Computational Complexity

Lecture 7 Polynomial Hierarchy Charting (some of) the space between P and PSPACE (where much of the action happens)

Recall NP

Recall NP

Class of languages { $x \mid \exists u_1 F(x,u_1) \}$

Recall NP

Class of languages { $x \mid \exists u_1 F(x,u_1)$ }

• Where F in P: i.e., language $\{x \mid F(x)\}$ is in P

Recall NP

Class of languages { $x \mid \exists u_1 F(x,u_1) \}$

- Where F in P: i.e., language { x | F(x) } is in P
- And $|u_1| < poly(|x|)$ for some polynomial

Recall NP

Class of languages { x | ∃u₁ F(x,u₁) }
Where F in P: i.e., language { x | F(x) } is in P
And |u₁| < poly(|x|) for some polynomial
Recall co-NP

Recall NP

Class of languages { x | ∃u₁ F(x,u₁) }
Where F in P: i.e., language { x | F(x) } is in P
And |u₁| < poly(|x|) for some polynomial
Recall co-NP

 \odot Class of languages { x | $\forall u_1 F(x,u_1)$ }

Recall NP

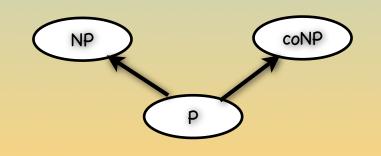
Class of languages { x | ∃u₁ F(x,u₁) }
Where F in P: i.e., language { x | F(x) } is in P
And |u₁| < poly(|x|) for some polynomial
Recall co-NP
Class of languages { x | ∀u₁ F(x,u₁) }

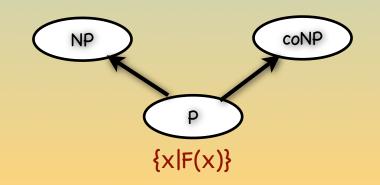
→ How about languages { x | $\exists u_1 \forall u_2 \dots$ F(x,u1,u2,...) }

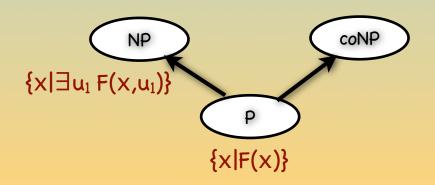
Recall NP

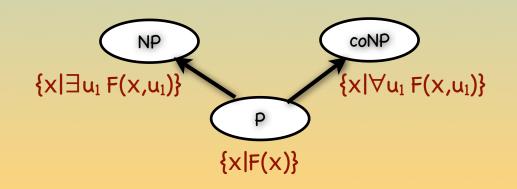
Class of languages { x | ∃u₁ F(x,u₁) }
Where F in P: i.e., language { x | F(x) } is in P
And |u₁| < poly(|x|) for some polynomial
Recall co-NP
Class of languages { x | ∀u₁ F(x,u₁) }
How about languages { x | ∃u₁∀u₂... F(x,u₁,u₂,...) }

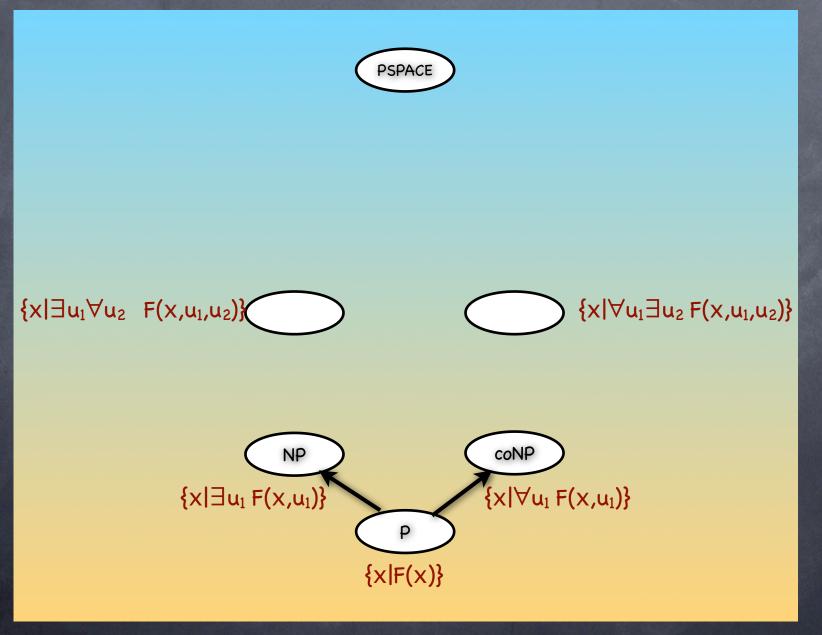
Such languages in PSPACE: same way TQBF is (Recall?)

