
Computational
Complexity

Lecture 9
More of the Polynomial Hierarchy

Alternation

1

PH is in terms of
verification

2

PH is in terms of
verification

Recall Σkp

2

PH is in terms of
verification

Recall Σkp

Languages L = {x| ∃w1∀w2...Qwk F(x;w1,w2,..,wk)}, where F in P

2

PH is in terms of
verification

Recall Σkp

Languages L = {x| ∃w1∀w2...Qwk F(x;w1,w2,..,wk)}, where F in P

Consider deterministic polynomial time machine M for F, with k
read-once tapes for the certificates

2

PH is in terms of
verification

Recall Σkp

Languages L = {x| ∃w1∀w2...Qwk F(x;w1,w2,..,wk)}, where F in P

Consider deterministic polynomial time machine M for F, with k
read-once tapes for the certificates

Tapes read one after the other

2

PH is in terms of
verification

Recall Σkp

Languages L = {x| ∃w1∀w2...Qwk F(x;w1,w2,..,wk)}, where F in P

Consider deterministic polynomial time machine M for F, with k
read-once tapes for the certificates

Tapes read one after the other

x in L if ∃w1 ∀w2 ... Qwk such that M(x;w1,w2,..,wk) accepts

2

PH is in terms of
verification

Recall Σkp

Languages L = {x| ∃w1∀w2...Qwk F(x;w1,w2,..,wk)}, where F in P

Consider deterministic polynomial time machine M for F, with k
read-once tapes for the certificates

Tapes read one after the other

x in L if ∃w1 ∀w2 ... Qwk such that M(x;w1,w2,..,wk) accepts

Plan: Formulate in terms of a non-deterministic TM (with no
certificates)

2

Verification →
Non-determinism

3

Verification →
Non-determinism

3

Verification →
Non-determinism

3

Verification →
Non-determinism

Read from Tape 1

3

Verification →
Non-determinism

Read from Tape 1

Read from Tape 1

3

Verification →
Non-determinism

Read from Tape 1

Read from Tape 1

3

Verification →
Non-determinism

Read from Tape 1

Read from Tape 1

Read from Tape 2

3

Verification →
Non-determinism

Read from Tape 1

Read from Tape 1

Read from Tape 2

3

Verification →
Non-determinism

Read from Tape 1

Read from Tape 1

Read from Tape 2

Guess 0

3

Verification →
Non-determinism

Read from Tape 1

Read from Tape 1

Read from Tape 2

Guess 0 Guess 1

3

Verification →
Non-determinism

Read from Tape 1

Read from Tape 1

Read from Tape 2

Guess 0 Guess 1

Guess 0

3

Verification →
Non-determinism

Read from Tape 1

Read from Tape 1

Read from Tape 2

Guess 0 Guess 1

Guess 0 Guess 1

3

Verification →
Non-determinism

Read from Tape 1

Read from Tape 1

Read from Tape 2

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

3

Verification →
Non-determinism

Read from Tape 1

Read from Tape 1

Read from Tape 2

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

3

Verification →
Non-determinism

Read from Tape 1

Read from Tape 1

Read from Tape 2

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

3

Verification →
Non-determinism

Read from Tape 1

Read from Tape 1

Read from Tape 2

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

3

Verification →
Non-determinism

Read from Tape 1

Read from Tape 1

Read from Tape 2

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃w1

∀w2

3

Verification →
Non-determinism

Read from Tape 1

Read from Tape 1

Read from Tape 2

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃w1

∀w2

∃

∃ ∃

3

Verification →
Non-determinism

Read from Tape 1

Read from Tape 1

Read from Tape 2

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃w1

∀w2

∃

∃ ∃

∀ ∀ ∀ ∀

3

ATM

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃

∃ ∃

∀ ∀ ∀ ∀

4

ATM

Alternating Turing Machine Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃

∃ ∃

∀ ∀ ∀ ∀

4

ATM

Alternating Turing Machine

At each step, execution can fork
into two

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃

∃ ∃

∀ ∀ ∀ ∀

4

ATM

Alternating Turing Machine

At each step, execution can fork
into two

Exactly like an NTM or co-NTM

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃

∃ ∃

∀ ∀ ∀ ∀

4

ATM

Alternating Turing Machine

At each step, execution can fork
into two

Exactly like an NTM or co-NTM

Accepting rule is more complex

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃

∃ ∃

∀ ∀ ∀ ∀

4

ATM

Alternating Turing Machine

At each step, execution can fork
into two

Exactly like an NTM or co-NTM

Accepting rule is more complex

Like in the game tree for QBF

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃

∃ ∃

∀ ∀ ∀ ∀

4

ATM

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃

∃ ∃

∀ ∀ ∀ ∀

5

ATM

Two kinds of configurations: ∃ and ∀ Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃

