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Lecture 8
More of the Polynomial Hierarchy
Oracle-based Definition
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® Recall Oracle Machine

@ Writes queries on query-tape, enters and leaves

query state, and expects answer from oracle on the
tape

@ Can run an oracle machine with any oracle
@ Oracle fully specified by the input-output behavior
@ Language oracle: answer is a single bit

@ This is what we consider
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co-
@ Non-deterministic oracle machine

@ Can make non-deterministic choices and make

oracle queries. (Note: oracles are deterministic!)
all threads reach

@ Said fo accept if any-thread reaches accept state

@ Equivalently, a deterministic oracle machine which
takes a (read-once) certificate w (the list of non-
deterministic choices)

Vw
@ Said to accept x if dw-such—that (x,w) takes it

to accepting state
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@ NP”: class of languages accepted by oracle NTMs
with oracle for A in poly time

@ Certificate version: NP* has languages of the form

@ B = {x | dw MA(x,w) = 1}

® where M deterministic oracle machine
@ M” runs in poly(lx|) time and |wl=poly(Ix|)
@ co-(NP?) = (co-NP)*

@ languages of the form 1x | Vw MA(x,w) = 1}
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o If Ain P, NP* = NP
@ Can “implement” the oracle as a subroutine

@ If Ain NP?

@ Oracle for A is an oracle for A¢ too! NPA = NP~

@ NP U co-NP C NPSAT

@ Can we better characterize NP>AT?
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@ Consider L € 2k./°
o L ={x| 3w (xw) €L} where L in MNP

@ So L in NP where L' in MP

o But NP € NP = NP
@ S0 Xk.P S NP2«

@ Now to show NP*cC >,,,P
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@ To show NPA € 2P if Ain 2P
@ For B € NP” poly-time TM M s.t. B = { x| dw MA(x,w)=1}
@ i.e.,, B = { x| 3w dans M<«>(x,w)=1 and “ans correct”}

@ To show C = {(x,w,ans) | M<9">(x w)=1 and “ans correct”} in Zx.P

® Then B also in  2x.iP
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@ To show C = {(x,w,ans) | M<"®(x,w)=1 and “ans correct”} in Zx.°

@ Suppose M makes only one query z=Z(x,w). ans is a single bit
saying if z in A or not
@ “ans correct”: (ans=1 A z € A) or (ans=0 A z & A)

@ C={(x,w,ans)| M<«"s>(x w)=1 A [(ans=1 A Ju;Vu....Qkux F(z,u;,...)=1)

or (ans=0 A Vvidv,..Q'«vk F(z,vi,...)=0)] } In S
#

@ C={(x,w,ans)l Ju:Vuovidusva...QuukQkvk  Ms>(x,w)=1 A
[(ans=1 A F(z,uy,...)=1) or (ans=0 A F(z,vi,...)=0)] }
@ Changes for 2 queries: z=Z(x,w) — (z1,z?) = Z(x,w,ans),

u = uiui@, vi = v vi@) and use conjunction of two checks
(for j=1 and j=2) of the form [ (ans)=1 A F(z(),u;\,...)=1) or

(ans=0 A F(z(9,v;() . )=0) ]
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Oracle Version

8 2x.aP = NP3 (with Zo° = P)

8 [Mk.1P = co-NPk (with TP = P)

@ Mkii® = co-(NP*) = co-NP** = co-NP'k
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AV

o AP = P = Pk
o AP =P
o AP = pNP
@ Note that AP = co-AS°

% Ak+1p 2 ka U I‘Ikp
o Ak+1p - zk+1p N I_|k+1p (Why?)

@ P> < NP> N coNP>
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@ Today, more PH
@ Oracle-based definitions (in particular NPN? = 3,P)
® Next lecture, more PH

@ Alternating TM-based definitions

@ Time-Space fradeoffs