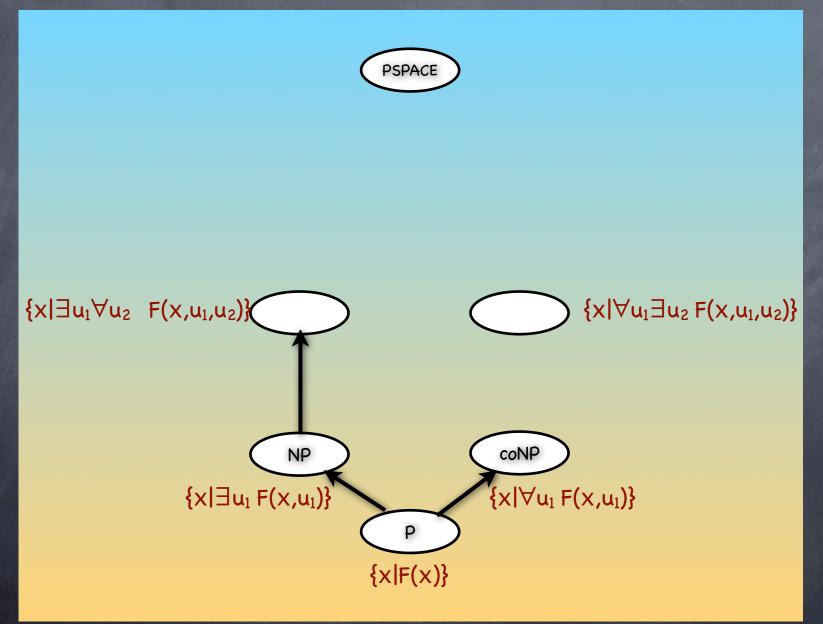


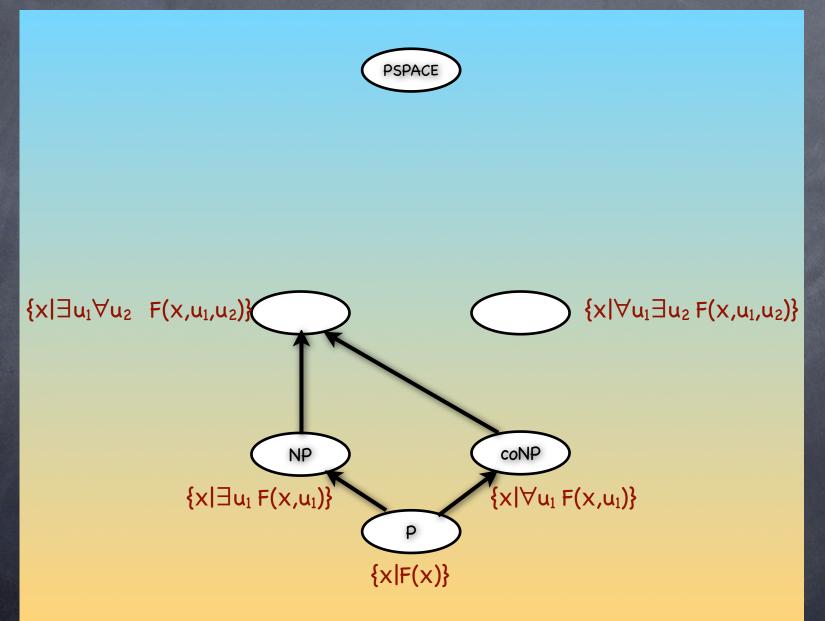


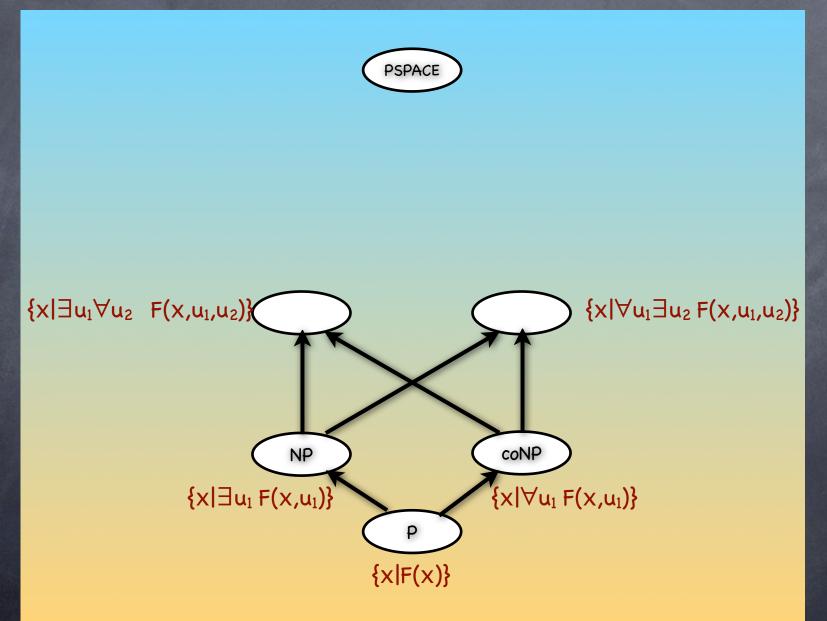


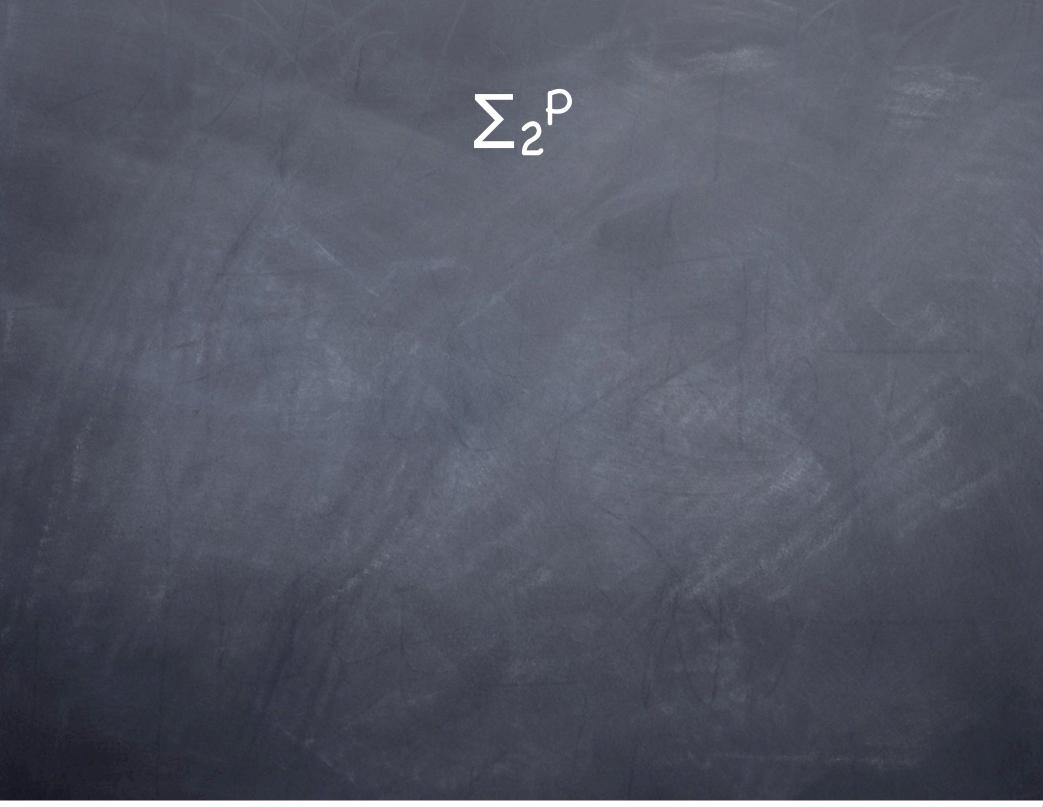












Σ_2^P

Class of languages { x | $\exists u_1 \forall u_2 F(x,u_1,u_2)$ }

Σ_2^P

⊘ Class of languages { x | $\exists u_1 \forall u_2 F(x,u_1,u_2)$ }

F in P and $|u_i| = poly(|x|)$

 \odot F in P and $|u_i| = poly(|x|)$

e.g.: Two move QBF games, Alice moving first

 \odot F in P and $|u_i| = poly(|x|)$

e.g.: Two move QBF games, Alice moving first

Does Alice have a move such that for all moves of the adversary, Alice wins

F in P and $|u_i| = poly(|x|)$

e.g.: Two move QBF games, Alice moving first

Does Alice have a move such that for all moves of the adversary, Alice wins

Is "∃u₁ ∀u₂ φ(u₁,u₂)" true?

 \odot F in P and $|u_i| = poly(|x|)$

e.g.: Two move QBF games, Alice moving first

Toes Alice have a move such that for all moves of the $F(\varphi,u_1,u_2) = \int_{\varphi(u_1,u_2)} \varphi(u_1,u_2) = \int_{\varphi(u_1,u_2)}$

Is "∃u₁ ∀u₂ φ(u₁,u₂)" true?

