
Computational 
Complexity

Lecture 7
Polynomial Hierarchy

Charting (some of) the space between P and PSPACE
(where much of the action happens)
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Between P and PSPACE
Recall NP

Class of languages { x | ∃u1  F(x,u1) }

Where F in P: i.e., language { x | F(x) } is in P
And |u1| < poly(|x|) for some polynomial

Recall co-NP

Class of languages { x | ∀u1  F(x,u1) }

How about languages { x | ∃u1∀u2...  F(x,u1,u2,...) }

Such languages in PSPACE: same way TQBF is   (Recall?)
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Σ2P
Class of languages { x | ∃u1∀u2 F(x,u1,u2) } 

F in P and |ui| = poly(|x|)

e.g.: Two move QBF games, Alice moving first

Does Alice have a move such that for all moves of the 
adversary, Alice wins

Is “∃u1 ∀u2 φ(u1,u2)” true?

Seems inherently more complex than deciding  ∃u1 φ(u1) or 

∀u1 φ(u1)

F(φ,u1,u2) = 
φ(u1,u2)
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Σ2P

Another example: EXACT-CLIQUE

EXACT-CLIQUE = { (G,k) | largest clique in G is of size k(n) }

G has a clique of size k

And all cliques in G have size at most k

∃G1 ∀G2  G1 is a clique in G of size k and if G2 is a clique in 

G, it is of size at most k
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Π2P

Π2P = co-Σ2P

{ x | ¬ ( ∃u1∀u2 F’(x,u1,u2) ) } 

{ x | ∀u1∃u2 F(x,u1,u2)) }

e.g.: Two-move QBF game, Alice moving second

EXACT-CLIQUE (again!)
(∃G1  G1 is a clique in G of size k) and (∀G2 if G2 is 
a clique in G, it is of size at most k)

