
Computational
Complexity

Lecture 6
NL-Completeness and NL=co-NL

1

Story, so far

P

PSPACE

EXP

NP

NEXP

L

NL

NPSPACE

2

Story, so far

P

PSPACE

EXP

NP

NEXP

L

NL

NPSPACE

Time/Space Hierarchies

2

Story, so far

P

PSPACE

EXP

NP

NEXP

L

NL

NPSPACE

Time/Space Hierarchies

Relations across complexity measures

2

Story, so far

P

PSPACE

EXP

NP

NEXP

L

NL

NPSPACE

Time/Space Hierarchies

Relations across complexity measures

SAT is NP-complete, TQBF is
PSPACE-complete

2

Story, so far

P

PSPACE

EXP

NP

NEXP

L

NL

NPSPACE

Time/Space Hierarchies

Relations across complexity measures

SAT is NP-complete, TQBF is
PSPACE-complete

Today

2

Story, so far

P

PSPACE

EXP

NP

NEXP

L

NL

NPSPACE

Time/Space Hierarchies

Relations across complexity measures

SAT is NP-complete, TQBF is
PSPACE-complete

Today

Log-space reductions

2

Story, so far

P

PSPACE

EXP

NP

NEXP

L

NL

NPSPACE

Time/Space Hierarchies

Relations across complexity measures

SAT is NP-complete, TQBF is
PSPACE-complete

Today

Log-space reductions

An NL-complete language:
PATH

2

Story, so far

P

PSPACE

EXP

NP

NEXP

L

NL

NPSPACE

Time/Space Hierarchies

Relations across complexity measures

SAT is NP-complete, TQBF is
PSPACE-complete

Today

Log-space reductions

An NL-complete language:
PATH

NSPACE = co-NSPACE (one
less kind to worry about!)

2

NL-completeness

3

NL-completeness

For any two (non-trivial) languages L1, L2 in P, L2 ≤p L1

3

NL-completeness

For any two (non-trivial) languages L1, L2 in P, L2 ≤p L1

So if X ⊆ P, all languages in X are X-complete (w.r.t ≤p)

3

NL-completeness

For any two (non-trivial) languages L1, L2 in P, L2 ≤p L1

So if X ⊆ P, all languages in X are X-complete (w.r.t ≤p)

Need a tighter notion of reduction to capture “(almost) as
hard as it gets” within X

3

Log-Space Reduction

4

Log-Space Reduction
Many-one reduction: L2 ≤L L1 if there is a TM, M which maps its
input x to f(x) such that

4

Log-Space Reduction
Many-one reduction: L2 ≤L L1 if there is a TM, M which maps its
input x to f(x) such that

x ∈ L2 ⇒ f(x) ∈ L1 and x ∉ L2 ⇒ f(x) ∉ L1

4

Log-Space Reduction
Many-one reduction: L2 ≤L L1 if there is a TM, M which maps its
input x to f(x) such that

x ∈ L2 ⇒ f(x) ∈ L1 and x ∉ L2 ⇒ f(x) ∉ L1

M uses only O(log|x|) work-tape

4

Log-Space Reduction
Many-one reduction: L2 ≤L L1 if there is a TM, M which maps its
input x to f(x) such that

x ∈ L2 ⇒ f(x) ∈ L1 and x ∉ L2 ⇒ f(x) ∉ L1

M uses only O(log|x|) work-tape

Is allowed to have a write-only output tape, because |f(x)|
may be poly(|x|)

4

Log-Space Reduction
Many-one reduction: L2 ≤L L1 if there is a TM, M which maps its
input x to f(x) such that

x ∈ L2 ⇒ f(x) ∈ L1 and x ∉ L2 ⇒ f(x) ∉ L1

M uses only O(log|x|) work-tape

Is allowed to have a write-only output tape, because |f(x)|
may be poly(|x|)

Equivalently: f “implicitly computable” in log-space

4

Log-Space Reduction
Many-one reduction: L2 ≤L L1 if there is a TM, M which maps its
input x to f(x) such that

x ∈ L2 ⇒ f(x) ∈ L1 and x ∉ L2 ⇒ f(x) ∉ L1

M uses only O(log|x|) work-tape

Is allowed to have a write-only output tape, because |f(x)|
may be poly(|x|)