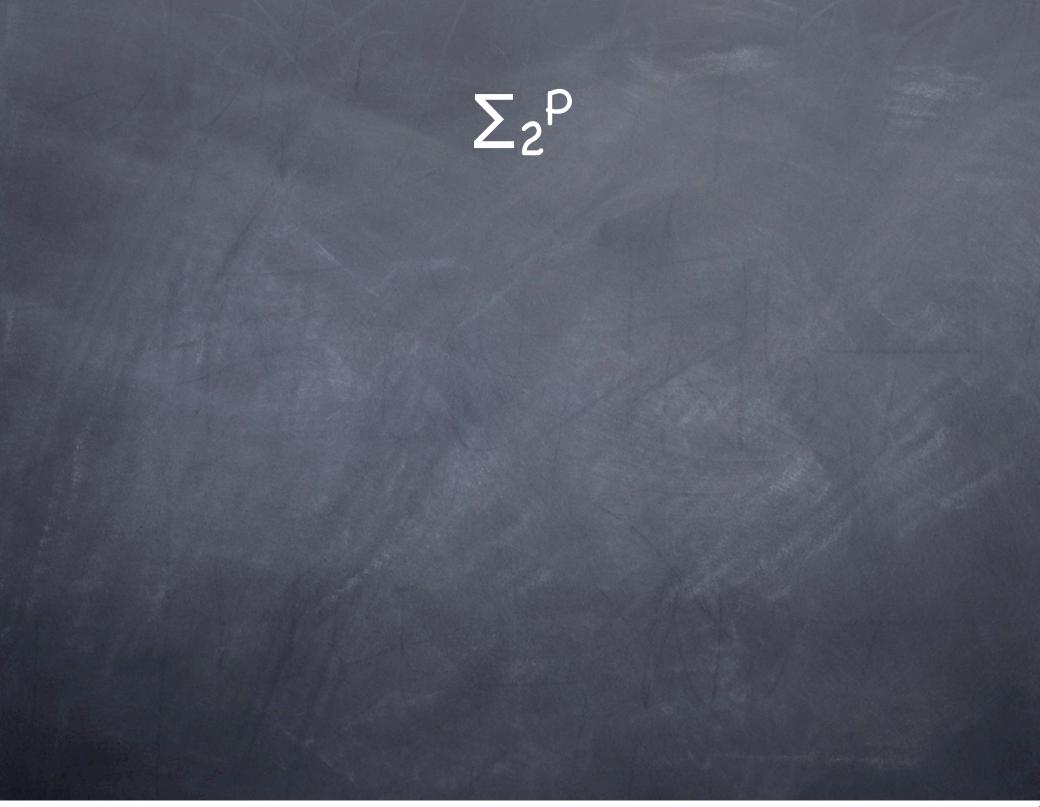
 \odot F in P and $|u_i| = poly(|x|)$

e.g.: Two move QBF games, Alice moving first

To be a bound of the bound of the bound of the bound of the $F(\varphi, u_1, u_2) = \int_{\varphi(u_1, u_2)} \phi(u_1, u_2) = \int_{\varphi(u_1, u_2)} \phi$

o Is "∃u₁ ∀u₂ φ(u₁,u₂)" true?

• Seems inherently more complex than deciding $\exists u_1 \phi(u_1)$ or $\forall u_1 \phi(u_1)$



Another example: EXACT-CLIQUE

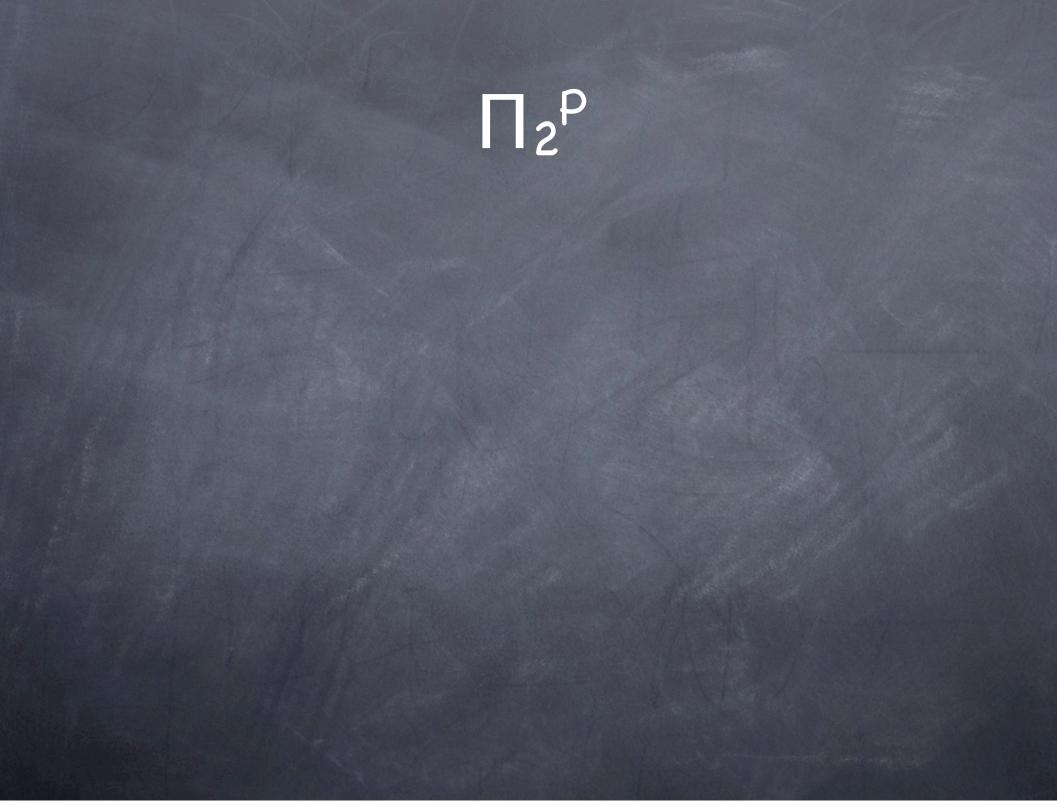
Another example: EXACT-CLIQUE

@ EXACT-CLIQUE = { (G,k) | largest clique in G is of size k(n) }

Another example: EXACT-CLIQUE
 EXACT-CLIQUE = { (G,k) | largest clique in G is of size k(n) }
 G has a clique of size k

Another example: EXACT-CLIQUE
EXACT-CLIQUE = { (G,k) | largest clique in G is of size k(n) }
G has a clique of size k
And all cliques in G have size at most k

Another example: EXACT-CLIQUE
EXACT-CLIQUE = { (G,k) | largest clique in G is of size k(n) }
G has a clique of size k
And all cliques in G have size at most k
∃G₁ ∀G₂ G₁ is a clique in G of size k and if G₂ is a clique in G, it is of size at most k



Π_2^P

$\odot \Pi_2^{P} = co - \Sigma_2^{P}$

Π_2^P

Π_2^P

e.g.: Two-move QBF game, Alice moving second

□ Π₂^ρ = co-Σ₂^ρ
 ③ { x | ¬ (∃u₁∀u₂ F'(x,u₁,u₂)) }
 ③ { x | ∀u₁∃u₂ F(x,u₁,u₂)) }
 ○ e.g.: Two-move QBF game, Alice moving second
 ○ EXACT-CLIQUE (again!)

Π₂^P = co-Σ₂^P
{x | ¬ (∃u₁∀u₂ F'(x,u₁,u₂))}
{x | ∀u₁∃u₂ F(x,u₁,u₂))}
e.g.: Two-move QBF game, Alice moving second
EXACT-CLIQUE (again!)
(∃G₁ G₁ is a clique in G of size k) and (∀G₂ if G₂ is a clique in G, it is of size at most k)

- e.g.: Two-move QBF game, Alice moving second

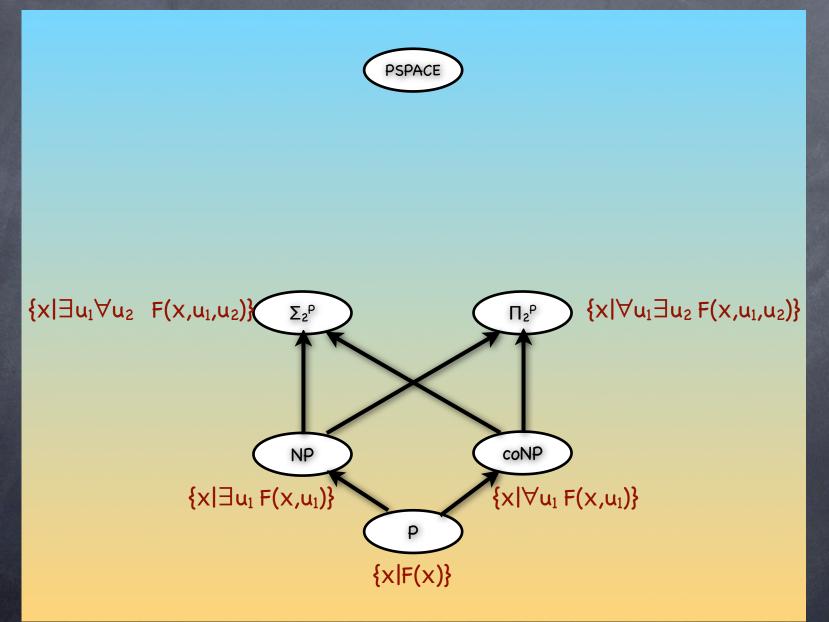
EXACT-CLIQUE (again!)

