0

Gues ess 1

@ Alternating Turing Machine

@ At each step, execution can fork ‘
intfo two Guess O Gyess 1 \

@ Exactly like an NTM or co-NTM
@ Accepting rule is more complex ehes G“ESSI \

\4

60 O¢

ATM

0

Gues ess 1

@ Alternating Turing Machine

@ At each step, execution can fork ‘
intfo two Guess O Gyess 1 \

@ Exactly like an NTM or co-NTM
@ Accepting rule is more complex ehes G“ESSI \

\4

@ Like in the game tree for QBF ; \4

ATM

ATM

0

Gues uess 1

Guess O Gyess 1 \

Guess; Gu&ssl \

@ Two Kinds of configurations: 3 and V

\4

60 O¢

ATM

0

Gues uess 1

@ Two Kinds of configurations: 3 and V

@ Depending on the state ‘

Guess O Gyess 1 \

Guess; Gu&ssl \

\4

60 O¢

ATM

0 xxu‘ess 1

@ Two Kinds of configurations: 3 and V Gues

@ Depending on the state ‘
Guess Cy Gyess 1 \
@ A o configuration is accepting if

either child is accepting
Guess Gu&ssl \

\4

60 O¢

ATM

0

Gues ess 1

@ Two Kinds of configurations: 3 and V

@ Depending on the state ‘

Guess O Gyess 1 \
@ A o configuration is accepting if

either child is accepting
Guess Gu&ss 1 \
@ A V configuration is accepting only v

if both children are accepting ? \4

Verification —
Non-determinism

j/ 0] uess

G?/;
Y |

&

Gue

Read from Tape 1
3 W1

|

Read from Tape 1

Vw

VRead from Tape 2

O o0 O

Verification —
Non-determinism

Gue?/ 0] uess 1

@ Given a verifier for L
using K certificate ‘

tapes, can build an Guess O/ Guess 1 \

ATM for L with at most
Kk alternations 9’ ﬂ
Guess Gu&ssl \
\4

Read from Tape 1
3 W1

Read from Tape 1

VW2

VRead from Tape 2

o 66 O¢

Verification —
Non-determinism

0

Gues uess 1

@ Given a verifier for L
using K certificate ‘

tapes, can build an Guess O/ Guess 1 \

ATM for L with at most
Kk alternations
Guess Gu&ssl \
@ Non-deterministically

guesses tape content

Read from Tape 1
3 W1

Read from Tape 1

VWz

VRead from Tape 2

\4

Verification «
Non-determinism

j/ 0] uess

G?/;
Y |

&

Gue

Read from Tape 1
3 W1

|

Read from Tape 1

Vw

VRead from Tape 2

O o0 O

Verification «
Non-determinism

Read from Tape 1
3 W1

Read from Tape 1

VWz

VRead from Tape 2

O

@ Given ATM for L
with at most Kk
alternations, can

k certificate tapes)

build a verifier (using

Guess

[1
86

\

Guess Cy Gyess 1 \

e

O¢

Verification «
Non-determinism

Read from Tape 1
1 Wi

@ Given ATM for L

with at most k ‘
alternations, can GuessO Gless 1 \
build a verifier (using

k certificate tapes) 9’
Guess Guess 1
@ Same time/space k

requirements

Read from Tape 1

VWz

VRead from Tape 2

\4

6 (in terms of Ix| é 6 é

Verification «
Non-determinism

Read from Tape 1
3 W1

Read from Tape 1

VWz

VRead from Tape 2

O

@ Given ATM for L
with at most Kk
alternations, can

k certificate tapes)

requirements
(in terms of |x|)

@ |wil = #choices

build a verifier (using

Guess

@ Same time/space

'}
86

Guess O Gyess 1 \

\

\4

O¢

Time, Space, Alternations

Time, Space, Alternations

@ Complexity measures

Time, Space, Alternations

@ Complexity measures

@ Time: Maximum number of steps in any thread

Time, Space, Alternations

@ Complexity measures

@ Time: Maximum number of steps in any thread

@ Space: Maximum space in any configuration reached

Time, Space, Alternations

@ Complexity measures
@ Time: Maximum number of steps in any thread

@ Space: Maximum space in any configuration reached

@ Alternations: Maximum number of quantifier
switches in any thread

ATIME

ATIME

o 2«TIME, [kTIME

ATIME

o 2«TIME, [kTIME

@ 2¢TIME(T): languages decided by ATMs with at
most k alternations starting with 3, in time T(n)

