Computational Complexity

Lecture 9 More of the Polynomial Hierarchy Alternation

 $Recall \Sigma_{k}P$

 $Recall \Sigma_{k}P$

 \circ Languages L = {x| $\exists w_1 \forall w_2...\mathbb{Q}w_k$ F(x;w₁,w₂,..,w_k)}, where F in P

 $Recall \Sigma_{k}P$ \circledcirc

 \odot Languages L = {x| $\exists w_1 \forall w_2 ... Qw_k$ F(x;w₁,w₂,..,w_k)}, where F in P

Consider deterministic polynomial time machine M for F, with k read-once tapes for the certificates

 $Recall \Sigma_{k}P$ \bigcirc

 \odot Languages L = {x| $\exists w_1 \forall w_2 ... Qw_k$ F(x;w₁,w₂,..,w_k)}, where F in P

Consider deterministic polynomial time machine M for F, with k \bigcirc read-once tapes for the certificates

Tapes read one after the other

 $Recall \Sigma_{k}P$ \bigcirc

 \odot Languages L = {x| $\exists w_1 \forall w_2 ... Qw_k$ F(x;w₁,w₂,..,w_k)}, where F in P

Consider deterministic polynomial time machine M for F, with k read-once tapes for the certificates

Tapes read one after the other

 \bullet x in L if $\exists w_1 \forall w_2 ... Qw_k$ such that $M(x;w_1,w_2...,w_k)$ accepts

 $Recall \Sigma_{k}P$ \circledcirc

 \odot Languages L = {x| $\exists w_1 \forall w_2 ... Qw_k$ F(x;w₁,w₂,..,w_k)}, where F in P

Consider deterministic polynomial time machine M for F, with k read-once tapes for the certificates

Tapes read one after the other

 \bullet x in L if $\exists w_1 \forall w_2 ... Qw_k$ such that $M(x;w_1,w_2...,w_k)$ accepts

Plan: Formulate in terms of a non-deterministic TM (with no \bigcirc certificates)

Read from Tape 1

Read from Tape 2

Gues $\frac{1}{2}$ 0

Read from Tape 1

Read from Tape 1

Read from Tape 2

Guess 0 Guess 1

Read from Tape 1

Read from Tape 1

Read from Tape 2

Guess 0 Guess 1 Guess 0

Read from Tape 1

Read from Tape 1

Read from Tape 1

Read from Tape 1

Read from Tape 2

Guess 0 Gyess 1

Guess 0 Guess 1

Guess 0 Guess 1

Verification → Non-determinism Read from Tape 1 Read from Tape 1 Read from Tape 2 Guess 0 Guess 1 Guess 0 Guess 0/ Gyess 1 Guess 1 $\exists w_1$ 㱼w2

Alternating Turing Machine

At each step, execution can fork into two

Alternating Turing Machine At each step, execution can fork into two

Exactly like an NTM or co-NTM

Alternating Turing Machine At each step, execution can fork into two Exactly like an NTM or co-NTM Accepting rule is more complex

Alternating Turing Machine At each step, execution can fork into two Exactly like an NTM or co-NTM Accepting rule is more complex Like in the game tree for QBF

\circ Two kinds of configurations: \exists and \forall Guess¹ Guess¹

 \bullet Two kinds of configurations: \exists and \forall

Depending on the state

ATM

Two kinds of configurations: \exists and \forall \bigcirc

Depending on the state \circ A \exists configuration is accepting if either child is accepting

ATM

Two kinds of configurations: \exists and \forall \bigcirc

Depending on the state \bullet A \exists configuration is accepting if

either child is accepting

 \bullet A \forall configuration is accepting only if both children are accepting

Verification Non-determinism

Read from Tape 1

 $\exists w_1$

 $\forall w_2$

Read from Tape 1

Read from Tape 2

Given a verifier for L $\hat{\circ}$ using k certificate Guess 0 tapes, can build an ATM for L with at most k alternations

> Guess Of Guess 1

Guess 0 Guess 1

E) (E

 $A) (A) (A) (A)$

㱽

Gyess 1

Verification Non-determinism

Read from Tape 1

 $\exists w_1$

㱼w2

Read from Tape 1

Read from Tape 2

Given a verifier for L \circledcirc using k certificate Guess 0 tapes, can build an ATM for L with at most k alternations