∃ ∃

∀ ∀ ∀ ∀

5

ATM

Two kinds of configurations: ∃ and ∀

Depending on the state

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃

∃ ∃

∀ ∀ ∀ ∀

5

ATM

Two kinds of configurations: ∃ and ∀

Depending on the state

A ∃ configuration is accepting if

either child is accepting

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃

∃ ∃

∀ ∀ ∀ ∀

5

ATM

Two kinds of configurations: ∃ and ∀

Depending on the state

A ∃ configuration is accepting if

either child is accepting

A ∀ configuration is accepting only

if both children are accepting

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃

∃ ∃

∀ ∀ ∀ ∀

5

Verification →
Non-determinism

Read from Tape 1

Read from Tape 1

Read from Tape 2

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃w1

∀w2

∃

∃ ∃

∀ ∀ ∀ ∀

6

Verification →
Non-determinism

Read from Tape 1

Read from Tape 1

Read from Tape 2

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃w1

∀w2

∃

∃ ∃

∀ ∀ ∀ ∀

Given a verifier for L
using k certificate
tapes, can build an
ATM for L with at most
k alternations

6

Verification →
Non-determinism

Read from Tape 1

Read from Tape 1

Read from Tape 2

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃w1

∀w2

∃

∃ ∃

∀ ∀ ∀ ∀

Given a verifier for L
using k certificate
tapes, can build an
ATM for L with at most
k alternations

Non-deterministically
guesses tape contents
and runs verifier

6

Verification ←
Non-determinism

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃

∃ ∃

∀ ∀ ∀ ∀

Read from Tape 1

Read from Tape 1

Read from Tape 2

∃w1

∀w2

7

Verification ←
Non-determinism

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃

∃ ∃

∀ ∀ ∀ ∀

Given ATM for L
with at most k
alternations, can
build a verifier (using
k certificate tapes)

Read from Tape 1

Read from Tape 1

Read from Tape 2

∃w1

∀w2

7

Verification ←
Non-determinism

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃

∃ ∃

∀ ∀ ∀ ∀

Given ATM for L
with at most k
alternations, can
build a verifier (using
k certificate tapes)

Same time/space
requirements
(in terms of |x|)

Read from Tape 1

Read from Tape 1

Read from Tape 2

∃w1

∀w2

7

Verification ←
Non-determinism

Guess 0 Guess 1

Guess 0

Guess 0

Guess 1

Guess 1

∃

∃ ∃

∀ ∀ ∀ ∀

Given ATM for L
with at most k
alternations, can
build a verifier (using
k certificate tapes)

Same time/space
requirements
(in terms of |x|)

|wi| = #choices

Read from Tape 1

Read from Tape 1

Read from Tape 2

∃w1

∀w2

7

Time, Space, Alternations

8

Time, Space, Alternations

Complexity measures

8

Time, Space, Alternations

Complexity measures

Time: Maximum number of steps in any thread

8

Time, Space, Alternations

Complexity measures

Time: Maximum number of steps in any thread

Space: Maximum space in any configuration reached

8

Time, Space, Alternations

Complexity measures

Time: Maximum number of steps in any thread

Space: Maximum space in any configuration reached

Alternations: Maximum number of quantifier
switches in any thread

8

ATIME

9

ATIME

ΣkTIME, ΠkTIME

9

ATIME

ΣkTIME, ΠkTIME

ΣkTIME(T): languages decided by ATMs with at
most k alternations starting with ∃, in time T(n)

9

ATIME

ΣkTIME, ΠkTIME

ΣkTIME(T): languages decided by ATMs with at
most k alternations starting with ∃, in time T(n)

ΣkTIME(poly) = Σkp

9

ATIME

ΣkTIME, ΠkTIME

ΣkTIME(T): languages decided by ATMs with at
most k alternations starting with ∃, in time T(n)

ΣkTIME(poly) = Σkp

 Latter being exactly the certificate version

9

ATIME

ΣkTIME, ΠkTIME

ΣkTIME(T): languages decided by ATMs with at
most k alternations starting with ∃, in time T(n)

