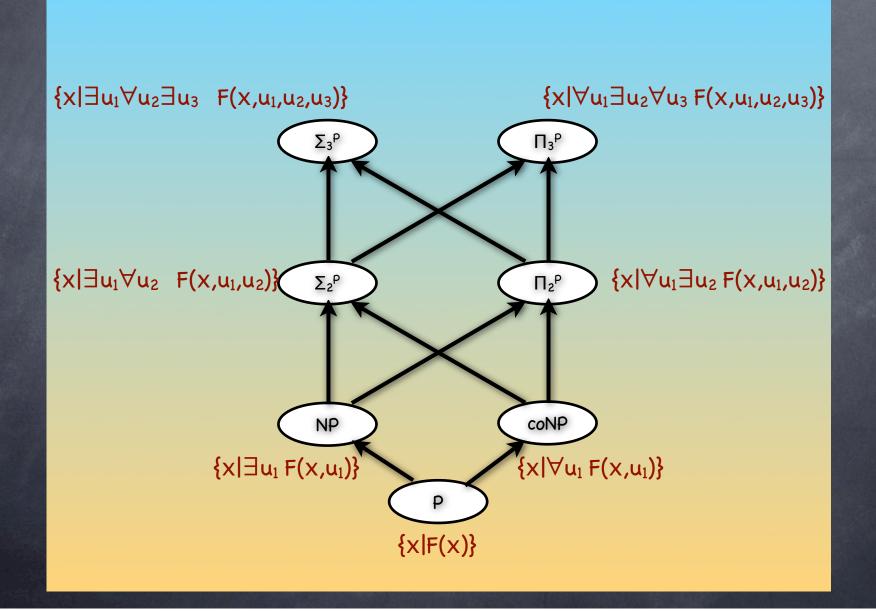
Computational Complexity

Lecture 8 More of the Polynomial Hierarchy Oracle-based Definition

Recall PH



Recall Oracle Machine

Writes queries on query-tape, enters and leaves query state, and expects answer from oracle on the tape

- Writes queries on query-tape, enters and leaves query state, and expects answer from oracle on the tape
- Can run an oracle machine with any oracle

- Writes queries on query-tape, enters and leaves query state, and expects answer from oracle on the tape
- Can run an oracle machine with any oracle
- Oracle fully specified by the input-output behavior

- Writes queries on query-tape, enters and leaves query state, and expects answer from oracle on the tape
- Can run an oracle machine with any oracle
- Oracle fully specified by the input-output behavior
- Language oracle: answer is a single bit

- Writes queries on query-tape, enters and leaves query state, and expects answer from oracle on the tape
- Can run an oracle machine with any oracle
- Oracle fully specified by the input-output behavior
- Language oracle: answer is a single bit
 - This is what we consider

Non-deterministic oracle machine

Non-deterministic oracle machine

Can make non-deterministic choices and make oracle queries. (Note: oracles are deterministic!)

Non-deterministic oracle machine

Can make non-deterministic choices and make oracle queries. (Note: oracles are deterministic!)

Said to accept if any thread reaches accept state

Non-deterministic oracle machine

- Can make non-deterministic choices and make oracle queries. (Note: oracles are deterministic!)
- Said to accept if any thread reaches accept state
- Equivalently, a deterministic oracle machine which takes a (read-once) certificate w (the list of nondeterministic choices)