ATIME

o 2«TIME, [kTIME

@ 2¢TIME(T): languages decided by ATMs with at
most k alternations starting with 3, in time T(n)

o 2«TIME(poly) = 2P

ATIME

o 2«TIME, [kTIME

@ 2¢TIME(T): languages decided by ATMs with at
most k alternations starting with 3, in time T(n)

o 2«TIME(poly) = 2P

@ Latter being exactly the certificate version

ATIME

o 2«TIME, [kTIME

@ 2¢TIME(T): languages decided by ATMs with at
most k alternations starting with 3, in time T(n)

o 2«TIME(poly) = 2P

@ Latter being exactly the certificate version

@ ATIME

ATIME

o 2«TIME, [kTIME

@ 2¢TIME(T): languages decided by ATMs with at
most k alternations starting with 3, in time T(n)

o 2«TIME(poly) = 2P
@ Latter being exactly the certificate version
@ ATIME

@ ATIME(T): languages decided by ATMs in time T(n)

ATIME vs. DSPACE

ATIME vs. DSPACE

@ ATIME(T) € DSPACE(T?)

ATIME vs. DSPACE

@ ATIME(T) € DSPACE(T?)

@ c.f. NTIME(T) < DSPACE(T)

ATIME vs. DSPACE

@ ATIME(T) € DSPACE(T?)

@ c.f. NTIME(T) < DSPACE(T)

@ AP c PSPACE

ATIME vs. DSPACE

@ ATIME(T) € DSPACE(T?)
@ c.f. NTIME(T) < DSPACE(T)

@ AP c PSPACE

@ But PSPACE C AP

ATIME vs. DSPACE

@ ATIME(T) € DSPACE(T?)
@ c.f. NTIME(T) <€ DSPACE(T)
@ AP c PSPACE

@ But PSPACE C AP

@ TQBF in AP (why?)

ATIME vs. DSPACE

@ ATIME(T) € DSPACE(T?)
@ c.f. NTIME(T) < DSPACE(T)
@ AP < PSPACE

@ But PSPACE C AP

@ TQBF in AP (why?)

ATIME(T) S DSPACE(T?)

ATIME(T) S DSPACE(T?)

@ Evaluate if the start configuration is accepting, recursively

ATIME(T) S DSPACE(T?)

@ Evaluate if the start configuration is accepting, recursively

@ A o configuration is accepting if any child is, and

a V configuration is accepting if all children are

ATIME(T) S DSPACE(T?)

@ Evaluate if the start configuration is accepting, recursively

@ A o configuration is accepting if any child is, and

a V configuration is accepting if all children are

@ Space needed: depth x size of configuration

ATIME(T) S DSPACE(T?)

@ Evaluate if the start configuration is accepting, recursively

@ A o configuration is accepting if any child is, and

a V configuration is accepting if all children are

@ Space needed: depth x size of configuration

@ Depth = # alternations = O(T). Also, size of
configuration = O(T) as any thread runs for time O(T)

ATIME(T) S DSPACE(T?)

@ Evaluate if the start configuration is accepting, recursively
@ A o configuration is accepting if any child is, and
a V configuration is accepting if all children are
@ Space needed: depth x size of configuration

@ Depth = # alternations = O(T). Also, size of
configuration = O(T) as any thread runs for time O(T)

@ 0O(T?)

ASPACE vs. DTIME

ASPACE vs. DTIME

@ ASPACE(S) = DTIME(2°0)

ASPACE vs. DTIME

@ ASPACE(S) = DTIME(2°0)

@ Recall, already seen NSPACE(S) € DTIME(2°0)

ASPACE vs. DTIME

@ ASPACE(S) = DTIME(2°0)

@ Recall, already seen NSPACE(S) € DTIME(2°0)

@ Poly-time connectivity in configuration graph
of size at most 2°¢)

ASPACE vs. DTIME

@ ASPACE(S) = DTIME(2°0)

@ Recall, already seen NSPACE(S) € DTIME(2°0)

@ Poly-time connectivity in configuration graph
of size at most 2°¢)

@ Instead of connectivity, can recursively label
all accepting nodes (2 lookups per node: in
poly(S) time). So ASPACE(S) < DTIME(29G))

ASPACE vs. DTIME

@ ASPACE(S) = DTIME(2°0)