ΣkTIME(poly) = Σkp

 Latter being exactly the certificate version

ATIME

9

ATIME

ΣkTIME, ΠkTIME

ΣkTIME(T): languages decided by ATMs with at
most k alternations starting with ∃, in time T(n)

ΣkTIME(poly) = Σkp

 Latter being exactly the certificate version

ATIME

ATIME(T): languages decided by ATMs in time T(n)

9

ATIME vs. DSPACE

10

ATIME vs. DSPACE

ATIME(T) ⊆ DSPACE(T2)

10

ATIME vs. DSPACE

ATIME(T) ⊆ DSPACE(T2)

c.f. NTIME(T) ⊆ DSPACE(T)

10

ATIME vs. DSPACE

ATIME(T) ⊆ DSPACE(T2)

c.f. NTIME(T) ⊆ DSPACE(T)

AP ⊆ PSPACE

10

ATIME vs. DSPACE

ATIME(T) ⊆ DSPACE(T2)

c.f. NTIME(T) ⊆ DSPACE(T)

AP ⊆ PSPACE

But PSPACE ⊆ AP

10

ATIME vs. DSPACE

ATIME(T) ⊆ DSPACE(T2)

c.f. NTIME(T) ⊆ DSPACE(T)

AP ⊆ PSPACE

But PSPACE ⊆ AP

TQBF in AP (why?)

10

ATIME vs. DSPACE

ATIME(T) ⊆ DSPACE(T2)

c.f. NTIME(T) ⊆ DSPACE(T)

AP ⊆ PSPACE

But PSPACE ⊆ AP

TQBF in AP (why?)

AP = PSPACE

10

ATIME(T) ⊆ DSPACE(T2)

11

ATIME(T) ⊆ DSPACE(T2)

Evaluate if the start configuration is accepting, recursively

11

ATIME(T) ⊆ DSPACE(T2)

Evaluate if the start configuration is accepting, recursively

A ∃ configuration is accepting if any child is, and

a ∀ configuration is accepting if all children are

11

ATIME(T) ⊆ DSPACE(T2)

Evaluate if the start configuration is accepting, recursively

A ∃ configuration is accepting if any child is, and

a ∀ configuration is accepting if all children are

Space needed: depth x size of configuration

11

ATIME(T) ⊆ DSPACE(T2)

Evaluate if the start configuration is accepting, recursively

A ∃ configuration is accepting if any child is, and

a ∀ configuration is accepting if all children are

Space needed: depth x size of configuration

Depth = # alternations = O(T). Also, size of
configuration = O(T) as any thread runs for time O(T)

11

ATIME(T) ⊆ DSPACE(T2)

Evaluate if the start configuration is accepting, recursively

A ∃ configuration is accepting if any child is, and

a ∀ configuration is accepting if all children are

Space needed: depth x size of configuration

Depth = # alternations = O(T). Also, size of
configuration = O(T) as any thread runs for time O(T)

O(T2)

11

ASPACE vs. DTIME

12

ASPACE vs. DTIME
ASPACE(S) = DTIME(2O(S))

12

ASPACE vs. DTIME
ASPACE(S) = DTIME(2O(S))

Recall, already seen NSPACE(S) ⊆ DTIME(2O(S))

12

ASPACE vs. DTIME
ASPACE(S) = DTIME(2O(S))

Recall, already seen NSPACE(S) ⊆ DTIME(2O(S))

Poly-time connectivity in configuration graph
of size at most 2O(S)

12

ASPACE vs. DTIME
ASPACE(S) = DTIME(2O(S))

Recall, already seen NSPACE(S) ⊆ DTIME(2O(S))

Poly-time connectivity in configuration graph
of size at most 2O(S)

Instead of connectivity, can recursively label
all accepting nodes (2 lookups per node: in
poly(S) time). So ASPACE(S) ⊆ DTIME(2O(S))

12

ASPACE vs. DTIME
ASPACE(S) = DTIME(2O(S))

Recall, already seen NSPACE(S) ⊆ DTIME(2O(S))

Poly-time connectivity in configuration graph
of size at most 2O(S)

Instead of connectivity, can recursively label
all accepting nodes (2 lookups per node: in
poly(S) time). So ASPACE(S) ⊆ DTIME(2O(S))

To show DTIME(2O(S)) ⊆ ASPACE(S)

12

DTIME(2O(S)) ⊆ ASPACE(S)

13

DTIME(2O(S)) ⊆ ASPACE(S)

To decide, is configuration after t steps accepting

13

DTIME(2O(S)) ⊆ ASPACE(S)