Guess 0 Non-deterministically guesses tape contents and runs verifier

Guess 0 Guess 1

E) (E

 $A) (A) (A) (A)$

㱽

Gyess 1

Guess 1

Verification ← Non-determinism Guess 0 Guess 1 Guess 0 Guess 0 Gyess 1 Guess 1 㱽 E) (E $A) (A) (A) (A)$ Read from Tape 1 Read from Tape 1 Read from Tape 2 $\exists w_1$ 㱼w2

Verification ← Non-determinism

Read from Tape 1

 $\exists w_1$

 $\forall w_2$

Read from Tape 1

Read from Tape 2

Given ATM for L \circledcirc with at most k alternations, can build a verifier (using k certificate tapes)

 $A) (A) (A) (A)$

Guess 1

Guess O

Guess 0

Guess 0 Guess 1

E) (E

㱽

Gyess 1

7

Verification ← Non-determinism

Read from Tape 1

 $\exists w_1$

㱼w2

Read from Tape 1

Read from Tape 2

Given ATM for L \circledcirc with at most k alternations, can build a verifier (using k certificate tapes)

> Guess O Same time/space requirements (in terms of |x|)

> > 7

Guess 0 Guess 1

E) (E

 $A) (A) (A) (A)$

㱽

Gyess 1

Guess 0

Guess 1

Verification ← Non-determinism

Read from Tape 1

 $\exists w_1$

㱼w2

Read from Tape 1

Read from Tape 2

Given ATM for L \circledcirc with at most k alternations, can build a verifier (using k certificate tapes)

> Guess O Same time/space requirements (in terms of |x|)

 \bullet $|w_i|$ = #choices

Guess 0 Guess 1

E) (E

 $A) (A) (A) (A)$

㱽

Gyess 1

Guess 0

Guess 1

Complexity measures

Complexity measures

Time: Maximum number of steps in any thread

Complexity measures

Time: Maximum number of steps in any thread \bullet

Space: Maximum space in any configuration reached

Complexity measures

- Time: Maximum number of steps in any thread \bigcirc
- Space: Maximum space in any configuration reached
- Alternations: Maximum number of quantifier switches in any thread

\odot Σ_k TIME, Π_k TIME

\odot Σ_k TIME, Π_k TIME

ΣkTIME(T): languages decided by ATMs with at most k alternations starting with \exists , in time T(n)

\odot Σ_k TIME, Π_k TIME

ΣkTIME(T): languages decided by ATMs with at most k alternations starting with \exists , in time T(n)

 Σ_{k} TIME(poly) = Σ_{k} ^p

\odot Σ_k TIME, Π_k TIME

ΣkTIME(T): languages decided by ATMs with at most k alternations starting with \exists , in time T(n)

 Σ_{k} TIME(poly) = Σ_{k} ^p

 Latter being exactly the certificate version \circledcirc

\odot Σ_k TIME, Π_k TIME

ΣkTIME(T): languages decided by ATMs with at most k alternations starting with \exists , in time T(n)

 Σ_{k} TIME(poly) = Σ_{k} ^p

 Latter being exactly the certificate version \circledcirc ATIME

\odot Σ_k TIME, Π_k TIME

ΣkTIME(T): languages decided by ATMs with at most k alternations starting with \exists , in time T(n)

 Σ_{k} TIME(poly) = Σ_{k} ^p

 Latter being exactly the certificate version \circledcirc ATIME

ATIME(T): languages decided by ATMs in time T(n)

ATIME vs. DSPACE

 \odot ATIME(T) \subseteq DSPACE(T²)

ATIME vs. DSPACE

 \odot ATIME(T) \subseteq DSPACE(T²)

 \circ c.f. NTIME(T) \subseteq DSPACE(T)

ATIME vs. DSPACE

 \odot ATIME(T) \subseteq DSPACE(T²)

 \circ c.f. NTIME(T) \subseteq DSPACE(T)

 \odot AP \subseteq PSPACE

 \odot ATIME(T) \subseteq DSPACE(T²)

 \circ c.f. NTIME(T) \subseteq DSPACE(T)

 \circ AP \subseteq PSPACE

◎ But PSPACE ⊆ AP

 \odot ATIME(T) \subseteq DSPACE(T²)

 \circ c.f. NTIME(T) \subseteq DSPACE(T)

◎ AP ⊆ PSPACE

 \odot But PSPACE \subseteq AP

TQBF in AP (why?)

 \odot ATIME(T) \subseteq DSPACE(T²)

 \circ c.f. NTIME(T) \subseteq DSPACE(T)

◎ AP ⊆ PSPACE

 \odot But PSPACE \subseteq AP

TQBF in AP (why?)