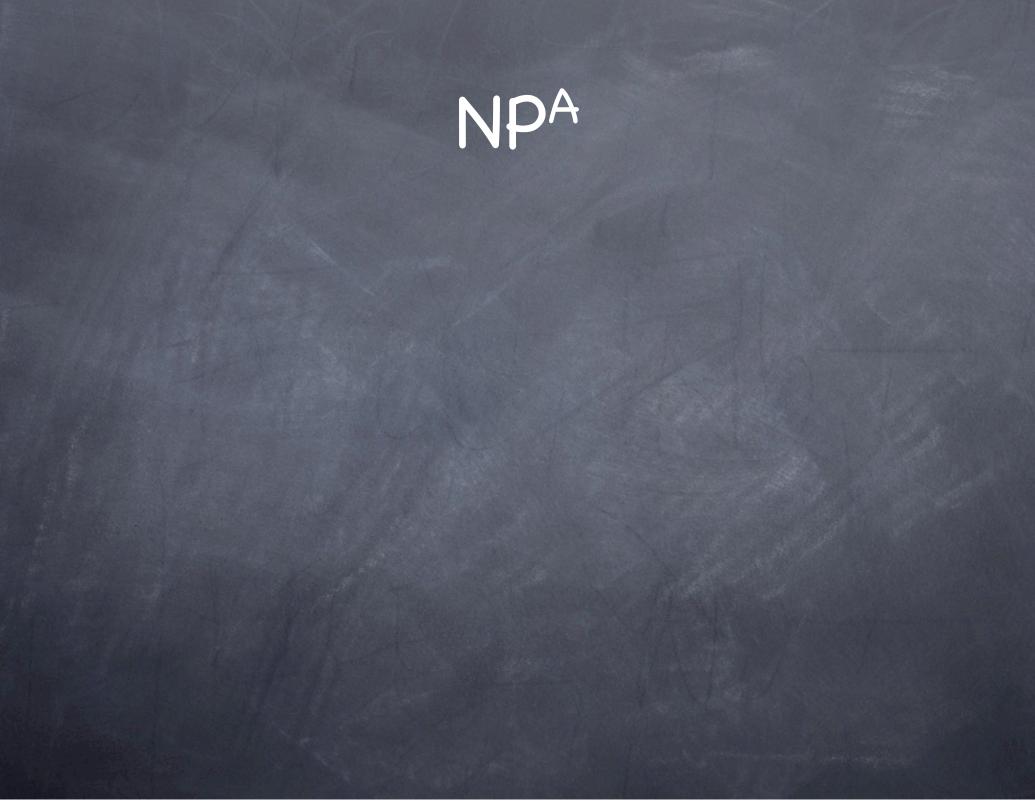
Non-deterministic oracle machine

- Can make non-deterministic choices and make oracle queries. (Note: oracles are deterministic!)
- Said to accept if any thread reaches accept state
- Equivalently, a deterministic oracle machine which takes a (read-once) certificate w (the list of nondeterministic choices)
 - Said to accept x if ∃w such that (x,w) takes it to accepting state

Non-deterministic oracle machine

- Can make non-deterministic choices and make oracle queries. (Note: oracles are deterministic!) all threads reach
 Said to accept if any thread reaches accept state
- Equivalently, a deterministic oracle machine which takes a (read-once) certificate w (the list of nondeterministic choices)

✓w Said to accept x if ∃w such that (x,w) takes it to accepting state



NP^A: class of languages accepted by oracle NTMs with oracle for A in poly time

NP^A: class of languages accepted by oracle NTMs with oracle for A in poly time

Certificate version: NP^A has languages of the form

- NP^A: class of languages accepted by oracle NTMs with oracle for A in poly time
- Certificate version: NP^A has languages of the form
 - $B = \{ x \mid \exists w \; \mathsf{M}^{\mathsf{A}}(x,w) = 1 \}$

- NP^A: class of languages accepted by oracle NTMs with oracle for A in poly time
- Certificate version: NP^A has languages of the form
 - $B = \{ x \mid \exists w \; \mathsf{M}^{\mathsf{A}}(x,w) = 1 \}$

where M deterministic oracle machine

- NP^A: class of languages accepted by oracle NTMs with oracle for A in poly time
- Certificate version: NP^A has languages of the form
 - $B = \{ x \mid \exists w \; \mathsf{M}^{\mathsf{A}}(x,w) = 1 \}$

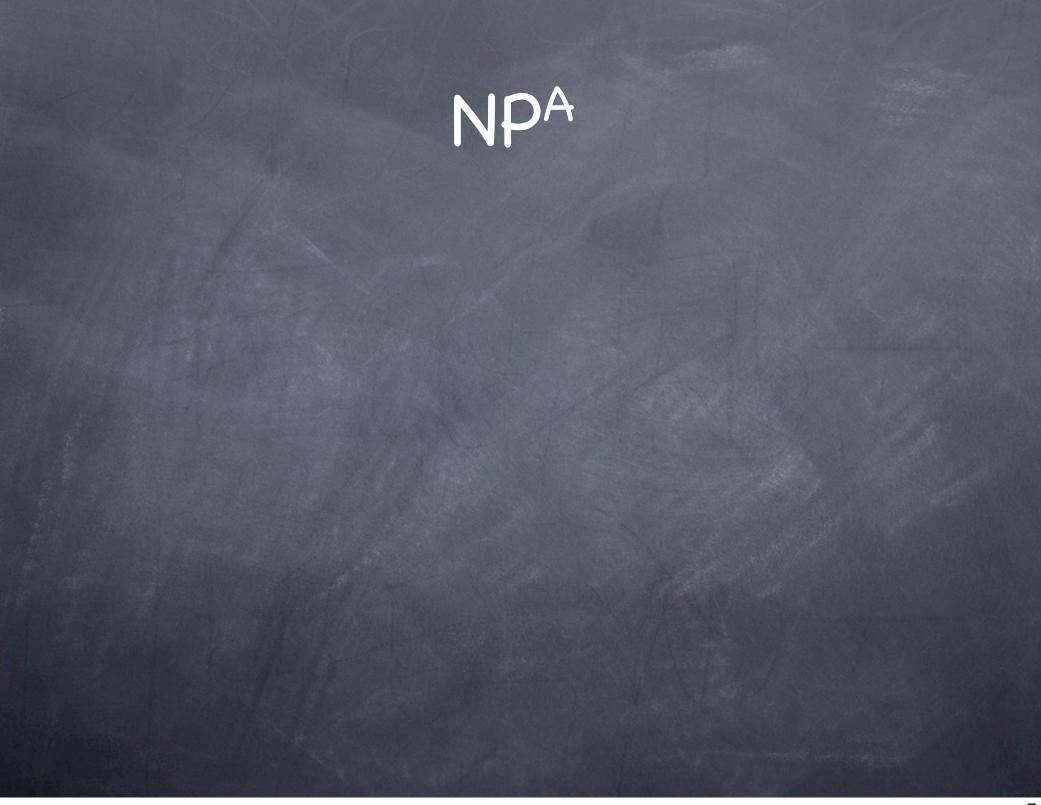
where M deterministic oracle machine
 M^A runs in poly(|x|) time and |w|=poly(|x|)