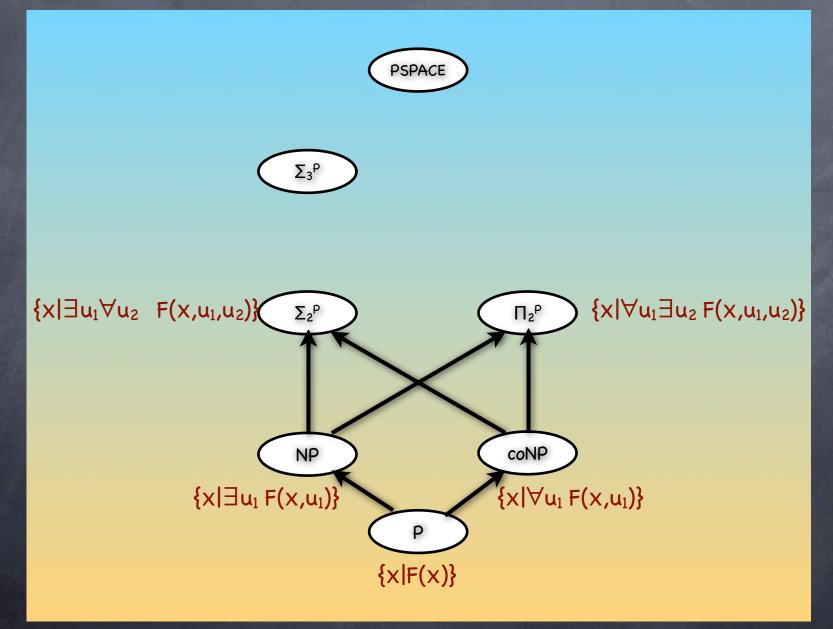
- G₁ G₁ is a clique in G of size k) and (∀G₂ if G₂ is a clique in G, it is of size at most k)
- In fact, two prenex form representations with one quantifier each

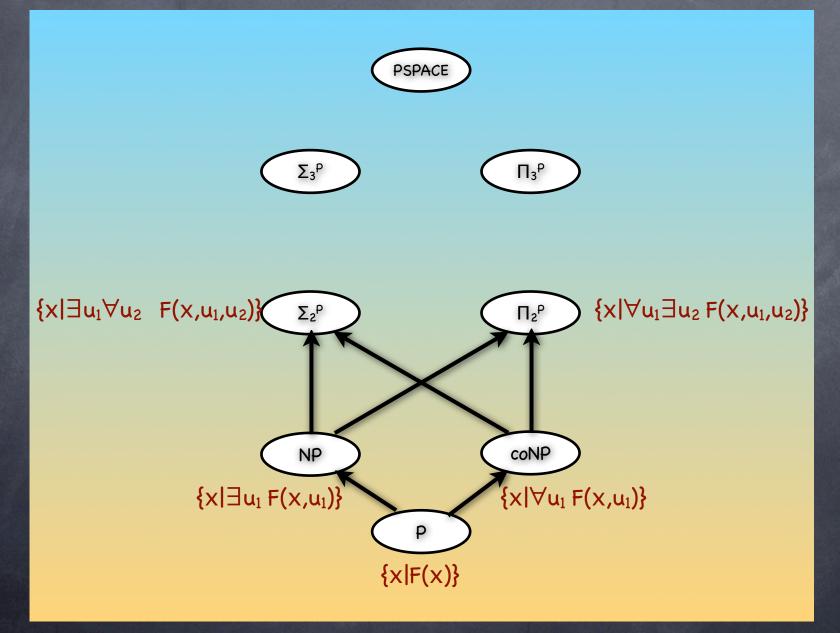
- □ Π₂^ρ = co-Σ₂^ρ
 { x | ¬ (∃u₁∀u₂ F'(x,u₁,u₂)) }
 { x | ∀u₁∃u₂ F(x,u₁,u₂)) }
- e.g.: Two-move QBF game, Alice moving second

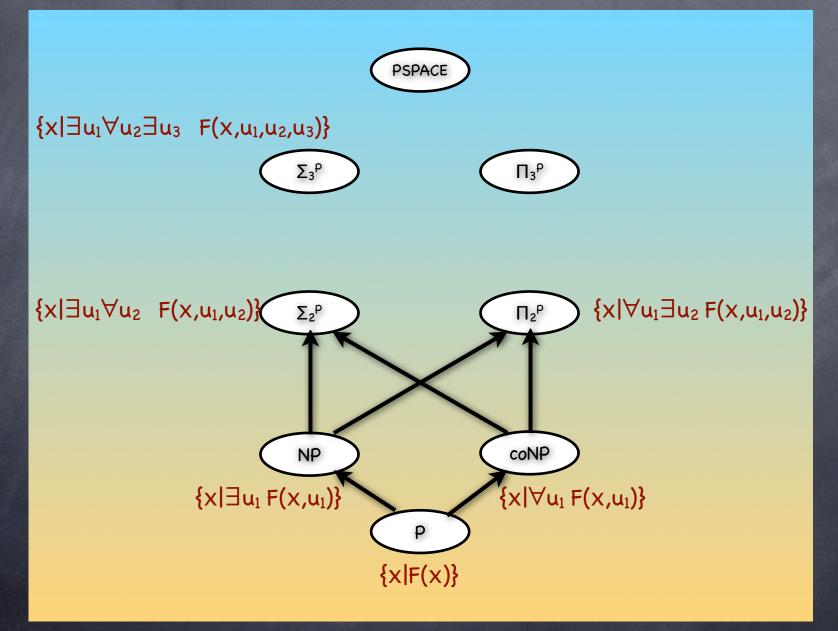
EXACT-CLIQUE (again!)

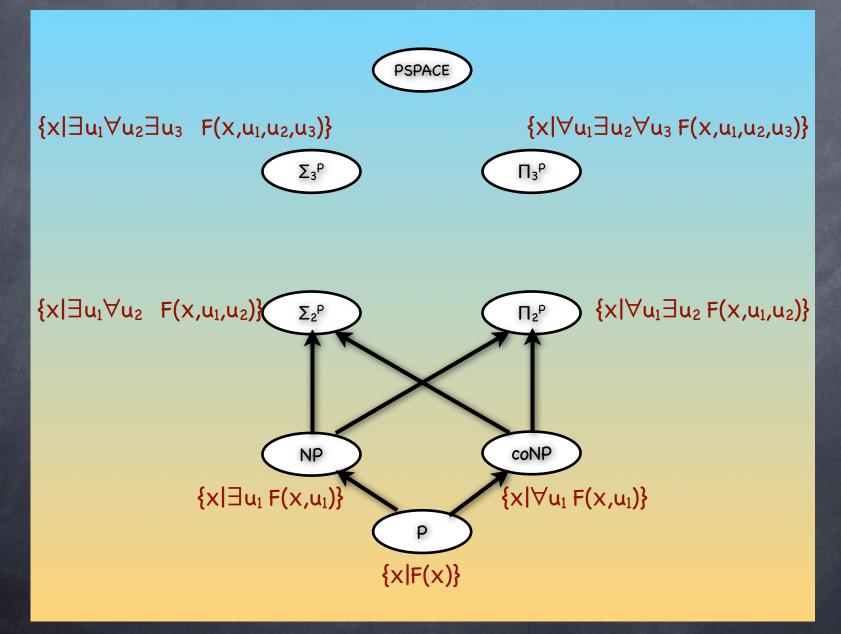
- G₁ G₁ is a clique in G of size k) and (∀G₂ if G₂ is a clique in G, it is of size at most k)
- In fact, two prenex form representations with one quantifier each
- MIN-CKT = { C| $\forall C'∃x C'=C \text{ or } |C'|>|C| \text{ or } C(x)≠C(x) }$