 \circ AP = PSPACE

$\overline{\mathsf{ATIME}(\mathsf{T})}\subseteq \overline{\mathsf{DSPACE}(\mathsf{T}^2)}$

$\overline{\mathsf{ATIME}(\mathsf{T})}\subseteq \mathsf{DSPACE}(\mathsf{T}^2)$

• Evaluate if the start configuration is accepting, recursively

$ATIME(T) \subseteq DSPACE(T^2)$

Evaluate if the start configuration is accepting, recursively \circledcirc \circ A \exists configuration is accepting if any child is, and $a \forall$ configuration is accepting if all children are

$ATIME(T) \subseteq DSPACE(T^2)$

Evaluate if the start configuration is accepting, recursively \circledcirc \circ A \exists configuration is accepting if any child is, and $a \forall$ configuration is accepting if all children are

Space needed: depth x size of configuration

$ATIME(T) \subseteq DSPACE(T^2)$

Evaluate if the start configuration is accepting, recursively \circ A \exists configuration is accepting if any child is, and $a \vee$ configuration is accepting if all children are

Space needed: depth x size of configuration

 \odot Depth = # alternations = O(T). Also, size of configuration = $O(T)$ as any thread runs for time $O(T)$

$\overline{\mathsf{ATIME}(\mathsf{T})}\subseteq \mathsf{DSPACE}(\mathsf{T}^2)$

- Evaluate if the start configuration is accepting, recursively \circ A \exists configuration is accepting if any child is, and $a \vee$ configuration is accepting if all children are
- Space needed: depth x size of configuration
	- \odot Depth = # alternations = O(T). Also, size of configuration = $O(T)$ as any thread runs for time $O(T)$
	- \odot O(T²)

ASPACE vs. DTIME

ASPACE vs. DTIME

 $\mathsf{ASPACE}(\mathsf{S}) = \mathsf{DTIME}(2^{O(\mathsf{S})})$
$\mathsf{ASPACE}(\mathsf{S}) = \mathsf{DTIME}(2^{O(\mathsf{S})})$

 $\mathsf{Recall},$ already seen $\mathsf{NSPACE}(\mathsf{S}) \subseteq \mathsf{DTIME}(2^{\mathsf{O}(\mathsf{S})})$

 $\mathsf{ASPACE}(\mathsf{S}) = \mathsf{DTIME}(2^{O(\mathsf{S})})$

 $\mathsf{Recall},$ already seen $\mathsf{NSPACE}(\mathsf{S}) \subseteq \mathsf{DTIME}(2^{\mathsf{O}(\mathsf{S})})$

Poly-time connectivity in configuration graph of size at most 2O(S)

 $\mathsf{ASPACE}(\mathsf{S}) = \mathsf{DTIME}(2^{O(\mathsf{S})})$

 $\mathsf{Recall},$ already seen $\mathsf{NSPACE}(\mathsf{S}) \subseteq \mathsf{DTIME}(2^{\mathsf{O}(\mathsf{S})})$

Poly-time connectivity in configuration graph of size at most 2O(S)

Instead of connectivity, can recursively label all accepting nodes (2 lookups per node: in poly(S) time). So ASPACE(S) ⊆ DTIME(2^{O(S)})

 $\mathsf{ASPACE}(\mathsf{S}) = \mathsf{DTIME}(2^{O(\mathsf{S})})$

 $\mathsf{Recall},$ already seen $\mathsf{NSPACE}(\mathsf{S}) \subseteq \mathsf{DTIME}(2^{\mathsf{O}(\mathsf{S})})$

Poly-time connectivity in configuration graph of size at most 2O(S)

Instead of connectivity, can recursively label all accepting nodes (2 lookups per node: in poly(S) time). So ASPACE(S) ⊆ DTIME(2^{O(S)})

To show DTIME(2^{O(S)}) \subseteq ASPACE(S)

To decide, is configuration after t steps accepting

To decide, is configuration after t steps accepting

Accept configuration, with unique first cell α (blank tape cell and unique accept state)

To decide, is configuration after t steps accepting

Accept configuration, with unique first cell α (blank tape cell and unique accept state)

Once there, stays there

To decide, is configuration after t steps accepting

- Accept configuration, with unique first cell α (blank tape cell and unique accept state)
	- Once there, stays there
- Is first cell of config after t steps α

To decide, is configuration after t steps accepting

Accept configuration, with unique first cell α (blank tape cell and unique accept state)

Once there, stays there

Is first cell of config after t steps α

 \circ C(i,j,x) : if after i steps, jth cell of config is x

To decide, is configuration after t steps accepting

Accept configuration, with unique first cell α (blank tape cell and unique accept state)