Equivalently: f “implicitly computable” in log-space

A log-space machine M’ to output the bit fi(x) on input (x,i)

4

Log-Space Reduction
Many-one reduction: L2 ≤L L1 if there is a TM, M which maps its
input x to f(x) such that

x ∈ L2 ⇒ f(x) ∈ L1 and x ∉ L2 ⇒ f(x) ∉ L1

M uses only O(log|x|) work-tape

Is allowed to have a write-only output tape, because |f(x)|
may be poly(|x|)

Equivalently: f “implicitly computable” in log-space

A log-space machine M’ to output the bit fi(x) on input (x,i)

M’ from M: to keep a counter and output only the ith bit

4

Log-Space Reduction
Many-one reduction: L2 ≤L L1 if there is a TM, M which maps its
input x to f(x) such that

x ∈ L2 ⇒ f(x) ∈ L1 and x ∉ L2 ⇒ f(x) ∉ L1

M uses only O(log|x|) work-tape

Is allowed to have a write-only output tape, because |f(x)|
may be poly(|x|)

Equivalently: f “implicitly computable” in log-space

A log-space machine M’ to output the bit fi(x) on input (x,i)

M’ from M: to keep a counter and output only the ith bit

M from M’: keep a counter and repeatedly call M on each i
4

Log-Space Reduction

5

Log-space reductions “compose”: L2 ≤L L1 ≤L L0 ⇒ L2 ≤L L0

Log-Space Reduction

5

Log-space reductions “compose”: L2 ≤L L1 ≤L L0 ⇒ L2 ≤L L0

Given M2-1 and M1-0 build M2-0:

Log-Space Reduction

5

Log-space reductions “compose”: L2 ≤L L1 ≤L L0 ⇒ L2 ≤L L0

Given M2-1 and M1-0 build M2-0:

Start running M1-0 without input. When it wants to read
ith bit of input, run M2-1 (with a counter) to get the ith
bit of its output

Log-Space Reduction

5

Log-space reductions “compose”: L2 ≤L L1 ≤L L0 ⇒ L2 ≤L L0

Given M2-1 and M1-0 build M2-0:

Start running M1-0 without input. When it wants to read
ith bit of input, run M2-1 (with a counter) to get the ith
bit of its output

Space needed: O(log(|f(x)|) + log(|x|)) = O(log(|x|)),
because |f(x)| is poly(|x|)

Log-Space Reduction

5

Log-space reductions “compose”: L2 ≤L L1 ≤L L0 ⇒ L2 ≤L L0

Given M2-1 and M1-0 build M2-0:

Start running M1-0 without input. When it wants to read
ith bit of input, run M2-1 (with a counter) to get the ith
bit of its output

Space needed: O(log(|f(x)|) + log(|x|)) = O(log(|x|)),
because |f(x)| is poly(|x|)

Similarly, L (the class of problems decidable in log-space) is
downward closed under log-space reductions

Log-Space Reduction

5

Log-space reductions “compose”: L2 ≤L L1 ≤L L0 ⇒ L2 ≤L L0

Given M2-1 and M1-0 build M2-0:

Start running M1-0 without input. When it wants to read
ith bit of input, run M2-1 (with a counter) to get the ith
bit of its output

Space needed: O(log(|f(x)|) + log(|x|)) = O(log(|x|)),
because |f(x)| is poly(|x|)

Similarly, L (the class of problems decidable in log-space) is
downward closed under log-space reductions

L2 ≤L L1 ∈ L ⇒ L2 ∈ L

Log-Space Reduction

5

NL-completeness

6

NL-completeness

L0 is NL-Hard if for all L1 in NL, L1 ≤L L0

6

NL-completeness

L0 is NL-Hard if for all L1 in NL, L1 ≤L L0

L0 is NL-complete if it is NL-hard and is in NL

6

NL-completeness

L0 is NL-Hard if for all L1 in NL, L1 ≤L L0

L0 is NL-complete if it is NL-hard and is in NL

Can construct trivial NL-complete language

6

NL-completeness

L0 is NL-Hard if for all L1 in NL, L1 ≤L L0

L0 is NL-complete if it is NL-hard and is in NL

Can construct trivial NL-complete language

{ (M,x,1n,1s) | ∃w, |w|<n, M accepts (x;w) in space

log(s) } (where M takes w in a read-once tape)