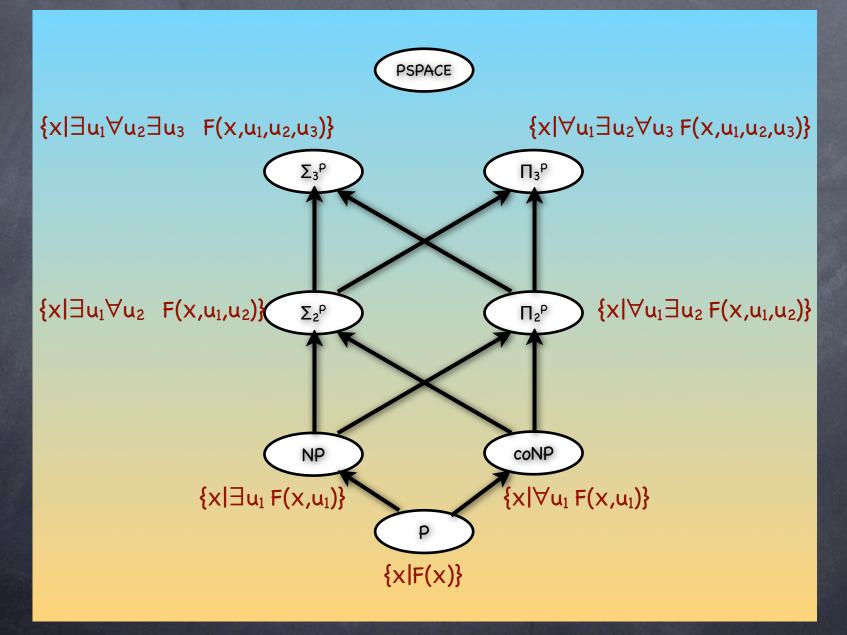












Σ_k^P and $\prod_{k \in \mathbb{Z}_k^{\mathcal{P}}} \mathbb{P}_{k \text{ odd/even}}$

Σ_k^P and $\prod_{\substack{k \in \mathbb{Z}_k^{\mathcal{N}} \\ k \text{ odd/even}}} \mathbb{P}_k^{\mathcal{N}}$

• Σ_k^P : Class of languages { x | $\exists u_1 \forall u_2 \dots Qu_k F(x, u_1, u_2, \dots, u_k)$ } • Π_k^P : Class of languages { x | $\forall u_1 \exists u_2 \dots Qu_k F(x, u_1, u_2, \dots, u_k)$ }

Σ_k^P: Class of languages { x | ∃u₁∀u₂ ...Qu_k F(x,u₁,u₂,...,u_k) }
 Π_k^P: Class of languages { x | ∀u₁∃u₂ ...Qu_k F(x,u₁,u₂,...,u_k) }
 F in P and |u_i| = poly(|x|)

• Σ_k^P : Class of languages { x | $\exists u_1 \forall u_2 \dots Qu_k F(x, u_1, u_2, \dots, u_k)$ } • Π_k^P : Class of languages { x | $\forall u_1 \exists u_2 \dots Qu_k F(x, u_1, u_2, \dots, u_k)$ } • F in P and $|u_i| = poly(|x|)$

k alternating quantifiers

- Π_k^P : Class of languages { x | $\forall u_1 \exists u_2 \dots Qu_k F(x, u_1, u_2, \dots, u_k)$ }
 - \odot F in P and $|u_i| = poly(|x|)$
- k alternating quantifiers
 - Note: can have more than k boolean variables, each ui being a string of boolean variables

- Π_k^P : Class of languages { x | $\forall u_1 \exists u_2 \dots Qu_k F(x, u_1, u_2, \dots, u_k)$ }
 - \odot F in P and $|u_i| = poly(|x|)$
- k alternating quantifiers
 - Note: can have more than k boolean variables, each ui being a string of boolean variables
 - k constant (independent of input size) for all languages, but number of variables need not be

- Π_k^P : Class of languages { x | $\forall u_1 \exists u_2 \dots Qu_k F(x, u_1, u_2, \dots, u_k)$ }
 - \odot F in P and $|u_i| = poly(|x|)$
- k alternating quantifiers
 - Note: can have more than k boolean variables, each ui being a string of boolean variables
 - k constant (independent of input size) for all languages, but number of variables need not be
- \odot P = Σ_0^P = Π_0^P , NP = Σ_1^P and co-NP = Π_1^P

 ${\it \circledcirc}$ $\Sigma_k{}^P$ has languages of the form

∑_k^P has languages of the form
 L = { x | ∃u₁∀u₂...Q_ku_k (x,u₁,u₂,...,u_k) ∈ F }, where F in P (and |u_i| = poly(|x|))

∑_k^ρ has languages of the form
 L = { x | ∃u₁∀u₂...Q_ku_k (x,u₁,u₂,...,u_k) ∈ F }, where F in P (and |u_i| = poly(|x|))
 L = { x | ∃u₁ (x,u₁) ∈ L' } where L' in Π_{k-1}^ρ

Or more generally, in terms of k-ith level

- Or more generally, in terms of k-ith level • L = { x | $\exists u_1 \forall u_2...Q_i u_i$ (x,u₁,u₂,...,u_i) \in L' } where L' in Π_{k-i}^P (odd i) or Σ_{k-i}^P (even i)

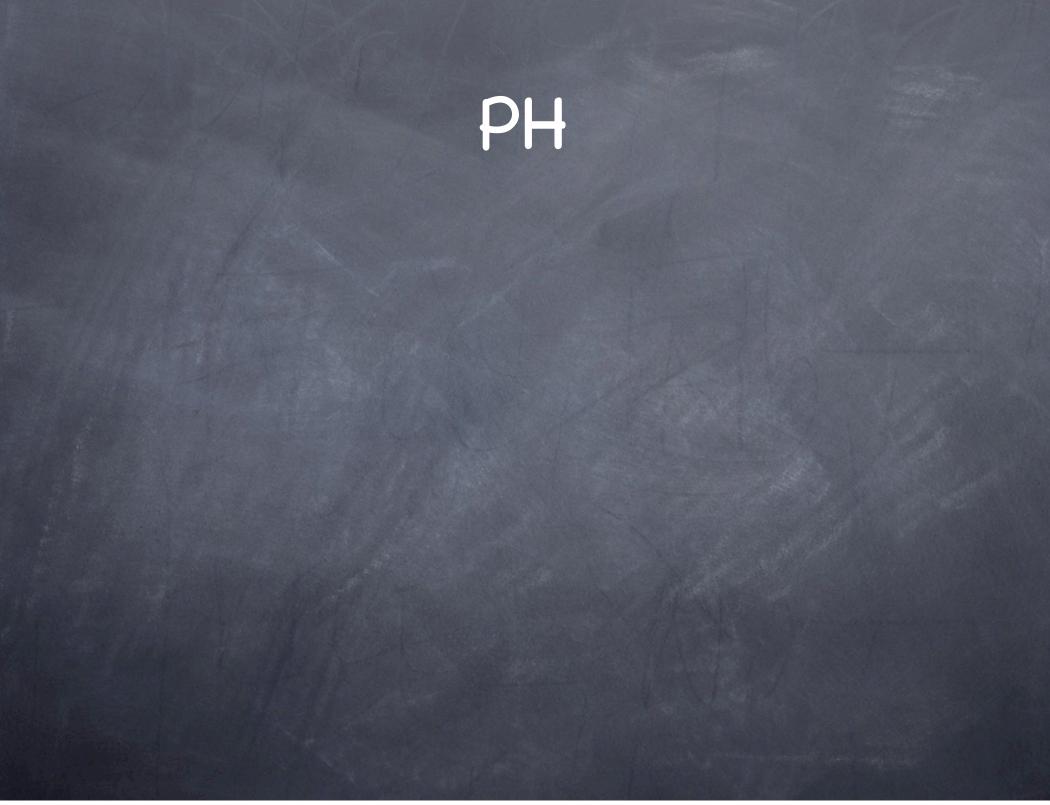
 \odot Σ_k^P has languages of the form

• Or more generally, in terms of k-ith level • L = { x | $\exists u_1 \forall u_2...Q_i u_i (x, u_1, u_2, ..., u_i) \in L'$ } where L' in Π_{k-i}^P (odd i) or Σ_{k-i}^P (even i)