@ Recall, already seen NSPACE(S) € DTIME(2°0)

@ Poly-time connectivity in configuration graph
of size at most 2°¢)

@ Instead of connectivity, can recursively label
all accepting nodes (2 lookups per node: in
poly(S) time). So ASPACE(S) < DTIME(29G))

o To show DTIME(2°%) c ASPACE(S)

DTIME(2°G)) ¢ ASPACE(S)

DTIME(2°G)) ¢ ASPACE(S)

@ To decide, is configuration after t steps accepting

DTIME(2°G)) ¢ ASPACE(S)

@ To decide, is configuration after t steps accepting

@ Accept configuration, with unique first cell «
(blank tape cell and unique accept state)

DTIME(2°G)) ¢ ASPACE(S)

@ To decide, is configuration after t steps accepting

@ Accept configuration, with unique first cell «
(blank tape cell and unique accept state)

® Once there, stays there

DTIME(2°G)) ¢ ASPACE(S)

@ To decide, is configuration after t steps accepting

@ Accept configuration, with unique first cell «
(blank tape cell and unique accept state)

® Once there, stays there

@ Is first cell of config after t steps «

DTIME(2°G)) ¢ ASPACE(S)

@ To decide, is configuration after t steps accepting

@ Accept configuration, with unique first cell «
(blank tape cell and unique accept state)

® Once there, stays there

@ Is first cell of config after t steps «

o C(i,j,x) : if after i steps, j™ cell of config is x

DTIME(2°G)) ¢ ASPACE(S)

@ To decide, is configuration after t steps accepting

@ Accept configuration, with unique first cell «
(blank tape cell and unique accept state)

® Once there, stays there
@ Is first cell of config after t steps «
o C(i,j,x) : if after i steps, j™ cell of config is x

@ Need to check C(11,x)

ATM for TM simulation

ATM for TM simulation

@ C(i,j,x) : if after i steps, j* cell of config is x

ATM for TM simulation

@ C(i,j,x) : if after i steps, j* cell of config is x

@ Recall reduction in Cook’s theorem

ATM for TM simulation

@ C(i,j,x) : if after i steps, j* cell of config is x

@ Recall reduction in Cook’s theorem

o If C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c) then C(i,j,x) iff x=F(a,b,c)

ATM for TM simulation

@ C(i,j,x) : if after i steps, j* cell of config is x
@ Recall reduction in Cook’s theorem

o If C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c) then C(i,j,x) iff x=F(a,b,c)

@ C(i,j,x): da,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)

ATM for TM simulation

@ C(i,j,x) : if after i steps, j* cell of config is x
@ Recall reduction in Cook’s theorem
o If C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c) then C(i,j,x) iff x=F(a,b,c)

@ C(i,j,x): da,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)

@ Base case: C(0,j,x) easy to check from input

ATM for TM simulation

@ C(i,j,x) : if after i steps, j* cell of config is x
@ Recall reduction in Cook’s theorem
o If C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c) then C(i,j,x) iff x=F(a,b,c)

@ C(i,j,x): da,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)

@ Base case: C(0,j,x) easy to check from input

@ Naive recursion: Extra O(S) space at each level for 2°®)
levels!

ATM for TM simulation

ATM for TM simulation

@ ATM to check if C(i,j,x)

ATM for TM simulation

@ ATM to check if C(i,j,x)

@ C(i,j,x): da,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b),
C(i-1,j+1,c)

ATM for TM simulation

@ ATM to check if C(i,j,x)

@ C(i,j,x): da,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b),
C(i-1,j+1,c)

@ Tail-recursion (in parallel forks)

ATM for TM simulation

@ ATM to check if C(i,j,x)

@ C(i,j,x): da,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b),
C(i-1,j+1,c)

@ Tail-recursion (in parallel forks)

@ Check x=F(a,b,c); then enter universal state, fork out
for each of the three configurations fo be checked

ATM for TM simulation

@ ATM to check if C(i,j,x)
@ C(i,j,x): da,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b),
C(i-1,j+1,c)
@ Tail-recursion (in parallel forks)

@ Check x=F(a,b,c); then enter universal state, fork out
for each of the three configurations fo be checked

@ Overwrite C(i,j,x) with C(i-1,...) and reuse space

ATM for TM simulation

@ ATM to check if C(i,j,x)

@ C(i,j,x): da,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b),
C(i-1,j+1,c)

@ Tail-recursion (in parallel forks)

@ Check x=F(a,b,c); then enter universal state, fork out
for each of the three configurations fo be checked

@ Overwrite C(i,j,x) with C(i-1,...) and reuse space

@ Stay within the same O(S) space at each level!

