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® Recall 2¢P

@ Languages L = x| dwiVw...Qwk F(x;wi,wsz,..,wk)}, where F in P

@ Consider deterministic polynomial time machine M for F, with k
read-once tapes for the certificates

@ Tapes read one after the other

@ x in L if dw; Vwz ... Qwk such that M(x;wi,wz,..,wk) accepts

@ Plan: Formulate in terms of a non-deterministic TM (with no
certificates)
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@ Alternating Turing Machine

@ At each step, execution can fork ‘
intfo two Guess O Gyess 1 \

@ Exactly like an NTM or co-NTM
@ Accepting rule is more complex ehes G“ESSI \

\4

@ Like in the game tree for QBF ; \4
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Gues ess 1

@ Two Kinds of configurations: 3 and V

@ Depending on the state ‘

Guess O Gyess 1 \
@ A o configuration is accepting if

either child is accepting
Guess Gu&ss 1 \
@ A V configuration is accepting only v

if both children are accepting ? \4
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@ Complexity measures
@ Time: Maximum number of steps in any thread

@ Space: Maximum space in any configuration reached

@ Alternations: Maximum number of quantifier
switches in any thread
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@ 2¢TIME(T): languages decided by ATMs with at
most k alternations starting with 3, in time T(n)

o 2«TIME(poly) = 2P
@ Latter being exactly the certificate version
@ ATIME

@ ATIME(T): languages decided by ATMs in time T(n)
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@ Evaluate if the start configuration is accepting, recursively
@ A o configuration is accepting if any child is, and
a V configuration is accepting if all children are
@ Space needed: depth x size of configuration

@ Depth = # alternations = O(T). Also, size of
configuration = O(T) as any thread runs for time O(T)

@ 0O(T?)
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@ ASPACE(S) = DTIME(2°0)

@ Recall, already seen NSPACE(S) € DTIME(2°0)

@ Poly-time connectivity in configuration graph
of size at most 2°¢)

@ Instead of connectivity, can recursively label
all accepting nodes (2 lookups per node: in
poly(S) time). So ASPACE(S) < DTIME(29G))

o To show DTIME(2°%) c ASPACE(S)
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@ To decide, is configuration after t steps accepting

@ Accept configuration, with unique first cell «
(blank tape cell and unique accept state)

® Once there, stays there
@ Is first cell of config after t steps «
o C(i,j,x) : if after i steps, j™ cell of config is x

@ Need to check C(11,x)
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@ C(i,j,x) : if after i steps, j* cell of config is x
@ Recall reduction in Cook’s theorem
o If C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c) then C(i,j,x) iff x=F(a,b,c)

@ C(i,j,x): da,b,c st x=F(a,b,c) and C(i-1,j-1,a), C(i-1,j,b), C(i-1,j+1,c)

@ Base case: C(0,j,x) easy to check from input

@ Naive recursion: Extra O(S) space at each level for 2°®)
levels!
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@ APSPACE = EXP

@ AL =P
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® Theorem: NTIME(n) ¢ DTISP(n*¢,n®) for some €, d > O

@ i.e., cannot solve SAT in some slightly super-linear time and
slightly super-logarithmic space

@ Commonly Believed: cant solve in less than exponential time or
with less than linear space

@ Follows (after careful choice of parameters) f

@ DTISP(T,S) € Z,TIME(TY2 S)
@ NTIME(n) € DTIME(n!*€) = 3, TIME(T) € NTIME(T!*€)

@ NTIME(n) € DTISP(n!*¢,n®) = NTIME(n') € NTIME(nt(l/2+€)) |
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Today

@ ATM to define levels of PH
@ ATIME and ASPACE

@ AP = PSPACE and APSPACE = EXP

@ Using 22TIME for a DTISP lower-bound