Similarly, Π_k^P has languages of the form

 \odot Σ_k^P has languages of the form

Or more generally, in terms of k-ith level
 L = { x | ∃u₁∀u₂...Qiui (x,u₁,u₂,...,ui) ∈ L' } where L' in Π_{k-i}^P (odd i) or Σ_{k-i}^P (even i)
 Similarly, Π_k^P has languages of the form



\odot PH = $\bigcup_{k>0} \Sigma_k^P = \bigcup_{k>0} \Pi_k^P$

\odot PH = $\bigcup_{k>0} \Sigma_k^P = \bigcup_{k>0} \Pi_k^P$

\odot PH = $\bigcup_{k>0} \Sigma_k^P = \bigcup_{k>0} \Pi_k^P$

 \bigcirc PH \subseteq PSPACE

 ${\it \textcircled{O}} \ {\scriptstyle \sum_{k}}^{P} \subseteq {\it PSPACE}$

\odot PH = $\bigcup_{k>0} \Sigma_k^P = \bigcup_{k>0} \Pi_k^P$

 \bigcirc PH \subseteq PSPACE

 ${\mathfrak S} \Sigma_k{}^{\mathsf{P}} \subseteq \mathsf{PSPACE}$

We don't know if PH ⊊ PSPACE

◇ PH = $\bigcup_{k>0} \Sigma_k^P = \bigcup_{k>0} \Pi_k^P$ ◇ PH ⊆ PSPACE

 ${\it \textcircled{O}} \ {\scriptstyle \sum_{k}}^{P} \subseteq {\it PSPACE}$

 \odot PH = $\bigcup_{k>0} \Sigma_k^P = \bigcup_{k>0} \Pi_k^P$ $\Sigma_k^{P} \subseteq PSPACE$ We don't know if P ⊊ PH (or P ⊊ PSPACE) \oslash Believed that $\Sigma_k{}^{\rho} \subsetneq \Sigma_{k+1}{}^{\rho}$ and $\Pi_k{}^{\rho} \subsetneq \Pi_{k+1}{}^{\rho}$ for all k

Complete problems

For each level of PH (w.r.t Karp reductions)

For each level of PH (w.r.t Karp reductions)

𝔅 Σ_kSAT: True QBFs with k alternations, starting with ∃

For each level of PH (w.r.t Karp reductions)

𝔅 Σ_kSAT: True QBFs with k alternations, starting with ∃

 \odot Complete for Σ_k^P

For each level of PH (w.r.t Karp reductions)

 \odot Σ_k SAT: True QBFs with k alternations, starting with \exists

 \odot Complete for Σ_k^P

𝔅 Π_kSAT: True QBFs with k alternations, starting with ∀

For each level of PH (w.r.t Karp reductions)

𝔅 Σ_kSAT: True QBFs with k alternations, starting with ∃

 \odot Complete for Σ_k^P

𝔅 Π_kSAT: True QBFs with k alternations, starting with ∀

 \odot Complete for Π_k^P

For each level of PH (w.r.t Karp reductions)

• Σ_k SAT: True QBFs with k alternations, starting with \exists

 \odot Complete for Σ_k^P

𝔅 Π_kSAT: True QBFs with k alternations, starting with ∀

• Complete for Π_k^P

• Why? Consider odd k Σ_k^p and even k Π_k^p (ends with \exists)

For each level of PH (w.r.t Karp reductions)

• Σ_k SAT: True QBFs with k alternations, starting with \exists

 \odot Complete for Σ_k^P

𝔅 Π_kSAT: True QBFs with k alternations, starting with ∀

• Complete for Π_k^P

• Why? Consider odd k Σ_k^p and even k Π_k^p (ends with \exists)

- For each level of PH (w.r.t Karp reductions)
 - Σ_k SAT: True QBFs with k alternations, starting with \exists
 - \odot Complete for Σ_k^P
 - Π_k SAT: True QBFs with k alternations, starting with \forall 0
 - Complete for Π_k^P

Needed a 3

- in going from ckt to CNF Why? Consider odd k Σ_k^p and even k Π_k^p (ends with \exists) formula
 - Recall: F(X)=1 iff $CKT_F(X)=1$ iff $\exists w \varphi_F(X;w)=1$ 0

- For each level of PH (w.r.t Karp reductions)
 - - \odot Complete for Σ_k^P
 - 𝔅 Π_kSAT: True QBFs with k alternations, starting with ∀
 - \setminus \oslash Complete for Π_k^P

Needed a 3

formula

- in going from Why? Consider odd k Σ_k^p and even k Π_k^p (ends with \exists) ock to CNF
 - Recall: F(X)=1 iff $CKT_F(X)=1$ iff $\exists w \phi_F(X;w)=1$
 - Qu₁...∃u_k F(...,u_k) true iff Qu₁...∃u_k,w $φ_F(...,u_k,w)$ true

- For each level of PH (w.r.t Karp reductions)
 - Σ_k SAT: True QBFs with k alternations, starting with \exists
 - \odot Complete for Σ_k^P

formula

 Π_k SAT: True QBFs with k alternations, starting with \forall 0

For the other classes consider co-classes Needed a 3 • Complete for Π_k^P in going from Why? Consider odd k Σ_k^p and even k Π_k^p (ends with \exists) ckt to CNF

Recall: F(X)=1 iff $CKT_F(X)=1$ iff $\exists w \varphi_F(X;w)=1$ 0

Qu₁...∃u_k F(...,u_k) true iff Qu₁...∃u_k,w $φ_F(...,u_k,w)$ true

Complete problem for PH?

Complete problem for PH?

Then PH collapses to a finite level

Complete problem for PH?

Then PH collapses to a finite level

If L is PH-complete, L ∈ Σ_k^P for some k

Complete problem for PH?

Then PH collapses to a finite level

If L is PH-complete, L ∈ Σ_k^P for some k

 \odot But Σ_k^P downward closed under Karp reductions (Exercise)

Complete problem for PH?
 Then PH collapses to a finite level
 If L is PH-complete, L ∈ Σ_k^P for some k
 But Σ_k^P downward closed under Karp reductions (Exercise)
 So PH = Σ_k^P

Complete problem for PH?
 Then PH collapses to a finite level
 If L is PH-complete, L ∈ Σ_k^p for some k
 But Σ_k^p downward closed under Karp reductions (Exercise)
 So PH = Σ_k^p

• Corollary: If PH = PSPACE, then PH = PSPACE = Σ_k^p for some k

Complete problem for PH?