6

NL-completeness

L0 is NL-Hard if for all L1 in NL, L1 ≤L L0

L0 is NL-complete if it is NL-hard and is in NL

Can construct trivial NL-complete language

{ (M,x,1n,1s) | ∃w, |w|<n, M accepts (x;w) in space

log(s) } (where M takes w in a read-once tape)

Interesting NLC language: PATH

6

Directed Path

7

Directed Path
PATH = {(G,s,t) | G a directed graph with a path from s to t}

7

Directed Path
PATH = {(G,s,t) | G a directed graph with a path from s to t}

G using some representation, of size say, n2 (n=#vertices)

7

Directed Path
PATH = {(G,s,t) | G a directed graph with a path from s to t}

G using some representation, of size say, n2 (n=#vertices)

Such that, if two vertices x,y on work-tape, can
check for edge (x,y)

7

Directed Path
PATH = {(G,s,t) | G a directed graph with a path from s to t}

G using some representation, of size say, n2 (n=#vertices)

Such that, if two vertices x,y on work-tape, can
check for edge (x,y)

PATH in NL

7

Directed Path
PATH = {(G,s,t) | G a directed graph with a path from s to t}

G using some representation, of size say, n2 (n=#vertices)

Such that, if two vertices x,y on work-tape, can
check for edge (x,y)

PATH in NL

Certificate w is the path (poly(n) long certificate)

7

Directed Path
PATH = {(G,s,t) | G a directed graph with a path from s to t}

G using some representation, of size say, n2 (n=#vertices)

Such that, if two vertices x,y on work-tape, can
check for edge (x,y)

PATH in NL

Certificate w is the path (poly(n) long certificate)

Need to verify adjacent vertices are connected: need
keep only two vertices on the work-tape at a time

7

Directed Path
PATH = {(G,s,t) | G a directed graph with a path from s to t}

G using some representation, of size say, n2 (n=#vertices)

Such that, if two vertices x,y on work-tape, can
check for edge (x,y)

PATH in NL

Certificate w is the path (poly(n) long certificate)

Need to verify adjacent vertices are connected: need
keep only two vertices on the work-tape at a time

Note: w is scanned only once

7

Seen PATH before?

8

Seen PATH before?

In proving NSPACE(S(n)) ⊆ DTIME(2O(S(n))) (e.g. NL ⊆ P)

8

Seen PATH before?

In proving NSPACE(S(n)) ⊆ DTIME(2O(S(n))) (e.g. NL ⊆ P)

Every problem in NL Karp reduces to PATH

8

Seen PATH before?

In proving NSPACE(S(n)) ⊆ DTIME(2O(S(n))) (e.g. NL ⊆ P)

Every problem in NL Karp reduces to PATH

PATH ∈ P

8

Seen PATH before?

In proving NSPACE(S(n)) ⊆ DTIME(2O(S(n))) (e.g. NL ⊆ P)

Every problem in NL Karp reduces to PATH

PATH ∈ P

In Savitch’s theorem

8

Seen PATH before?

In proving NSPACE(S(n)) ⊆ DTIME(2O(S(n))) (e.g. NL ⊆ P)

Every problem in NL Karp reduces to PATH

PATH ∈ P

In Savitch’s theorem

PATH ∈ DSPACE(log2(n))

8

PATH is NL-complete

9

PATH is NL-complete
Log-space reducing any NL language L1 to PATH

9

PATH is NL-complete
Log-space reducing any NL language L1 to PATH

Given input x, output (G,s,t) where G is the configuration graph
G(M,x), where M is the NTM accepting L1, and s,t are start,
accept configurations

9

PATH is NL-complete
Log-space reducing any NL language L1 to PATH

Given input x, output (G,s,t) where G is the configuration graph
G(M,x), where M is the NTM accepting L1, and s,t are start,
accept configurations