- NP^A: class of languages accepted by oracle NTMs with oracle for A in poly time
- Certificate version: NP^A has languages of the form

where M deterministic oracle machine
 M^A runs in poly(|x|) time and |w|=poly(|x|)
 co-(NP^A) = (co-NP)^A

- NP^A: class of languages accepted by oracle NTMs with oracle for A in poly time
- Certificate version: NP^A has languages of the form

where M deterministic oracle machine
M^A runs in poly(|x|) time and |w|=poly(|x|)
co-(NP^A) = (co-NP)^A
anguages of the form {x | ∀w M^A(x,w) = 1}



\odot If A in P, NP^A = NP

If A in P, NP^A = NP Can "implement" the oracle as a subroutine

If A in P, NP^A = NP Can "implement" the oracle as a subroutine If A in NP?

If A in P, NP^A = NP Can "implement" the oracle as a subroutine If A in NP?

Oracle for A is an oracle for A^c too! $NP^A = NP^{A^c}$

If A in P, NP^A = NP
Can "implement" the oracle as a subroutine
If A in NP?
Oracle for A is an oracle for A^c too! NP^A = NP^{A^c}
NP ∪ co-NP ⊆ NP^{SAT}

If A in P, NP^A = NP
Can "implement" the oracle as a subroutine
If A in NP?
Oracle for A is an oracle for A^c too! NP^A = NP^{A^c}
NP ∪ co-NP ⊆ NP^{SAT}

Can we better characterize NPSAT?

 \bigcirc NP^{SAT} = U_{A \in NP} NP^A

 \heartsuit NP^{SAT} = U_{A \in NP} NP^A

 Oracle for A can be implemented using oracle for SAT in polynomial time (deterministically)

 \bigcirc NP^{SAT} = U_{A \in NP} NP^A

 Oracle for A can be implemented using oracle for SAT in polynomial time (deterministically)

• NP^{SAT} = $U_{A \in NP} NP^{A}$

 Oracle for A can be implemented using oracle for SAT in polynomial time (deterministically)

NPSAT also called NPNP

 $I \mathbb{N} \mathbb{P}^{\Sigma_k} = \bigcup_{A \in \Sigma_k} \mathbb{N} \mathbb{P}^A = \mathbb{N} \mathbb{P}^{\Sigma_k S A T}$

NP^{NP} and relatives

 \bigcirc NP^{SAT} = U_{A \in NP} NP^A

 Oracle for A can be implemented using oracle for SAT in polynomial time (deterministically)

NPSAT also called NPNP

• $NP^{\Sigma_k} = U_{A \in \Sigma_k} NP^A = NP^{\Sigma_k SAT}$

• Will show $NP^{\Sigma_k} = \Sigma_{k+1}^{P}$ (alt. definition for Σ_{k+1}^{P})

NP^{NP} and relatives

 \bigcirc NP^{SAT} = U_{A \in NP} NP^A

Oracle for A can be implemented using oracle for SAT in polynomial time (deterministically)

NPSAT also called NPNP

 \bigcirc NP^{Σ_k} = U_{A∈ Σ_k} NP^A = NP^{Σ_k SAT}

• Will show $NP^{\Sigma_k} = \Sigma_{k+1}^{P}$ (alt. definition for Σ_{k+1}^{P})