Then PH collapses to a finite level

If L is PH-complete, L ∈ Σ_k^P for some k

But Σ_k^{P} downward closed under Karp reductions (Exercise)
 So PH = Σ_k^{P}

• Corollary: If PH = PSPACE, then PH = PSPACE = Σ_k^p for some k • Because if PH = PSPACE, TQBF is PH-complete

Popular belief: All classes are distinct

Popular belief: All classes are distinct

• What happens if a level collapses on to the one below it (e.g. NP = P or Σ_2^P = NP)

Popular belief: All classes are distinct

• What happens if a level collapses on to the one below it (e.g. NP = P or Σ_2^P = NP)

• What happens if at a level co-classes collapse on to each other (e.g. NP = coNP or $\Sigma_2^P = \Pi_2^P$)

Popular belief: All classes are distinct

• What happens if a level collapses on to the one below it (e.g. NP = P or Σ_2^P = NP)

• What happens if at a level co-classes collapse on to each other (e.g. NP = coNP or $\Sigma_2^P = \Pi_2^P$)

Then entire PH collapses! (to that level)

 \odot If $\Sigma_k^{P} = \Pi_k^{P}$ for some k>0 then PH = $\Sigma_k^{P} = \Pi_k^{P}$

• If $\Sigma_k^P = \Pi_k^P$ for some k>0 then PH = $\Sigma_k^P = \Pi_k^P$ • e.g. If NP = co-NP, then PH = NP

• If $\Sigma_{k}^{P} = \Pi_{k}^{P}$ for some k>0 then PH = $\Sigma_{k}^{P} = \Pi_{k}^{P}$ • e.g. If NP = co-NP, then PH = NP • Will show that then $\Sigma_{k}^{P} = \Pi_{k}^{P} \Rightarrow \Sigma_{k+1}^{P} = \Pi_{k+1}^{P} = \Sigma_{k}^{P} = \Pi_{k}^{P}$

• If $\Sigma_k^P = \Pi_k^P$ for some k>0 then PH = $\Sigma_k^P = \Pi_k^P$ • e.g. If NP = co-NP, then PH = NP • Will show that then $\Sigma_k^P = \Pi_k^P \Rightarrow \Sigma_{k+1}^P = \Pi_{k+1}^P = \Sigma_k^P = \Pi_k^P$

a By induction PH = $\Sigma_k^P = \Pi_k^P$

If Σ_k^P = Π_k^P for some k>0 then PH = Σ_k^P = Π_k^P
e.g. If NP = co-NP, then PH = NP
Will show that then Σ_k^P = Π_k^P ⇒ Σ_{k+1}^P = Π_{k+1}^P = Σ_k^P = Π_k^P
By induction PH = Σ_k^P = Π_k^P

 $\ \ \, \odot$ Enough to show $\Sigma_k{}^P = \Pi_k{}^P \Rightarrow \Sigma_{k+1}{}^P \subseteq \Sigma_k{}^P$

 ${\it \circledcirc}$ Consider L in ${\Sigma_{k+1}}^{\mathsf{P}}$

Consider L in Σ_{k+1}^{P} L = {x | $\exists u_1 \forall u_2 ... Q_{k+1} u_{k+1} F(x, u_1, u_2, ..., u_{k+1})}$

Consider L in \$\Sigma_{k+1}^{P}\$
L = {x | \$\exists u_1\$ \forall u_2...Q_{k+1}u_{k+1}\$ F(x,u_1,u_2,...,u_{k+1})}\$
Define L' = {(x,u_1) | \$\forall u_2...Q_{k+1}u_{k+1}\$ F(x,u_1,u_2,...,u_{k+1})}\$

Consider L in Σ_{k+1}^P
 L = {x | ∃u₁∀u₂...Q_{k+1}u_{k+1} F(x,u₁,u₂,...,u_{k+1})}
 Define L' = {(x,u₁) | ∀u₂...Q_{k+1}u_{k+1} F(x,u₁,u₂,...,u_{k+1})}
 L = {x |∃u₁ (x,u₁) ∈ L' } and L' in Π_k^P

• Consider L in Σ_{k+1}^{P} • L = {x | $\exists u_1 \forall u_2 ... Q_{k+1} u_{k+1} F(x, u_1, u_2, ..., u_{k+1})$ } • Define L' = {(x, u_1) | $\forall u_2 ... Q_{k+1} u_{k+1} F(x, u_1, u_2, ..., u_{k+1})$ } • L = {x | $\exists u_1$ (x, u_1) \in L' } and L' in Π_k^{P} • $\Pi_k^{P} = \Sigma_k^{P} \Rightarrow$ L' in Σ_k^{P}

• Consider L in Σ_{k+1}^{P} • L = {x | $\exists u_1 \forall u_2 ... Q_{k+1} u_{k+1} F(x, u_1, u_2, ..., u_{k+1})$ } • Define L' = {(x, u_1) | $\forall u_2 ... Q_{k+1} u_{k+1} F(x, u_1, u_2, ..., u_{k+1})$ } • L = {x | $\exists u_1$ (x, u_1) \in L' } and L' in Π_k^{P} • $\Pi_k^{P} = \Sigma_k^{P} \Rightarrow$ L' in Σ_k^{P}

 $\Rightarrow L' = \{(x,u_1) \mid \exists v_2..Q'_{k+1}v_{k+1} F'(x,u_1,v_2,...,v_{k+1})\}$

If $\Sigma_k^P = \Pi_k^P (k>0)$

• Consider L in Σ_{k+1}^{P} Define L' = {(x,u_1) | $\forall u_2...Q_{k+1}u_{k+1} F(x,u_1,u_2,...,u_{k+1})}$ \oslash L = {x | $\exists u_1$ (x,u_1) \in L' } and L' in Π_k^P $\odot \Pi_k^{\rho} = \Sigma_k^{\rho} \Rightarrow L' \text{ in } \Sigma_k^{\rho}$ $\Rightarrow L' = \{(x,u_1) \mid \exists v_2...Q'_{k+1}v_{k+1} F'(x,u_1,v_2,...,v_{k+1})\}$ $\Rightarrow L = \{ x \mid \exists u_1 \exists v_2 ... Q'_{k+1} v_{k+1} F'(x, u_1, v_2, ..., v_{k+1}) \}$ in Σ_k^P

If $\Sigma_k^P = \Pi_k^P (k>0)$

• Consider L in Σ_{k+1}^{P} Define L' = {(x,u_1) | $\forall u_2...Q_{k+1}u_{k+1} F(x,u_1,u_2,...,u_{k+1})}$ \oslash L = {x | $\exists u_1$ (x,u_1) \in L' } and L' in Π_k^P $\odot \Pi_k^{\rho} = \Sigma_k^{\rho} \Rightarrow L' \text{ in } \Sigma_k^{\rho}$ $\Rightarrow L' = \{(x,u_1) \mid \exists v_2...Q'_{k+1}v_{k+1} F'(x,u_1,v_2,...,v_{k+1})\}$ $\Rightarrow L = \{ x \mid \exists u_1 \exists v_2 ... Q'_{k+1} v_{k+1} F'(x, u_1, v_2, ..., v_{k+1}) \}$ in Σ_k^P

Solution If Σ_{k+1}^P = Σ_k^P (equivalently Π_{k+1}^P = Π_k^P) then PH = Σ_k^P

If $\Sigma_{k+1}^{P} = \Sigma_{k}^{P}$ (equivalently $\Pi_{k+1}^{P} = \Pi_{k}^{P}$) then PH = Σ_{k}^{P} Because then $\Pi_{k}^{P} \subseteq \Sigma_{k+1}^{P} = \Sigma_{k}^{P}$

• If $\Sigma_{k+1}^{P} = \Sigma_{k}^{P}$ (equivalently $\Pi_{k+1}^{P} = \Pi_{k}^{P}$) then PH = Σ_{k}^{P} • Because then $\Pi_{k}^{P} \subseteq \Sigma_{k+1}^{P} = \Sigma_{k}^{P}$