Once there, stays there

Is first cell of config after t steps α

 \circ C(i,j,x) : if after i steps, jth cell of config is x

 \odot Need to check $C(t,1,\alpha)$

 \bullet C(i,j,x) : if after i steps, jth cell of config is x

 \bullet C(i,j,x) : if after i steps, jth cell of config is x Recall reduction in Cook's theorem

 \circ C(i,j,x) : if after i steps, jth cell of config is x

Recall reduction in Cook's theorem

 σ If C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c) then C(i,j,x) iff x=F(a,b,c)

 \circ C(i,j,x) : if after i steps, jth cell of config is x Recall reduction in Cook's theorem \bullet If C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c) then C(i,j,x) iff x=F(a,b,c) \circ C(i,j,x): \exists a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)

 \bullet C(i,j,x) : if after i steps, jth cell of config is x **Recall reduction in Cook's theorem** \bullet If C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c) then C(i,j,x) iff x=F(a,b,c) \circ C(i,j,x): \exists a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c) Base case: C(0,j,x) easy to check from input

- \circ C(i,j,x) : if after i steps, jth cell of config is x
	- Recall reduction in Cook's theorem
		- \bullet If C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c) then C(i,j,x) iff x=F(a,b,c)
	- \circ C(i,j,x): \exists a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)
		- Base case: C(0,j,x) easy to check from input
		- Naive recursion: Extra O(S) space at each level for 2O(S) levels!

 \bullet ATM to check if $C(i,j,x)$

 \odot ATM to check if $C(i,j,x)$ \circ C(i,j,x): \exists a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), $C(i-1,j+1,c)$

 \odot ATM to check if $C(i,j,x)$

 \circ C(i,j,x): \exists a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), $C(i-1,j+1,c)$

Tail-recursion (in parallel forks)

 \odot ATM to check if $C(i,j,x)$

 \circ C(i,j,x): \exists a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), $C(i-1,j+1,c)$

Tail-recursion (in parallel forks)

Check x=F(a,b,c); then enter universal state, fork out for each of the three configurations to be checked

 \odot ATM to check if $C(i,j,x)$

 \circ C(i,j,x): \exists a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), $C(i-1,j+1,c)$

Tail-recursion (in parallel forks)

Check x=F(a,b,c); then enter universal state, fork out for each of the three configurations to be checked

 \odot Overwrite C(i,j,x) with C(i-1,...) and reuse space

- \odot ATM to check if $C(i,j,x)$
	- \circ C(i,j,x): \exists a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), $C(i-1,j+1,c)$
	- **Tail-recursion** (in parallel forks)
		- Check x=F(a,b,c); then enter universal state, fork out for each of the three configurations to be checked
		- \odot Overwrite C(i,j,x) with C(i-1,...) and reuse space
		- Stay within the same O(S) space at each level!

- \bullet ATM to check if $C(i,j,x)$
	- \circ C(i,j,x): \exists a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), $C(i-1,j+1,c)$ Gets the AND check for free. No need to use a
	- **Tail-recursion** (in parallel forks)
		- Check x=F(a,b,c); then enter universal state, fork out for each of the three configurations to be checked
		- \odot Overwrite C(i,j,x) with C(i-1,...) and reuse space
		- \circ Stay within the same O(S) space at each level!

 $\mathsf{ASPACE}(\mathsf{S}) = \mathsf{DTIME}(2^{O(\mathsf{S})})$

 $\mathsf{ASPACE}(\mathsf{S}) = \mathsf{DTIME}(2^{O(\mathsf{S})})$

APSPACE = EXP

 $\mathsf{ASPACE}(\mathsf{S}) = \mathsf{DTIME}(2^{O(\mathsf{S})})$ APSPACE = EXP \odot AL = P

DTISP(T,S)

DTISP(T,S)

 \odot Theorem: NTIME(n) $\not\subset$ DTISP(n^{1+e},n^δ) for some \in , δ > 0

DTISP(T,S)

 \circ Theorem: NTIME(n) \circ DTISP(n^{1+e},n^δ) for some ϵ , $\delta > 0$

 \bullet i.e., cannot solve SAT in some slightly super-linear time and slightly super-logarithmic space
Theorem: NTIME(n) σ DTISP(n^{1+e},n^{δ}) for some ϵ , δ > 0 \odot

i.e., cannot solve SAT in some slightly super-linear time and \bigcirc slightly super-logarithmic space

Commonly Believed: can't solve in less than exponential time <u>or</u> \bigcirc with less than linear space

