Computational
Complexity

Lecture 8
More of the Polynomial Hierarchy
Oracle-based Definition

Recall PH

IX[FuiVuzdus F(X,u,uz,us)} {XIVurduaVus F(X,u,uz,us)}

Oracle Machines

Oracle Machines

® Recall Oracle Machine

Oracle Machines

® Recall Oracle Machine

@ Writes queries on query-tape, enters and leaves
query state, and expects answer from oracle on the
tape

Oracle Machines

® Recall Oracle Machine

@ Writes queries on query-tape, enters and leaves

query state, and expects answer from oracle on the
tape

@ Can run an oracle machine with any oracle

Oracle Machines

® Recall Oracle Machine

@ Writes queries on query-tape, enters and leaves

query state, and expects answer from oracle on the
tape

@ Can run an oracle machine with any oracle

@ Oracle fully specified by the input-output behavior

Oracle Machines

® Recall Oracle Machine

@ Writes queries on query-tape, enters and leaves

query state, and expects answer from oracle on the
tape

@ Can run an oracle machine with any oracle

@ Oracle fully specified by the input-output behavior

@ Language oracle: answer is a single bit

Oracle Machines

® Recall Oracle Machine

@ Writes queries on query-tape, enters and leaves

query state, and expects answer from oracle on the
tape

@ Can run an oracle machine with any oracle
@ Oracle fully specified by the input-output behavior
@ Language oracle: answer is a single bit

@ This is what we consider

Oracle Machines (ctd.)

Oracle Machines (ctd.)

@ Non-deterministic oracle machine

Oracle Machines (ctd.)

@ Non-deterministic oracle machine

@ Can make non-deterministic choices and make
oracle queries. (Note: oracles are deterministic!)

Oracle Machines (ctd.)

@ Non-deterministic oracle machine

@ Can make non-deterministic choices and make
oracle queries. (Note: oracles are deterministic!)

@ Said to accept if any thread reaches accept state

Oracle Machines (ctd.)

@ Non-deterministic oracle machine

@ Can make non-deterministic choices and make
oracle queries. (Note: oracles are deterministic!)

@ Said to accept if any thread reaches accept state

@ Equivalently, a deterministic oracle machine which
takes a (read-once) certificate w (the list of non-
deterministic choices)

Oracle Machines (ctd.)

@ Non-deterministic oracle machine

@ Can make non-deterministic choices and make
oracle queries. (Note: oracles are deterministic!)

@ Said to accept if any thread reaches accept state

@ Equivalently, a deterministic oracle machine which
takes a (read-once) certificate w (the list of non-
deterministic choices)

@ Said to accept x if dw such that (x,w) takes it

to accepting state

Oracle Machines (ctd.)

co-
@ Non-deterministic oracle machine

@ Can make non-deterministic choices and make

oracle queries. (Note: oracles are deterministic!)
all threads reach

@ Said fo accept if any-thread reaches accept state

@ Equivalently, a deterministic oracle machine which
takes a (read-once) certificate w (the list of non-
deterministic choices)

Vw
@ Said to accept x if dw-such—that (x,w) takes it

to accepting state

NPA

@ NP”: class of languages accepted by oracle NTMs
with oracle for A in poly time

NPA

@ NP”: class of languages accepted by oracle NTMs
with oracle for A in poly time

@ Certificate version: NP* has languages of the form

NPA

@ NP”: class of languages accepted by oracle NTMs
with oracle for A in poly time

@ Certificate version: NP* has languages of the form

@ B = {x | dw MA(x,w) = 1}

NPA

@ NP”: class of languages accepted by oracle NTMs
with oracle for A in poly time

@ Certificate version: NP* has languages of the form

@ B = {x | dw MA(x,w) = 1}

® where M deterministic oracle machine

NPA

@ NP”: class of languages accepted by oracle NTMs
with oracle for A in poly time

@ Certificate version: NP* has languages of the form

@ B = {x | dw MA(x,w) = 1}

® where M deterministic oracle machine

@ M” runs in poly(lx|) time and |wl=poly(Ix|)