Outputting G: Cycle through all pairs of configurations,
checking if there is an edge between them, outputting 0 or 1
in the adjacency matrix

9

PATH is NL-complete
Log-space reducing any NL language L1 to PATH

Given input x, output (G,s,t) where G is the configuration graph
G(M,x), where M is the NTM accepting L1, and s,t are start,
accept configurations

Outputting G: Cycle through all pairs of configurations,
checking if there is an edge between them, outputting 0 or 1
in the adjacency matrix

Edge checking done using M’s transition table

9

PATH is NL-complete
Log-space reducing any NL language L1 to PATH

Given input x, output (G,s,t) where G is the configuration graph
G(M,x), where M is the NTM accepting L1, and s,t are start,
accept configurations

Outputting G: Cycle through all pairs of configurations,
checking if there is an edge between them, outputting 0 or 1
in the adjacency matrix

Edge checking done using M’s transition table

Need to store only two configurations at a time in the
work-tape

9

PATH is NL-complete
Log-space reducing any NL language L1 to PATH

Given input x, output (G,s,t) where G is the configuration graph
G(M,x), where M is the NTM accepting L1, and s,t are start,
accept configurations

Outputting G: Cycle through all pairs of configurations,
checking if there is an edge between them, outputting 0 or 1
in the adjacency matrix

Edge checking done using M’s transition table

Need to store only two configurations at a time in the
work-tape

Note: in fact O(S)-space reduction from L ∈ NSPACE(S) to PATH
9

If PATH ∈ co-NL

10

If PATH ∈ co-NL

If PATH ∈ co-NL, then co-NL ⊆ NL

10

If PATH ∈ co-NL

If PATH ∈ co-NL, then co-NL ⊆ NL

For any L ∈ co-NL, we have L ≤L PATHc (as Lc ≤L PATH), and

if PATHc ∈ NL, then L ∈ NL (NL is downward closed under ≤L)

10

If PATH ∈ co-NL

If PATH ∈ co-NL, then co-NL ⊆ NL

For any L ∈ co-NL, we have L ≤L PATHc (as Lc ≤L PATH), and

if PATHc ∈ NL, then L ∈ NL (NL is downward closed under ≤L)

Implies co-NL = NL (why?)

10

If PATH ∈ co-NL

If PATH ∈ co-NL, then co-NL ⊆ NL

For any L ∈ co-NL, we have L ≤L PATHc (as Lc ≤L PATH), and

if PATHc ∈ NL, then L ∈ NL (NL is downward closed under ≤L)

Implies co-NL = NL (why?)

If Y ⊆ X, then co-Y ⊆ co-X. Consider X = NL, Y = co-NL.

10

If PATH ∈ co-NL

11

If PATH ∈ co-NL
In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)

11

If PATH ∈ co-NL
In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)

Recall: O(S)-space reduction from L ∈ NSPACE(S) to PATH

11

If PATH ∈ co-NL
In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)

Recall: O(S)-space reduction from L ∈ NSPACE(S) to PATH

i.e., from L’ ∈ co-NSPACE(S) to PATHc

11

If PATH ∈ co-NL
In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)

Recall: O(S)-space reduction from L ∈ NSPACE(S) to PATH

i.e., from L’ ∈ co-NSPACE(S) to PATHc

Size of the new instance is at most N = 2O(|S|)

11

If PATH ∈ co-NL
In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)

Recall: O(S)-space reduction from L ∈ NSPACE(S) to PATH

i.e., from L’ ∈ co-NSPACE(S) to PATHc

Size of the new instance is at most N = 2O(|S|)

PATHc ∈ NL implies an NTM that decides if the instance is in

PATHc in NSPACE(log N) = NSPACE(S)

11

If PATH ∈ co-NL
In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)

Recall: O(S)-space reduction from L ∈ NSPACE(S) to PATH

i.e., from L’ ∈ co-NSPACE(S) to PATHc

Size of the new instance is at most N = 2O(|S|)

PATHc ∈ NL implies an NTM that decides if the instance is in

PATHc in NSPACE(log N) = NSPACE(S)

Then L’ ∈ co-NSPACE(S) is also in NSPACE(S), by composing

space-bounded computations. So, co-NSPACE(S) ⊆ NSPACE(S)