 \odot In particular, NP^{NP} = Σ_2^P

NP^{NP} and relatives

 \bigcirc NP^{SAT} = U_{A \in NP} NP^A

Oracle for A can be implemented using oracle for SAT in polynomial time (deterministically)

NPSAT also called NPNP

 \bigcirc NP^{Σ_k} = U_{A∈ Σ_k} NP^A = NP^{Σ_k SAT}

• Will show $NP^{\Sigma_k} = \Sigma_{k+1}^{P}$ (alt. definition for Σ_{k+1}^{P})

 \odot In particular, NP^{NP} = Σ_2^P

$\Sigma_{k+1} = NP^{\Sigma_k}$

$\Sigma_{k+1} = NP^{\Sigma_k}$

 \bigcirc Consider $L \in \Sigma_{k+1}^{P}$

$\overline{\Sigma_{k+1}} = NP^{\Sigma_k}$

$\overline{\Sigma}_{k+1} = NP^{\Sigma_k}$

𝔅 L = { x| ∃w (x,w) ∈ L'}, where L' in Π_k^ρ

• So L in NP^{L'} where L' in Π_k^P

$\sum_{k+1} = NP^{\sum_k}$

Consider L ∈ Σ_{k+1}^P
L = { x| ∃w (x,w) ∈ L'}, where L' in Π_k^P
So L in NP^{L'} where L' in Π_k^P
But NP^{L'} ⊆ NP^{Π_k} = NP^{Σ_k}

$\sum_{k+1} = NP^{\sum_k}$

Consider L ∈ Σ_{k+1}^ρ
L = { x| ∃w (x,w) ∈ L'}, where L' in Π_k^ρ
So L in NP^{L'} where L' in Π_k^ρ
But NP^{L'} ⊆ NP^{Π_k} = NP^{Σ_k}

 \bigcirc So $\Sigma_{k+1}^{P} \subseteq NP^{\Sigma_k}$

$\sum_{k+1} = NP^{\sum_{k}}$

Consider L ∈ Σ_{k+1}^P
L = { x| ∃w (x,w) ∈ L'}, where L' in Π_k^P
So L in NP^{L'} where L' in Π_k^P
But NP^{L'} ⊆ NP^{Π_k} = NP^{Σ_k}

 \bigcirc So $\Sigma_{k+1}^{P} \subseteq NP^{\Sigma_k}$

One of the show NP^{Σ_k} ⊆ Σ_{k+1}^P

To show NP^A ⊆ Σ_{k+1}^P if A in Σ_k^P

• To show $NP^A \subseteq \Sigma_{k+1}^P$ if A in Σ_k^P

For B ∈ NP^A poly-time TM M s.t. B = { x| ∃w M^A(x,w)=1}

• To show $NP^A \subseteq \Sigma_{k+1}^P$ if A in Σ_k^P

So For B ∈ NP^A poly-time TM M s.t. B = { x| ∃w M^A(x,w)=1}

I.e., B = { x | ∃w ∃ans M^(ans)(x,w)=1 and "ans correct"}

To show NP^A ⊆ Σ_{k+1}^P if A in Σ_k^P

So For B ∈ NP^A poly-time TM M s.t. B = { x| ∃w M^A(x,w)=1}

i.e., B = { x | ∃w ∃ans M^(ans)(x,w)=1 and "ans correct"}

To show $C = \{(x,w,ans) \mid M^{\langle ans \rangle}(x,w)=1 \text{ and "ans correct"} \}$ in Σ_{k+1}^{P}

• To show $NP^A \subseteq \Sigma_{k+1}^P$ if A in Σ_k^P

For B ∈ NP^A poly-time TM M s.t. B = { x| ∃w M^A(x,w)=1}

I.e., B = { x | ∃w ∃ans M^(ans)(x,w)=1 and "ans correct"}

• To show C = {(x,w,ans) | $M^{ans}(x,w)=1$ and "ans correct"} in Σ_{k+1}^{P} • Then B also in Σ_{k+1}^{P}

• To show $C = \{(x,w,ans) \mid M^{\langle ans \rangle}(x,w)=1 \text{ and ``ans correct''} \}$ in Σ_{k+1}^{P}

To show C = {(x,w,ans) | M^{<ans>}(x,w)=1 and "ans correct"} in Σ_{k+1}^P
 Suppose M makes only one query z=Z(x,w). ans is a single bit saying if z in A or not

- To show C = {(x,w,ans) | M^{<ans>}(x,w)=1 and "ans correct"} in Σ_{k+1}^P
 Suppose M makes only one query z=Z(x,w). ans is a single bit saying if z in A or not
 - The second se