NPA

@ NP”: class of languages accepted by oracle NTMs
with oracle for A in poly time

@ Certificate version: NP* has languages of the form

@ B = {x | dw MA(x,w) = 1}

® where M deterministic oracle machine

@ M” runs in poly(lx|) time and |wl=poly(Ix|)
@ co-(NP?) = (co-NP)*

NPA

@ NP”: class of languages accepted by oracle NTMs
with oracle for A in poly time

@ Certificate version: NP* has languages of the form

@ B = {x | dw MA(x,w) = 1}

® where M deterministic oracle machine
@ M” runs in poly(lx|) time and |wl=poly(Ix|)
@ co-(NP?) = (co-NP)*

@ languages of the form 1x | Vw MA(x,w) = 1}

NPA

NPA

@ If Ain P, NP = NP

NPA

@ If Ain P, NP = NP

@ Can “implement” the oracle as a subroutine

NPA

@ If Ain P, NP = NP

@ Can “implement” the oracle as a subroutine

@ If Ain NP?

NPA

o If Ain P, NP* = NP
@ Can “implement” the oracle as a subroutine

@ If Ain NP?

@ Oracle for A is an oracle for A¢ too! NPA = NP~

NPA

o If Ain P, NP* = NP
@ Can “implement” the oracle as a subroutine

@ If Ain NP?

@ Oracle for A is an oracle for A¢ too! NPA = NP~

@ NP U co-NP C NPSAT

NPA

o If Ain P, NP* = NP
@ Can “implement” the oracle as a subroutine

@ If Ain NP?

@ Oracle for A is an oracle for A¢ too! NPA = NP~

@ NP U co-NP C NPSAT

@ Can we better characterize NP>AT?

NPNP and relatives

NPNP and relatives

@ NPSAT = Unenp NP#

NPNP and relatives

@ NPSAT = Unenp NP#

@ Oracle for A can be implemented using oracle for
SAT in polynomial time (deterministically)

NPNP and relatives

@ NPSAT = Unenp NP#

@ Oracle for A can be implemented using oracle for
SAT in polynomial time (deterministically)

@ NPSAT also called NP\

NPNP and relatives

@ NPSAT = Unenp NP#

@ Oracle for A can be implemented using oracle for
SAT in polynomial time (deterministically)

@ NPSAT also called NP\

® NP2 = Uacs NPA = NPZSAT

NPNP and relatives

@ NPSAT = Unenp NP#

@ Oracle for A can be implemented using oracle for
SAT in polynomial time (deterministically)

@ NPSAT also called NP\

® NP2 = Uacs NPA = NPZSAT

o Will show NP> = 3,.P (alt. definition for Zi..P)

NPNP and relatives

@ NPSAT = Unenp NP#

@ Oracle for A can be implemented using oracle for
SAT in polynomial time (deterministically)

@ NPSAT also called NP\

® NP2 = Uacs NPA = NPZSAT

o Will show NP> = 3,.P (alt. definition for Zi..P)

@ In particular, NPN? = 35°

NPNP and relatives

@ NPSAT = Unenp NP#

@ Oracle for A can be implemented using oracle for
SAT in polynomial time (deterministically)

@ NPSAT also called NP\

® NP2 = Uacs NPA = NPZSAT

o Will show NP> = 3,.P (alt. definition for Zi..P)

@ In particular, NPN? = 35°

Zk+1 = szk

Zk+1 = szk

@ Consider L € 2,/°

Zk+1 = szk

® Consider L € 2.

o L ={x| 3w (xw) €L} where L in MNP

Zk+1 ~ szk

® Consider L € 2.

o L ={x| 3w (xw) €L} where L in MNP

@ So L in NP where L' in MP

Zk+1 ~ szk

® Consider L € 2.