To decide, is configuration after t steps accepting

Accept configuration, with unique first cell α
(blank tape cell and unique accept state)

13

DTIME(2O(S)) ⊆ ASPACE(S)

To decide, is configuration after t steps accepting

Accept configuration, with unique first cell α
(blank tape cell and unique accept state)

Once there, stays there

13

DTIME(2O(S)) ⊆ ASPACE(S)

To decide, is configuration after t steps accepting

Accept configuration, with unique first cell α
(blank tape cell and unique accept state)

Once there, stays there

Is first cell of config after t steps α

13

DTIME(2O(S)) ⊆ ASPACE(S)

To decide, is configuration after t steps accepting

Accept configuration, with unique first cell α
(blank tape cell and unique accept state)

Once there, stays there

Is first cell of config after t steps α

C(i,j,x) : if after i steps, jth cell of config is x

13

DTIME(2O(S)) ⊆ ASPACE(S)

To decide, is configuration after t steps accepting

Accept configuration, with unique first cell α
(blank tape cell and unique accept state)

Once there, stays there

Is first cell of config after t steps α

C(i,j,x) : if after i steps, jth cell of config is x

Need to check C(t,1,α)

13

ATM for TM simulation

14

ATM for TM simulation

C(i,j,x) : if after i steps, jth cell of config is x

14

ATM for TM simulation

C(i,j,x) : if after i steps, jth cell of config is x

Recall reduction in Cook’s theorem

14

ATM for TM simulation

C(i,j,x) : if after i steps, jth cell of config is x

Recall reduction in Cook’s theorem

If C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c) then C(i,j,x) iff x=F(a,b,c)

14

ATM for TM simulation

C(i,j,x) : if after i steps, jth cell of config is x

Recall reduction in Cook’s theorem

If C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c) then C(i,j,x) iff x=F(a,b,c)

C(i,j,x): ∃a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)

14

ATM for TM simulation

C(i,j,x) : if after i steps, jth cell of config is x

Recall reduction in Cook’s theorem

If C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c) then C(i,j,x) iff x=F(a,b,c)

C(i,j,x): ∃a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)

Base case: C(0,j,x) easy to check from input

14

ATM for TM simulation

C(i,j,x) : if after i steps, jth cell of config is x

Recall reduction in Cook’s theorem

If C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c) then C(i,j,x) iff x=F(a,b,c)

C(i,j,x): ∃a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)

Base case: C(0,j,x) easy to check from input

Naive recursion: Extra O(S) space at each level for 2O(S)

levels!

14

ATM for TM simulation

15

ATM for TM simulation
ATM to check if C(i,j,x)

15

ATM for TM simulation
ATM to check if C(i,j,x)

C(i,j,x): ∃a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b),

C(i-1,j+1,c)

15

ATM for TM simulation
ATM to check if C(i,j,x)

C(i,j,x): ∃a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b),

C(i-1,j+1,c)

Tail-recursion (in parallel forks)

15

ATM for TM simulation
ATM to check if C(i,j,x)

C(i,j,x): ∃a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b),

C(i-1,j+1,c)

Tail-recursion (in parallel forks)

Check x=F(a,b,c); then enter universal state, fork out
for each of the three configurations to be checked

15

ATM for TM simulation
ATM to check if C(i,j,x)

C(i,j,x): ∃a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b),

C(i-1,j+1,c)

Tail-recursion (in parallel forks)

Check x=F(a,b,c); then enter universal state, fork out
for each of the three configurations to be checked

Overwrite C(i,j,x) with C(i-1,...) and reuse space

15

ATM for TM simulation
ATM to check if C(i,j,x)

C(i,j,x): ∃a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b),

C(i-1,j+1,c)

Tail-recursion (in parallel forks)

Check x=F(a,b,c); then enter universal state, fork out
for each of the three configurations to be checked

Overwrite C(i,j,x) with C(i-1,...) and reuse space

Stay within the same O(S) space at each level!

15

ATM for TM simulation
ATM to check if C(i,j,x)

C(i,j,x): ∃a,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b),

C(i-1,j+1,c)

Tail-recursion (in parallel forks)

Check x=F(a,b,c); then enter universal state, fork out
for each of the three configurations to be checked

Overwrite C(i,j,x) with C(i-1,...) and reuse space

Stay within the same O(S) space at each level!

Gets the AND check

for free. No need to use a
stack.