- To show C = {(x,w,ans) | $M^{ans}(x,w)=1$ and "ans correct"} in Σ_{k+1}^{P}
 - Suppose M makes only one query z=Z(x,w). ans is a single bit saying if z in A or not
 - The matrix of the ma

- To show $C = \{(x,w,ans) \mid M^{ans}(x,w)=1 \text{ and "ans correct"} \}$ in Σ_{k+1}^{P}
 - Suppose M makes only one query z=Z(x,w). ans is a single bit saying if z in A or not
 - The matrix and the matrix

 - C={(x,w,ans)| ∃u₁∀u₂v₁∃u₃v₂...Q_ku_kQ'_kv_k M^{<ans>}(x,w)=1 ∧
 [(ans=1 ∧ F(z,u₁,...)=1) or (ans=0 ∧ F(z,v₁,...)=0)] }

- To show $C = \{(x,w,ans) \mid M^{\langle ans \rangle}(x,w)=1 \text{ and ``ans correct''} \}$ in Σ_{k+1}^{P}
 - Suppose M makes only one query z=Z(x,w). ans is a single bit saying if z in A or not
 - The matrix and the matrix
 - C={(x,w,ans)| M^{<ans>}(x,w)=1 ∧ [(ans=1 ∧ ∃u₁∀u₂...Q_ku_k F(z,u₁,...)=1)
 or (ans=0 ∧ ∀v₁∃v₂...Q'_kv_k F(z,v₁,...)=0)] }
 - C={(x,w,ans)| ∃u₁∀u₂v₁∃u₃v₂...Q_ku_kQ'_kv_k M^{<ans>}(x,w)=1 ∧
 [(ans=1 ∧ F(z,u₁,...)=1) or (ans=0 ∧ F(z,v₁,...)=0)] }

- To show $C = \{(x,w,ans) \mid M^{\langle ans \rangle}(x,w)=1 \text{ and ``ans correct''} \}$ in Σ_{k+1}^{P}
 - Suppose M makes only one query z=Z(x,w). ans is a single bit saying if z in A or not
 - The second se
 - C={(x,w,ans)| M^{<ans>}(x,w)=1 ∧ [(ans=1 ∧ ∃u₁∀u₂...Q_ku_k F(z,u₁,...)=1)
 or (ans=0 ∧ ∀v₁∃v₂...Q'_kv_k F(z,v₁,...)=0)] }
 - C={(x,w,ans)| ∃u₁∀u₂v₁∃u₃v₂...Q_ku_kQ'_kv_k M^{<ans>}(x,w)=1 ∧
 [(ans=1 ∧ F(z,u₁,...)=1) or (ans=0 ∧ F(z,v₁,...)=0)] }

Changes for 2 queries: $z=Z(x,w) \rightarrow (z^{(1)},z^{(2)}) = Z(x,w,ans),$ $u_i \rightarrow u_i^{(1)}, u_i^{(2)}, v_i \rightarrow v_i^{(1)}, v_i^{(2)}, and use conjunction of two checks
 (for j=1 and j=2) of the form [(ans^(j)=1 ∧ F(z^(j), u₁^(j),...)=1) or
 (ans^(j)=0 ∧ F(z^(j), v₁^(j),...)=0)]$

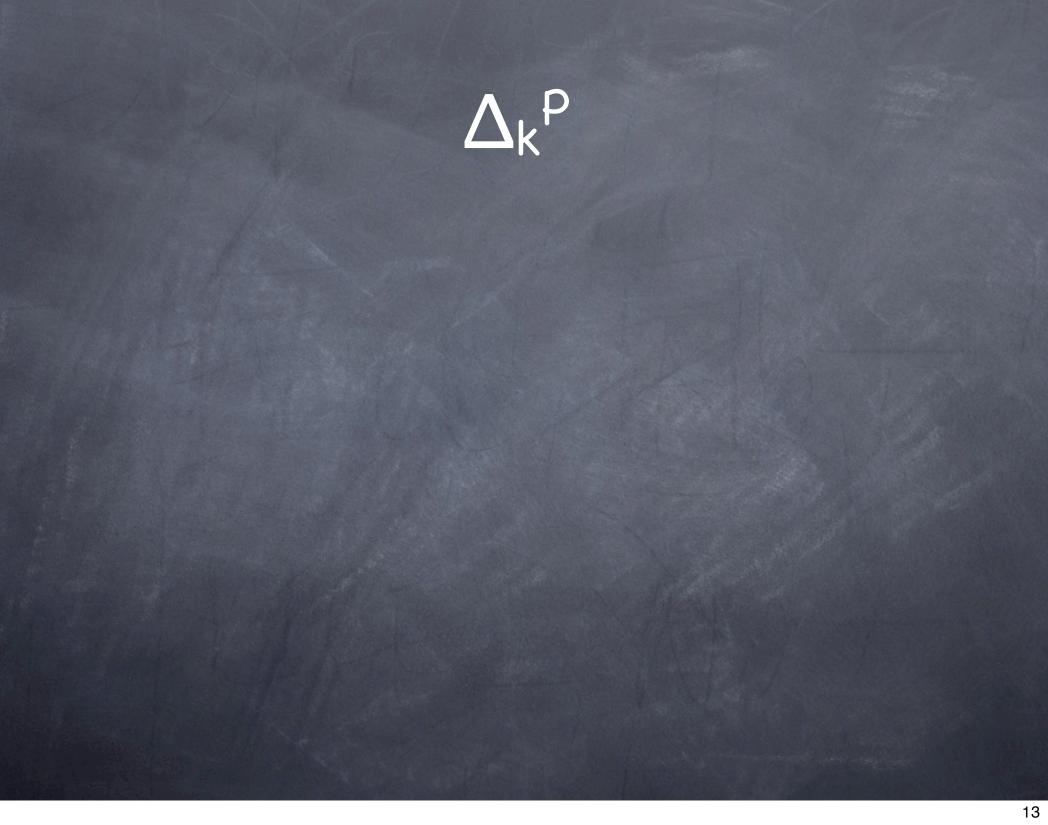
 $\odot \Sigma_{k+1}^{P} = NP^{\Sigma_{k}} (\text{with } \Sigma_{0}^{P} = P)$