o L ={x| 3w (xw) €L} where L in MNP

@ So L in NP where L' in MP

@ But NP' C NPk = NP

Zk+1 ~ szk

@ Consider L € 2k./°
o L ={x| 3w (xw) €L} where L in MNP

@ So L in NP where L' in MP

@ But NP' C NPk = NP

@ S0 Xk.P S NP2«

Zk+1 ~ szk

@ Consider L € 2k./°
o L ={x| 3w (xw) €L} where L in MNP

@ So L in NP where L' in MP

o But NP € NP = NP
@ S0 Xk.P S NP2«

@ Now to show NP*cC >,,,P

szk g Zk.|.1

NP« C 2 ksl

@ To show NPA € 2P if Ain 2P

NP« C 2 ksl

@ To show NPA € 2P if Ain 2P

@ For B € NP” poly-time TM M s.t. B = { x| dw MA(x,w)=1}

szk g Zk.|.1

@ To show NPA € 2P if Ain 2P

@ For B € NP” poly-time TM M s.t. B = { x| dw MA(x,w)=1}

o i.e.,, B = { x| Aw dans M<«"$(x,w)=1 and “ans correct”}

NP« C 2 ksl

@ To show NP* C 2.:P if A in 2P
@ For B € NP” poly-time TM M s.t. B = { x| dw MA(x,w)=1}

o i.e.,, B = { x| Aw dans M<«"$(x,w)=1 and “ans correct”}

@ To show C = {(x,w,ans) | M<9">(x w)=1 and “ans correct”} in Zx.P

NP« C 2 ksl

@ To show NPA € 2P if Ain 2P
@ For B € NP” poly-time TM M s.t. B = { x| dw MA(x,w)=1}
@ i.e.,, B = { x| 3w dans M<«>(x,w)=1 and “ans correct”}

@ To show C = {(x,w,ans) | M<9">(x w)=1 and “ans correct”} in Zx.P

® Then B also in 2x.iP

szk g Zk.|.1

NP C 2 ksl

@ To show C = {(x,w,ans) | M<"®(x,w)=1 and “ans correct”} in Zx.°

NP C 2 ksl

@ To show C = {(x,w,ans) | M<"®(x,w)=1 and “ans correct”} in Zx.°
@ Suppose M makes only one query z=Z(x,w). ans is a single bit
saying if z in A or not

szk g Zk.|.1

@ To show C = {(x,w,ans) | M<"®(x,w)=1 and “ans correct”} in Zx.°
@ Suppose M makes only one query z=Z(x,w). ans is a single bit
saying if z in A or not
@ “ans correct”: (ans=1 A z € A) or (ans=0 A z & A)

szk g Zk.|.1

@ To show C = {(x,w,ans) | M<"®(x,w)=1 and “ans correct”} in Zx.°
@ Suppose M makes only one query z=Z(x,w). ans is a single bit
saying if z in A or not
@ “ans correct”: (ans=1 A z € A) or (ans=0 A z & A)

@ C={(x,w,ans)| M<«"s>(x w)=1 A [(ans=1 A Ju;Vu....Qkux F(z,u;,...)=1)
or (ans=0 A Vvi3dv...Q'kvk F(z,vi,...)=0)] }

szk g Zk.|.1

@ To show C = {(x,w,ans) | M<"®(x,w)=1 and “ans correct”} in Zx.°
@ Suppose M makes only one query z=Z(x,w). ans is a single bit
saying if z in A or not
@ “ans correct”: (ans=1 A z € A) or (ans=0 A z & A)

@ C={(x,w,ans)| M<«"s>(x w)=1 A [(ans=1 A Ju;Vu....Qkux F(z,u;,...)=1)
or (ans=0 A Vvi3dv...Q'kvk F(z,vi,...)=0)] }