So for k>0, implies PH = Σ_k^P

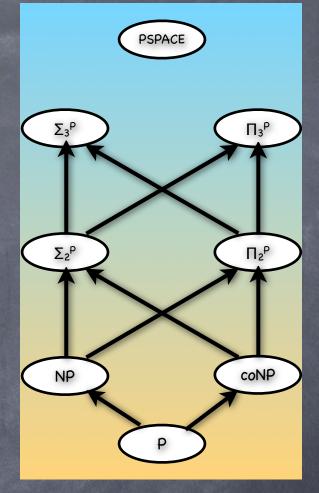
• If $\Sigma_{k+1}^{P} = \Sigma_{k}^{P}$ (equivalently $\Pi_{k+1}^{P} = \Pi_{k}^{P}$) then PH = Σ_{k}^{P} • Because then $\Pi_{k}^{P} \subseteq \Sigma_{k+1}^{P} = \Sigma_{k}^{P}$

So for k>0, implies PH = Σ_k^P Holds for k=0 too: i.e., NP = P \Rightarrow PH = P

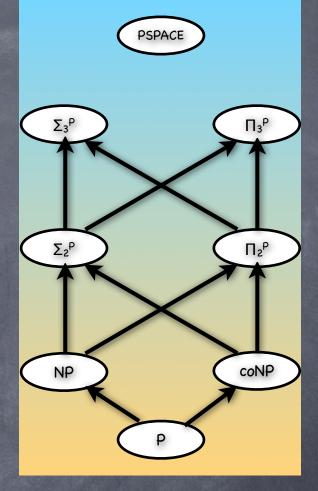
• If $\Sigma_{k+1}^{P} = \Sigma_{k}^{P}$ (equivalently $\Pi_{k+1}^{P} = \Pi_{k}^{P}$) then PH = Σ_{k}^{P} • Because then $\Pi_{k}^{P} \subseteq \Sigma_{k+1}^{P} = \Sigma_{k}^{P}$

So for k>0, implies PH = Σ_k^P Holds for k=0 too: i.e., NP = P \Rightarrow PH = P

 \bigcirc NP = P \Rightarrow NP = co-NP \Rightarrow PH = NP (= P)

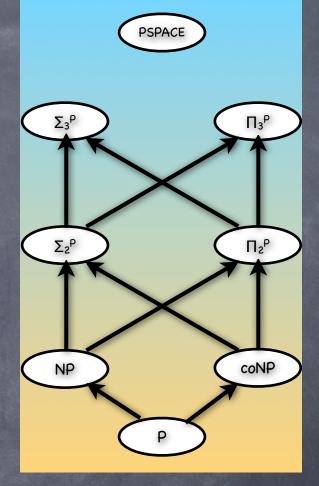


Polynomial Hierarchy



Polynomial Hierarchy

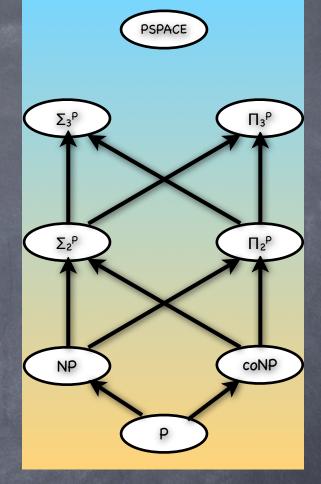
 $\odot \Sigma_k^{P}$, Π_k^{P} , PH



Polynomial Hierarchy

Φ Σ_k^P, Π_k^P, PH

Collapse of Polynomial Hierarchy

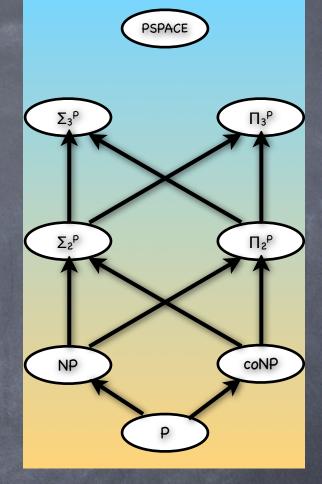


Polynomial Hierarchy

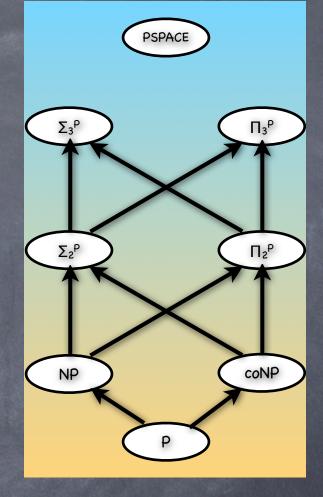
 $\odot \Sigma_k^P$, Π_k^P , PH

Collapse of Polynomial Hierarchy

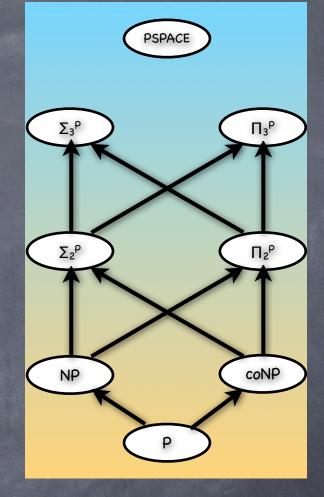
Believed not to collapse



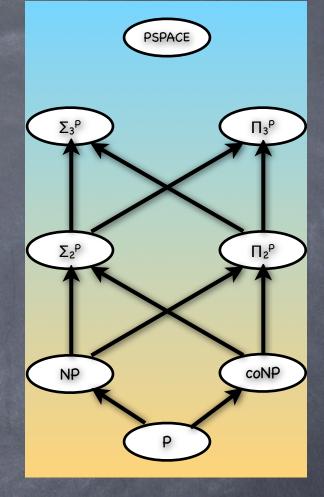
- Polynomial Hierarchy
 - $Φ Σ_k^P, Π_k^P, PH$
- Collapse of Polynomial Hierarchy
 - Believed not to collapse
 - at least not at the lower levels



- Polynomial Hierarchy
 - $\odot \Sigma_k^P$, Π_k^P , PH
- Collapse of Polynomial Hierarchy
 - Believed not to collapse
 - at least not at the lower levels
 - If $\Sigma_k^P = \Pi_k^P$ for some k>0 then PH = $\Sigma_k^P = \Pi_k^P$



- Polynomial Hierarchy
 - \odot Σ_k^P , Π_k^P , PH
- Collapse of Polynomial Hierarchy
 - Believed not to collapse
 - at least not at the lower levels
 - If $\Sigma_k^P = \Pi_k^P$ for some k>0 then PH = $\Sigma_k^P = \Pi_k^P$
 - \odot If $\Sigma_{k+1}^{P} = \Sigma_{k}^{P}$ (i.e., $\Pi_{k+1}^{P} = \Pi_{k}^{P}$) then PH = Σ_{k}^{P}



- Polynomial Hierarchy
 - $\odot \Sigma_k^{P}$, Π_k^{P} , PH
- Collapse of Polynomial Hierarchy
 - Believed not to collapse
 - at least not at the lower levels
 - If $\Sigma_k^P = \Pi_k^P$ for some k>0 then PH = $\Sigma_k^P = \Pi_k^P$
 - If $\Sigma_{k+1}^{P} = \Sigma_{k}^{P}$ (i.e., $\Pi_{k+1}^{P} = \Pi_{k}^{P}$) then PH = Σ_{k}^{P}

Coming up: More ways to look at the polynomial hierarchy