In fact, two prenex form representations with one 
quantifier each

MIN-CKT = { C| ∀C’∃x C’=C or |C’|>|C| or C(x)≠C(x) }

6



Between P and PSPACE

P

PSPACE

NP coNP

{x|F(x)}

{x|∃u1 F(x,u1)}

Σ2P Π2P

{x|∀u1 F(x,u1)}

{x|∃u1∀u2   F(x,u1,u2)} {x|∀u1∃u2 F(x,u1,u2)}

7



Between P and PSPACE

P

PSPACE

NP coNP

{x|F(x)}

{x|∃u1 F(x,u1)}

Σ2P Π2P

Σ3P

{x|∀u1 F(x,u1)}

{x|∃u1∀u2   F(x,u1,u2)} {x|∀u1∃u2 F(x,u1,u2)}

7



Between P and PSPACE

P

PSPACE

NP coNP

{x|F(x)}

{x|∃u1 F(x,u1)}

Σ2P Π2P

Σ3P Π3P

{x|∀u1 F(x,u1)}

{x|∃u1∀u2   F(x,u1,u2)} {x|∀u1∃u2 F(x,u1,u2)}

7



Between P and PSPACE

P

PSPACE

NP coNP

{x|F(x)}

{x|∃u1 F(x,u1)}

Σ2P Π2P

Σ3P Π3P

{x|∃u1∀u2∃u3   F(x,u1,u2,u3)}

{x|∀u1 F(x,u1)}

{x|∃u1∀u2   F(x,u1,u2)} {x|∀u1∃u2 F(x,u1,u2)}

7



Between P and PSPACE

P

PSPACE

NP coNP

{x|F(x)}

{x|∃u1 F(x,u1)}

Σ2P Π2P

Σ3P Π3P

{x|∃u1∀u2∃u3   F(x,u1,u2,u3)} {x|∀u1∃u2∀u3 F(x,u1,u2,u3)}

{x|∀u1 F(x,u1)}

{x|∃u1∀u2   F(x,u1,u2)} {x|∀u1∃u2 F(x,u1,u2)}

7



Between P and PSPACE

P

PSPACE

NP coNP

{x|F(x)}

{x|∃u1 F(x,u1)}

Σ2P Π2P

Σ3P Π3P

{x|∃u1∀u2∃u3   F(x,u1,u2,u3)} {x|∀u1∃u2∀u3 F(x,u1,u2,u3)}

{x|∀u1 F(x,u1)}

{x|∃u1∀u2   F(x,u1,u2)} {x|∀u1∃u2 F(x,u1,u2)}

7



ΣkP and ΠkP

8



ΣkP and ΠkP

ΣkP : Class of languages { x | ∃u1∀u2 ...Quk F(x,u1,u2,...,uk) } 

8



ΣkP and ΠkP

ΣkP : Class of languages { x | ∃u1∀u2 ...Quk F(x,u1,u2,...,uk) } 

∃ or ∀
 base

d on 

k odd
/even

8



ΣkP and ΠkP

ΣkP : Class of languages { x | ∃u1∀u2 ...Quk F(x,u1,u2,...,uk) } 

ΠkP : Class of languages { x | ∀u1∃u2 ...Quk F(x,u1,u2,...,uk) }

∃ or ∀
 base

d on 

k odd
/even

8



ΣkP and ΠkP

ΣkP : Class of languages { x | ∃u1∀u2 ...Quk F(x,u1,u2,...,uk) } 

ΠkP : Class of languages { x | ∀u1∃u2 ...Quk F(x,u1,u2,...,uk) }

F in P and |ui| = poly(|x|) 

∃ or ∀
 base

d on 

k odd
/even

8



ΣkP and ΠkP

ΣkP : Class of languages { x | ∃u1∀u2 ...Quk F(x,u1,u2,...,uk) } 

ΠkP : Class of languages { x | ∀u1∃u2 ...Quk F(x,u1,u2,...,uk) }

F in P and |ui| = poly(|x|) 

k alternating quantifiers

∃ or ∀
 base

d on 

k odd
/even

8



ΣkP and ΠkP

ΣkP : Class of languages { x | ∃u1∀u2 ...Quk F(x,u1,u2,...,uk) } 

ΠkP : Class of languages { x | ∀u1∃u2 ...Quk F(x,u1,u2,...,uk) }

F in P and |ui| = poly(|x|) 

k alternating quantifiers

Note: can have more than k boolean variables, each ui 
being a string of boolean variables

∃ or ∀
 base

d on 

k odd
/even

8



ΣkP and ΠkP

ΣkP : Class of languages { x | ∃u1∀u2 ...Quk F(x,u1,u2,...,uk) } 

ΠkP : Class of languages { x | ∀u1∃u2 ...Quk F(x,u1,u2,...,uk) }

F in P and |ui| = poly(|x|) 

k alternating quantifiers

Note: can have more than k boolean variables, each ui 
being a string of boolean variables

k constant (independent of input size) for all languages, 
but number of variables need not be

∃ or ∀
 base

d on 

k odd
/even

8



ΣkP and ΠkP

ΣkP : Class of languages { x | ∃u1∀u2 ...Quk F(x,u1,u2,...,uk) } 

ΠkP : Class of languages { x | ∀u1∃u2 ...Quk F(x,u1,u2,...,uk) }

F in P and |ui| = poly(|x|) 

k alternating quantifiers

Note: can have more than k boolean variables, each ui 
being a string of boolean variables

k constant (independent of input size) for all languages, 
but number of variables need not be

P = Σ0P = Π0P , NP = Σ1P and co-NP =  Π1P

∃ or ∀
 base

d on 

k odd
/even
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(and |ui| = poly(|x|) )
L = { x | ∃u1 (x,u1) ∈ L’ } where L’ in Πk-1P

Or more generally, in terms of k-ith level
L = { x | ∃u1∀u2...Qiui (x,u1,u2,...,ui) ∈ L’ } where L’ in Πk-iP 

(odd i) or Σk-iP (even i)
Similarly, ΠkP has languages of the form

L = { x | ∀u1∃u2...Qiui (x,u1,u2,...,ui) ∈ L’ } where L’ in Σk-iP (odd i) 

or Πk-iP (even i)
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PH

PH =  ∪k>0 ΣkP  =  ∪k>0 ΠkP

PH ⊆ PSPACE

ΣkP ⊆ PSPACE

We don’t know if PH ⊊ PSPACE

We don’t know if P ⊊ PH  (or P ⊊ PSPACE)

Believed that ΣkP ⊊ Σk+1P and ΠkP ⊊ Πk+1P for all k
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Complete for ΠkP

Why? Consider odd k ΣkP and even k ΠkP (ends with ∃)

Recall: F(X)=1 iff CKTF(X)=1 iff ∃w φF(X;w)=1

Qu1...∃uk F(...,uk) true iff Qu1...∃uk,w φF(...,uk,w) true

Needed a
 ∃ 

in going
 from 

ckt to C
NF 

formula

For the 
other cl

asses 

consider
 co-clas

ses
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Complete problems

Complete problem for PH?

Then PH collapses to a finite level

If L is PH-complete, L ∈ ΣkP for some k

But ΣkP downward closed under Karp reductions (Exercise)

So PH = ΣkP

Corollary: If PH = PSPACE, then PH = PSPACE = ΣkP for some k

Because if PH = PSPACE, TQBF is PH-complete
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Ways PH can collapse

Popular belief: All classes are distinct
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