 $\odot \Sigma_{k+1}^{P} = NP^{\Sigma_{k}} (with \Sigma_{0}^{P} = P)$

 $\Pi_{k+1}^{P} = co - NP^{\Pi_{k}} (with \Pi_{0}^{P} = P)$

 $\sum_{k+1}^{P} = \mathbb{NP}^{\Sigma_{k}} (with \Sigma_{0}^{P} = P)$

 $\Pi_{k+1}^{P} = co - NP^{\Pi_{k}} (with \Pi_{0}^{P} = P)$



 $\textcircled{\ } \Delta_{k+1}{}^{\mathsf{P}} = \mathsf{P}^{\Sigma_k} = \mathsf{P}^{\Pi_k}$

 $\Delta_{k+1}^{P} = P^{\Sigma_{k}} = P^{\prod_{k}}$ $\Delta_{1}^{P} = P$

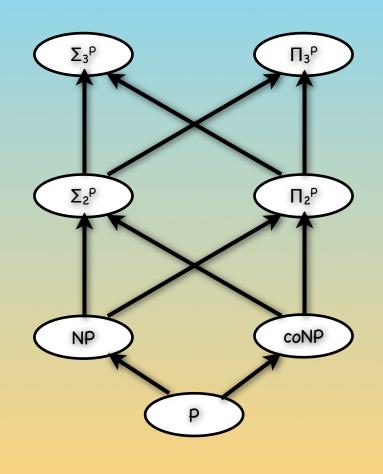
 $\Delta_{k+1}^{P} = P^{\Sigma_{k}} = P^{\Pi_{k}}$ $\Delta_{1}^{P} = P$ $\Delta_{2}^{P} = P^{NP}$

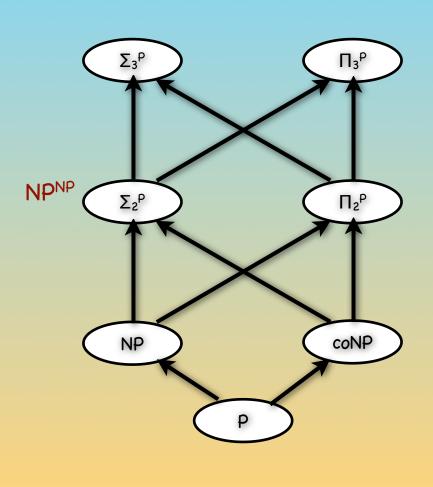
 $\Delta_{k+1}^{P} = P^{\Sigma_{k}} = P^{\Pi_{k}}$ $\Delta_{1}^{P} = P$ $\Delta_{2}^{P} = P^{NP}$ Note that $\Delta_{2}^{P} = co - \Delta_{2}^{P}$