ATM for TM simulation

@ ATM to check if C(i,j,x)

@ C(i,j,x): da,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b),
C(i-1,j+1,c)

@ Tail-recursion (in parallel forks)

@ Check x=F(a,b,c); then enter universal state, fork out
for each of the three configurations fo be checked

@ Overwrite C(i,j,x) with C(i-1,...) and reuse space

@ Stay within the same O(S) space at each level!

ASPACE vs. DTIME

ASPACE vs. DTIME

& ASPACE(S) = DTIME(2°1)

ASPACE vs. DTIME

& ASPACE(S) = DTIME(2°1)

@ APSPACE = EXP

ASPACE vs. DTIME

& ASPACE(S) = DTIME(2°1)

@ APSPACE = EXP

@ AL =P

Z00

Z00

Z00

DTISP(T,S)

DTISP(T,S)

® Theorem: NTIME(n) ¢ DTISP(n*¢,n®) for some €, d > O

DTISP(T,S)

® Theorem: NTIME(n) ¢ DTISP(n*¢,n®) for some €, d > O

@ i.e., cannot solve SAT in some slightly super-linear time and
slightly super-logarithmic space

DTISP(T,S)

® Theorem: NTIME(n) ¢ DTISP(n*¢,n®) for some €, d > O

@ i.e., cannot solve SAT in some slightly super-linear time and
slightly super-logarithmic space

@ Commonly Believed: cant solve in less than exponential time or
with less than linear space

DTISP(T,S)

® Theorem: NTIME(n) ¢ DTISP(n*¢,n®) for some €, d > O

@ i.e., cannot solve SAT in some slightly super-linear time and
slightly super-logarithmic space

@ Commonly Believed: cant solve in less than exponential time or
with less than linear space

@ Follows (after careful choice of parameters) from

DTISP(T,S)

® Theorem: NTIME(n) ¢ DTISP(n*¢,n®) for some €, d > O

@ i.e., cannot solve SAT in some slightly super-linear time and
slightly super-logarithmic space

@ Commonly Believed: cant solve in less than exponential time or
with less than linear space

@ Follows (after careful choice of parameters) from

@ DTISP(T,S) € Z,TIME(TY2 S)

DTISP(T,S)

® Theorem: NTIME(n) ¢ DTISP(n*¢,n®) for some €, d > O

@ i.e., cannot solve SAT in some slightly super-linear time and
slightly super-logarithmic space

@ Commonly Believed: cant solve in less than exponential time or
with less than linear space

@ Follows (after careful choice of parameters) f

@ DTISP(T,S) € Z,TIME(TY2 S)

DTISP(T,S)

® Theorem: NTIME(n) ¢ DTISP(n*¢,n®) for some €, d > O

@ i.e., cannot solve SAT in some slightly super-linear time and
slightly super-logarithmic space

@ Commonly Believed: cant solve in less than exponential time or
with less than linear space

@ Follows (after careful choice of parameters) f

@ DTISP(T,S) € Z,TIME(TY2 S)

DTISP(T,S)

® Theorem: NTIME(n) ¢ DTISP(n*¢,n®) for some €, d > O

@ i.e., cannot solve SAT in some slightly super-linear time and
slightly super-logarithmic space

@ Commonly Believed: cant solve in less than exponential time or
with less than linear space

@ Follows (after careful choice of parameters) f

@ DTISP(T,S) € Z,TIME(TY2 S)
@ NTIME(n) € DTIME(n!*€) = 3, TIME(T) € NTIME(T!*€)

@ NTIME(n) € DTISP(n!*¢,n®) = NTIME(n') € NTIME(nt(l/2+€)) |

Today

Today

@ ATM to define levels of PH

Today

@ ATM to define levels of PH

@ ATIME and ASPACE

Today

@ ATM to define levels of PH

@ ATIME and ASPACE

@ AP = PSPACE and APSPACE = EXP

Today

@ ATM to define levels of PH
@ ATIME and ASPACE

@ AP = PSPACE and APSPACE = EXP

@ Using 22TIME for a DTISP lower-bound