15

ASPACE vs. DTIME

16

ASPACE vs. DTIME

ASPACE(S) = DTIME(2O(S))

16

ASPACE vs. DTIME

ASPACE(S) = DTIME(2O(S))

APSPACE = EXP

16

ASPACE vs. DTIME

ASPACE(S) = DTIME(2O(S))

APSPACE = EXP

AL = P

16

Zoo

P

PSPACE

EXP

NP

NEXP

L

NL

NPSPACE

ΣkP

APPH

17

Zoo

P

PSPACE

EXP

NP

NEXP

L

NL

NPSPACE

APSPACE

AL

ΣkP

APPH

17

Zoo

P

PSPACE

EXP

NP

NEXP

L

NL

NPSPACE

APSPACE

AL

ΣkP

APPH

17

DTISP(T,S)

18

DTISP(T,S)
Theorem: NTIME(n) ⊄ DTISP(n1+ε,nδ) for some ε, δ > 0

18

DTISP(T,S)
Theorem: NTIME(n) ⊄ DTISP(n1+ε,nδ) for some ε, δ > 0

i.e., cannot solve SAT in some slightly super-linear time and
slightly super-logarithmic space

18

DTISP(T,S)
Theorem: NTIME(n) ⊄ DTISP(n1+ε,nδ) for some ε, δ > 0

i.e., cannot solve SAT in some slightly super-linear time and
slightly super-logarithmic space

Commonly Believed: can’t solve in less than exponential time or
with less than linear space

18

DTISP(T,S)
Theorem: NTIME(n) ⊄ DTISP(n1+ε,nδ) for some ε, δ > 0

i.e., cannot solve SAT in some slightly super-linear time and
slightly super-logarithmic space

Commonly Believed: can’t solve in less than exponential time or
with less than linear space

Follows (after careful choice of parameters) from

18

DTISP(T,S)
Theorem: NTIME(n) ⊄ DTISP(n1+ε,nδ) for some ε, δ > 0

i.e., cannot solve SAT in some slightly super-linear time and
slightly super-logarithmic space

Commonly Believed: can’t solve in less than exponential time or
with less than linear space

Follows (after careful choice of parameters) from

DTISP(T,S) ⊆ Σ2TIME(T1/2 S)

18

DTISP(T,S)
Theorem: NTIME(n) ⊄ DTISP(n1+ε,nδ) for some ε, δ > 0

i.e., cannot solve SAT in some slightly super-linear time and
slightly super-logarithmic space

Commonly Believed: can’t solve in less than exponential time or
with less than linear space

Follows (after careful choice of parameters) from

DTISP(T,S) ⊆ Σ2TIME(T1/2 S)
 quantification to

guess intermediate configs,

check consecutive ones good

18

DTISP(T,S)
Theorem: NTIME(n) ⊄ DTISP(n1+ε,nδ) for some ε, δ > 0

i.e., cannot solve SAT in some slightly super-linear time and
slightly super-logarithmic space

Commonly Believed: can’t solve in less than exponential time or
with less than linear space

Follows (after careful choice of parameters) from

DTISP(T,S) ⊆ Σ2TIME(T1/2 S)

NTIME(n) ⊆ DTIME(n1+ε) ⇒ Σ2TIME(T) ⊆ NTIME(T1+ε)

 quantification to

guess intermediate configs,

check consecutive ones good

18

DTISP(T,S)
Theorem: NTIME(n) ⊄ DTISP(n1+ε,nδ) for some ε, δ > 0

i.e., cannot solve SAT in some slightly super-linear time and
slightly super-logarithmic space

Commonly Believed: can’t solve in less than exponential time or
with less than linear space

Follows (after careful choice of parameters) from

DTISP(T,S) ⊆ Σ2TIME(T1/2 S)

NTIME(n) ⊆ DTIME(n1+ε) ⇒ Σ2TIME(T) ⊆ NTIME(T1+ε)

NTIME(n) ⊆ DTISP(n1+ε,nδ) ⇒ NTIME(nt) ⊆ NTIME(nt(1/2+ε’)) !

 quantification to

guess intermediate configs,

check consecutive ones good

18

Today

19

Today

ATM to define levels of PH

19

Today

ATM to define levels of PH

ATIME and ASPACE

19

Today

ATM to define levels of PH

ATIME and ASPACE

AP = PSPACE and APSPACE = EXP

19

Today

ATM to define levels of PH

ATIME and ASPACE

AP = PSPACE and APSPACE = EXP

Using Σ2TIME for a DTISP lower-bound

19