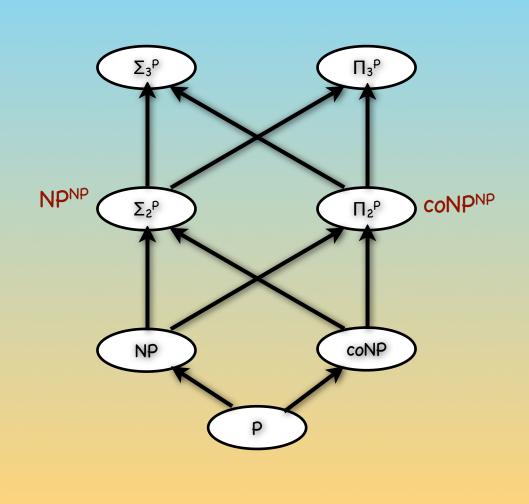
• $\Delta_{k+1}^{P} = P^{\Sigma_{k}} = P^{\Pi_{k}}$ • $\Delta_{1}^{P} = P$ • $\Delta_{2}^{P} = P^{NP}$ • Note that $\Delta_{2}^{P} = co - \Delta_{2}^{P}$ • $\Delta_{k+1}^{P} \supseteq \Sigma_{k}^{P} \cup \Pi_{k}^{P}$

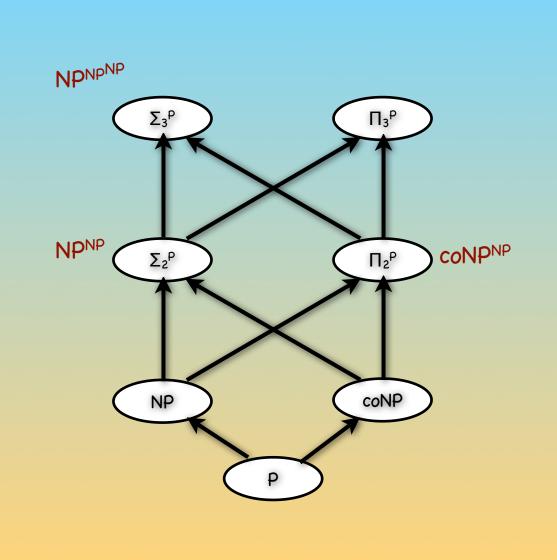
 $\oslash \Delta_1^{\mathsf{P}} = \mathsf{P}$ $\Delta_2^P = P^{NP}$ \odot Note that $\Delta_2^P = co - \Delta_2^P$ $\oslash \ \Delta_{k+1}{}^{P} \supseteq \Sigma_{k}{}^{P} \cup \ \Pi_{k}{}^{P}$ $\Delta_{k+1}^{P} \subseteq \Sigma_{k+1}^{P} \cap \Pi_{k+1}^{P}$ (why?)

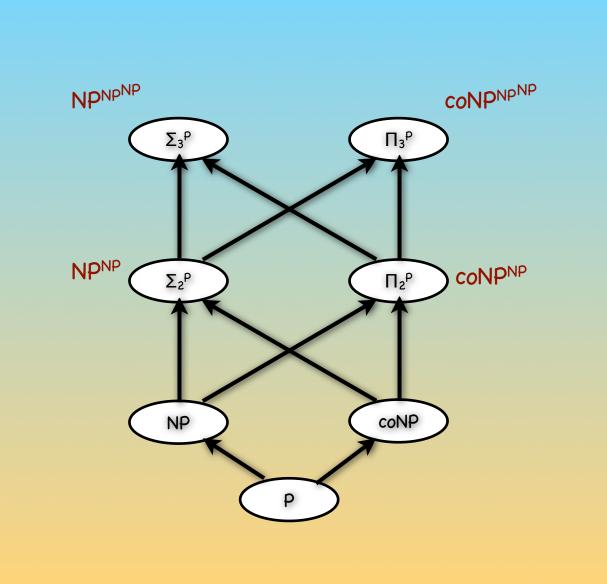
 $\oslash \ \Delta_{k+1}^{\mathsf{P}} = \mathsf{P}^{\Sigma_k} = \mathsf{P}^{\Pi_k}$ $\oslash \Delta_1^{\mathsf{P}} = \mathsf{P}$ $\Delta_2^{\mathsf{P}} = \mathsf{P}^{\mathsf{N}\mathsf{P}}$ \oslash Note that $\Delta_2^P = co - \Delta_2^P$ $\Delta_{k+1}^{P} \subseteq \Sigma_{k+1}^{P} \cap \Pi_{k+1}^{P}$ (why?)

