
Computational 
Complexity

Lecture 9
More of the Polynomial Hierarchy

Alternation
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PH is in terms of 
verification

Recall Σkp

Languages L = {x| ∃w1∀w2...Qwk F(x;w1,w2,..,wk)}, where F in P

Consider deterministic polynomial time machine M for F, with k 
read-once tapes for the certificates

Tapes read one after the other

x in L if ∃w1 ∀w2 ... Qwk such that M(x;w1,w2,..,wk) accepts

Plan: Formulate in terms of a non-deterministic TM (with no 
certificates)
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with at most k 
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build a verifier (using 
k certificate tapes)
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(in terms of |x|)
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Time, Space, Alternations

Complexity measures

Time: Maximum number of steps in any thread

Space: Maximum space in any configuration reached

Alternations: Maximum number of quantifier 
switches in any thread

8



ATIME

9



ATIME

ΣkTIME, ΠkTIME

9



ATIME

ΣkTIME, ΠkTIME

ΣkTIME(T): languages decided by ATMs with at 
most k alternations starting with ∃, in time T(n)

9



ATIME

ΣkTIME, ΠkTIME

ΣkTIME(T): languages decided by ATMs with at 
most k alternations starting with ∃, in time T(n)

ΣkTIME(poly) = Σkp

9



ATIME

ΣkTIME, ΠkTIME

ΣkTIME(T): languages decided by ATMs with at 
most k alternations starting with ∃, in time T(n)

ΣkTIME(poly) = Σkp

 Latter being exactly the certificate version

9



ATIME

ΣkTIME, ΠkTIME

ΣkTIME(T): languages decided by ATMs with at 
most k alternations starting with ∃, in time T(n)

ΣkTIME(poly) = Σkp

 Latter being exactly the certificate version

ATIME

9



ATIME

ΣkTIME, ΠkTIME

ΣkTIME(T): languages decided by ATMs with at 
most k alternations starting with ∃, in time T(n)

ΣkTIME(poly) = Σkp

 Latter being exactly the certificate version

ATIME

ATIME(T): languages decided by ATMs in time T(n)

9



ATIME vs. DSPACE

10



ATIME vs. DSPACE

ATIME(T) ⊆ DSPACE(T2)

10



ATIME vs. DSPACE

ATIME(T) ⊆ DSPACE(T2)

c.f. NTIME(T) ⊆ DSPACE(T)

10



ATIME vs. DSPACE

ATIME(T) ⊆ DSPACE(T2)

c.f. NTIME(T) ⊆ DSPACE(T)

AP ⊆ PSPACE

10



ATIME vs. DSPACE

ATIME(T) ⊆ DSPACE(T2)

c.f. NTIME(T) ⊆ DSPACE(T)

AP ⊆ PSPACE

But PSPACE ⊆ AP

10



ATIME vs. DSPACE

ATIME(T) ⊆ DSPACE(T2)

c.f. NTIME(T) ⊆ DSPACE(T)

AP ⊆ PSPACE

But PSPACE ⊆ AP

TQBF in AP (why?)

10



ATIME vs. DSPACE

ATIME(T) ⊆ DSPACE(T2)

c.f. NTIME(T) ⊆ DSPACE(T)
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TQBF in AP (why?)
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A ∃ configuration is accepting if any child is, and       

a ∀ configuration is accepting if all children are

Space needed: depth x size of configuration

Depth = # alternations = O(T). Also, size of 
configuration = O(T) as any thread runs for time O(T)

O(T2)
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ASPACE(S) = DTIME(2O(S))

Recall, already seen NSPACE(S) ⊆ DTIME(2O(S))

Poly-time connectivity in configuration graph 
of size at most 2O(S)

Instead of connectivity, can recursively label 
all accepting nodes (2 lookups per node: in 
poly(S) time). So ASPACE(S) ⊆ DTIME(2O(S))

To show DTIME(2O(S)) ⊆ ASPACE(S)
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To decide, is configuration after t steps accepting

Accept configuration, with unique first cell α  
(blank tape cell and unique accept state)

Once there, stays there

Is first cell of config after t steps α

C(i,j,x) : if after i steps, jth cell of config is x

Need to check C(t,1,α)

13
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Recall reduction in Cook’s theorem

If C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c) then C(i,j,x) iff x=F(a,b,c)

C(i,j,x): ∃a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)

Base case: C(0,j,x) easy to check from input

Naive recursion: Extra O(S) space at each level for 2O(S) 

levels!
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C(i-1,j+1,c)

Tail-recursion (in parallel forks)

Check x=F(a,b,c); then enter universal state, fork out 
for each of the three configurations to be checked

Overwrite C(i,j,x) with C(i-1,...) and reuse space

Stay within the same O(S) space at each level!

Gets the AND check 

for free. No need to use a 
stack.
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slightly super-logarithmic space

Commonly Believed: can’t solve in less than exponential time or 
with less than linear space

Follows (after careful choice of parameters) from

DTISP(T,S) ⊆ Σ2TIME(T1/2 S) 

NTIME(n) ⊆ DTIME(n1+ε) ⇒ Σ2TIME(T) ⊆ NTIME(T1+ε)

NTIME(n) ⊆ DTISP(n1+ε,nδ) ⇒ NTIME(nt) ⊆ NTIME(nt(1/2+ε’)) !

 quantification to 

guess intermediate configs, 

check consecutive ones good
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Today

ATM to define levels of PH

ATIME and ASPACE

AP = PSPACE and APSPACE = EXP

Using Σ2TIME for a DTISP lower-bound
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