Theorem: NTIME(n) σ DTISP(n^{1+e},n^{δ}) for some ϵ , δ > 0 \circledcirc

i.e., cannot solve SAT in some slightly super-linear time and \bigcirc slightly super-logarithmic space

Commonly Believed: can't solve in less than exponential time <u>or</u> \bigcirc with less than linear space

Follows (after careful choice of parameters) from \bigcirc

Theorem: NTIME(n) σ DTISP(n^{1+e},n^{δ}) for some ϵ , δ > 0 \circledcirc

 \bullet i.e., cannot solve SAT in some slightly super-linear time and slightly super-logarithmic space

Commonly Believed: can't solve in less than exponential time <u>or</u> \bigcirc with less than linear space

Follows (after careful choice of parameters) from

 \odot DTISP(T,S) \subseteq Σ_2 TIME(T^{1/2} S)

Theorem: NTIME(n) σ DTISP($n^{1+\epsilon}, n^{\delta}$) for some ϵ , $\delta > 0$

 \bullet i.e., cannot solve SAT in some slightly super-linear time and slightly super-logarithmic space

Commonly Believed: can't solve in less than exponential time <u>or</u> \bigcirc with less than linear space

Follows (after careful choice of parameters) from

 $\overline{\circ}$ DTISP(T,S) $\subseteq \Sigma$ ₂TIME(T^{1/2} S)

Theorem: NTIME(n) σ DTISP($n^{1+\epsilon}, n^{\delta}$) for some ϵ , $\delta > 0$

 \bullet i.e., cannot solve SAT in some slightly super-linear time and slightly super-logarithmic space

Commonly Believed: can't solve in less than exponential time <u>or</u> with less than linear space

Follows (after careful choice of parameters) from

 $\overline{\circ}$ DTISP(T,S) $\subseteq \Sigma$ ₂TIME(T^{1/2} S)

 \odot NTIME(n) \subseteq DTIME(n^{1+e}) \Rightarrow Σ_2 TIME(T) \subseteq NTIME(T^{1+e}) $\begin{array}{ccc}\n\text{check} & \text{intra} & \text{fraction} \\
\hline\n\text{consequence} & \text{co} & \text{co} & \text{co} & \text{co} \\
\hline\n\text{consequence} & \text{co} & \text{co} & \text{co} & \text{co} \\
\text{converges} & \text{co} & \text{co} & \text{co} & \text{co} \\
\text{converges} & \text{co} & \text{co} & \text{co} & \text{co} & \text{co} \\
\text{Converges} & \text{co} \\
\end{$

guess quantification to
heck consecutive configs,

Theorem: NTIME(n) $\subset \mathsf{DTISP}(n^{1+\epsilon},n^{\delta})$ for some \in , $\delta > 0$

 \bullet i.e., cannot solve SAT in some slightly super-linear time and slightly super-logarithmic space

Commonly Believed: can't solve in less than exponential time <u>or</u> with less than linear space

Follows (after careful choice of parameters) from

 \odot DTISP(T,S) \subseteq Σ_2 TIME(T^{1/2} S)

 \odot NTIME(n) \subseteq DTIME(n^{1+e}) \Rightarrow Σ_2 TIME(T) \subseteq NTIME(T^{1+e}) $\begin{array}{ccc}\n\text{check} & \text{intra} & \text{fraction} \\
\hline\n\text{consequence} & \text{co} & \text{co} & \text{co} & \text{co} \\
\hline\n\text{consequence} & \text{co} & \text{co} & \text{co} & \text{co} \\
\text{converges} & \text{co} & \text{co} & \text{co} & \text{co} \\
\text{converges} & \text{co} & \text{co} & \text{co} & \text{co} & \text{co} \\
\text{Converges} & \text{co} \\
\end{$

 $\mathsf{NTIME}(\mathsf{n}) \subseteq \mathsf{DTISP}(\mathsf{n}^{1+\epsilon},\mathsf{n}^\delta) \Rightarrow \mathsf{NTIME}(\mathsf{n}^\dagger) \subseteq \mathsf{NTIME}(\mathsf{n}^{\dagger(1/2+\epsilon')})$!

guess quantification to
heck consecutive configs,

ATM to define levels of PH

ATM to define levels of PH ATIME and ASPACE

ATM to define levels of PH ATIME and ASPACE AP = PSPACE and APSPACE = EXP

ATM to define levels of PH **& ATIME and ASPACE** AP = PSPACE and APSPACE = EXP Using Σ2TIME for a DTISP lower-bound