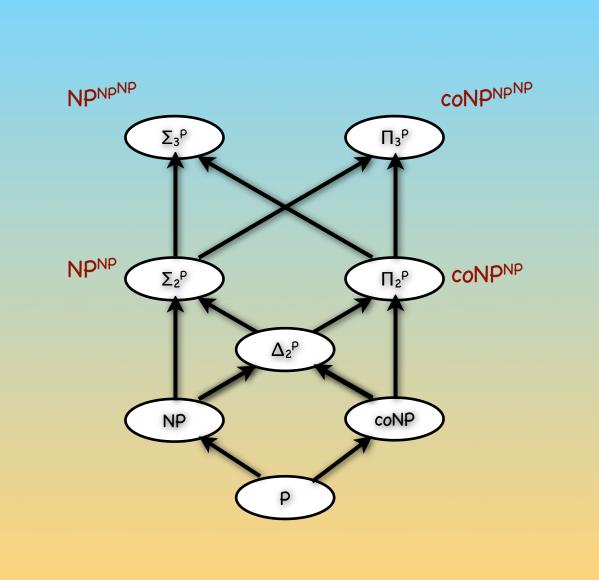


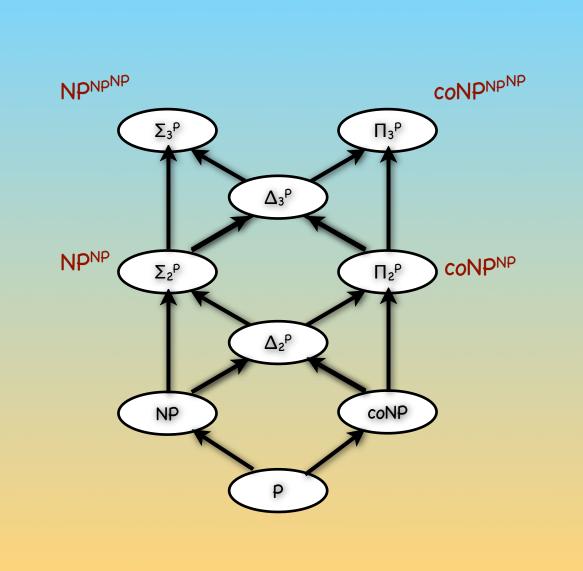


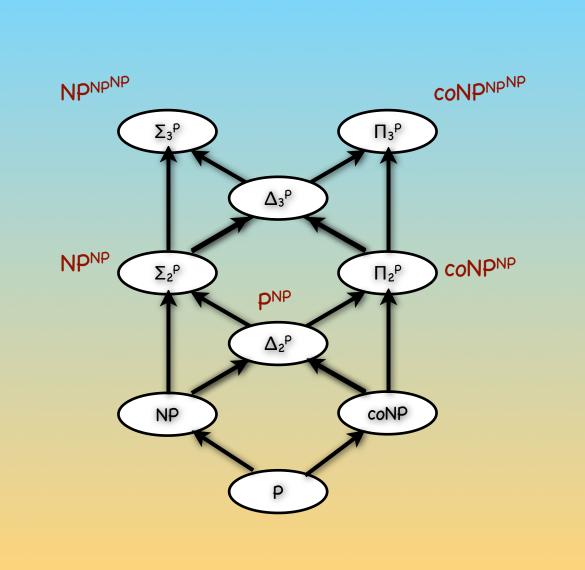


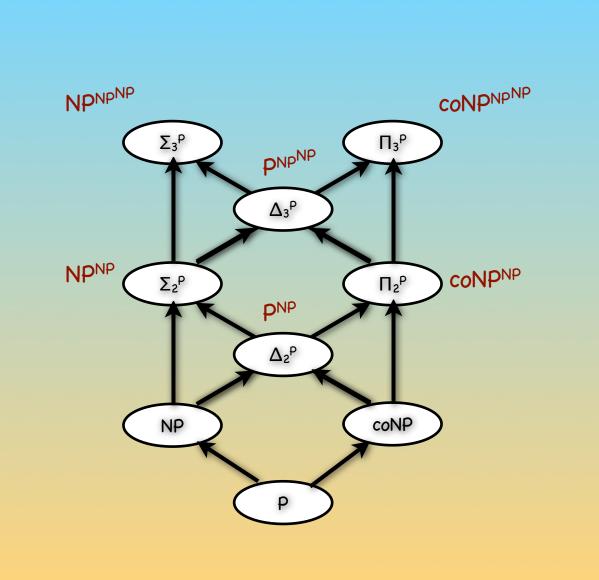












♂ Today, more PH

• Oracle-based definitions (in particular NP^{NP} = Σ_2^P)

Today, more PH

Oracle-based definitions (in particular NP^{NP} = Σ_2^P)
 Next lecture, more PH

Today, more PH

Oracle-based definitions (in particular NP^{NP} = Σ₂^P)
 Next lecture, more PH
 Alternating TM_based definitions

Alternating TM-based definitions

Today, more PH

Oracle-based definitions (in particular NP^{NP} = Σ₂^P)
 Next lecture, more PH
 Alternating TM-based definitions

Time-Space tradeoffs