@ C={(x,w,ans)l Ju:Vuovidusva...QuukQkvk Ms>(x,w)=1 A

[(ans=1 A F(z,uy,...)=1) or (ans=0 A F(z,vi,...)=0)] }

szk g Zk.|.1

@ To show C = {(x,w,ans) | M<"®(x,w)=1 and “ans correct”} in Zx.°
@ Suppose M makes only one query z=Z(x,w). ans is a single bit
saying if z in A or not
@ “ans correct”: (ans=1 A z € A) or (ans=0 A z & A)

@ C={(x,w,ans)| M<«"s>(x w)=1 A [(ans=1 A Ju;Vu....Qkux F(z,u;,...)=1)

or (ans=0 A Vvidv,..Q'«vk F(z,vi,...)=0)] } In S
#

@ C={(x,w,ans)l Ju:Vuovidusva...QuukQkvk Ms>(x,w)=1 A

[(ans=1 A F(z,uy,...)=1) or (ans=0 A F(z,vi,...)=0)] }

szk g Zk.|.1

@ To show C = {(x,w,ans) | M<"®(x,w)=1 and “ans correct”} in Zx.°

@ Suppose M makes only one query z=Z(x,w). ans is a single bit
saying if z in A or not
@ “ans correct”: (ans=1 A z € A) or (ans=0 A z & A)

@ C={(x,w,ans)| M<«"s>(x w)=1 A [(ans=1 A Ju;Vu....Qkux F(z,u;,...)=1)

or (ans=0 A Vvidv,..Q'«vk F(z,vi,...)=0)] } In S
#

@ C={(x,w,ans)l Ju:Vuovidusva...QuukQkvk Ms>(x,w)=1 A
[(ans=1 A F(z,uy,...)=1) or (ans=0 A F(z,vi,...)=0)] }
@ Changes for 2 queries: z=Z(x,w) — (z1,z?) = Z(x,w,ans),

u = uiui@, vi = v vi@) and use conjunction of two checks
(for j=1 and j=2) of the form [(ans)=1 A F(z(),u;\,...)=1) or

(ans=0 A F(z(9,v;() .)=0)]

Oracle Version

Oracle Version

8 2x.aP = NP3 (with Zo° = P)

Oracle Version

8 2x.aP = NP3 (with Zo° = P)

8 [Mk.1P = co-NPk (with TP = P)

Oracle Version

8 2x.aP = NP3 (with Zo° = P)

8 [Mk.1P = co-NPk (with TP = P)

@ Mkii® = co-(NP*) = co-NP** = co-NP'k

D Ak+1p = P2k = Plk

D Ak+1p = P2k = Plk

6A1p=p

D Ak+1p = P2k = Plk

6A1p=p

3 AZP = PNP

AV

D Ak+1p = P2k = Plk
d Alp =k

3 AZP = PNP

@ Note that A,° = co-A°

AV

D Ak+1p = P2k = Plk
d Alp =k
3 AZP = PNP

@ Note that A,° = co-A°

d Ak+1p D >P U TP

AV

o Ay =EPzk =Rk
o AP=P
o AP = pNP
@ Note that Az° = co-A°

d Ak+1p D >P U TP

o Ak+1p - zk+1p N I_|k+1p (Why?)

AV

o AP = P = Pk
o AP =P
o AP = pNP
@ Note that AP = co-AS°

% Ak+1p 2 ka U I‘Ikp
o Ak+1p - zk+1p N I_|k+1p (Why?)

@ P> < NP> N coNP>

Today

Today

@ Today, more PH

Today

@ Today, more PH

@ Oracle-based definitions (in particular NPN? = 3,P)

Today

@ Today, more PH

@ Oracle-based definitions (in particular NPN? = 3,P)

@ Next lecture, more PH

Today

@ Today, more PH
@ Oracle-based definitions (in particular NPN? = 3,P)

@ Next lecture, more PH

@ Alternating TM-based definitions

Today

@ Today, more PH
@ Oracle-based definitions (in particular NPN? = 3,P)
® Next lecture, more PH

@ Alternating TM-based definitions

@ Time-Space fradeoffs