11

If PATH ∈ co-NL
In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)

Recall: O(S)-space reduction from L ∈ NSPACE(S) to PATH

i.e., from L’ ∈ co-NSPACE(S) to PATHc

Size of the new instance is at most N = 2O(|S|)

PATHc ∈ NL implies an NTM that decides if the instance is in

PATHc in NSPACE(log N) = NSPACE(S)

Then L’ ∈ co-NSPACE(S) is also in NSPACE(S), by composing

space-bounded computations. So, co-NSPACE(S) ⊆ NSPACE(S)

Hence co-NSPACE(S) = NSPACE(S)

11

If PATH ∈ co-NL

12

If PATH ∈ co-NL

If PATH ∈ co-NL then NSPACE(S) = co-NSPACE(S)

12

If PATH ∈ co-NL

If PATH ∈ co-NL then NSPACE(S) = co-NSPACE(S)

In particular NL = co-NL

12

If PATH ∈ co-NL

If PATH ∈ co-NL then NSPACE(S) = co-NSPACE(S)

In particular NL = co-NL

And indeed, PATH ∈ co-NL!

12

If PATH ∈ co-NL

If PATH ∈ co-NL then NSPACE(S) = co-NSPACE(S)

In particular NL = co-NL

And indeed, PATH ∈ co-NL!

There is a (polynomial sized) certificate that can
be verified in log-space, that there is no path
from s to t in a graph G

12

PATHc ∈ NL

13

PATHc ∈ NL
Certificate for (s,t) connected is just the path

13

PATHc ∈ NL
Certificate for (s,t) connected is just the path

What is a certificate that (s,t) not connected?

13

PATHc ∈ NL
Certificate for (s,t) connected is just the path

What is a certificate that (s,t) not connected?

size c of the connected component of s, C; a list of all v ∈ C

(with certificates) in order; and (somehow) a certificate for
c = |C|

13

PATHc ∈ NL
Certificate for (s,t) connected is just the path

What is a certificate that (s,t) not connected?

size c of the connected component of s, C; a list of all v ∈ C

(with certificates) in order; and (somehow) a certificate for
c = |C|

Log-space, one-scan verification of certified C (believing
|C|): scan list, checking certificates, counting, ensuring
order, and that t not in the list. Verify count.

13

PATHc ∈ NL
Certificate for (s,t) connected is just the path

What is a certificate that (s,t) not connected?

size c of the connected component of s, C; a list of all v ∈ C

(with certificates) in order; and (somehow) a certificate for
c = |C|

Log-space, one-scan verification of certified C (believing
|C|): scan list, checking certificates, counting, ensuring
order, and that t not in the list. Verify count.

List has |C| many v ∈ C, without repeating

13

Certificate for |C|

14

Certificate for |C|
Let Ci := set of nodes within distance i of s. Then C = CN

14

Certificate for |C|
Let Ci := set of nodes within distance i of s. Then C = CN

Tail recursion to verify |CN|:

14

Certificate for |C|
Let Ci := set of nodes within distance i of s. Then C = CN

Tail recursion to verify |CN|:
Read |CN-1|, believing it verify |CN|, forget |CN|;

14

Certificate for |C|
Let Ci := set of nodes within distance i of s. Then C = CN

Tail recursion to verify |CN|:
Read |CN-1|, believing it verify |CN|, forget |CN|;
Read |CN-2|, believing it verify |CN-1|, forget |CN-1|; ...

14

Certificate for |C|
Let Ci := set of nodes within distance i of s. Then C = CN

Tail recursion to verify |CN|:
Read |CN-1|, believing it verify |CN|, forget |CN|;
Read |CN-2|, believing it verify |CN-1|, forget |CN-1|; ...
Base case: |C0|=1

14

Certificate for |C|
Let Ci := set of nodes within distance i of s. Then C = CN

Tail recursion to verify |CN|:
Read |CN-1|, believing it verify |CN|, forget |CN|;
Read |CN-2|, believing it verify |CN-1|, forget |CN-1|; ...
Base case: |C0|=1

Believing |Ci-1| verify |Ci|: for each vertex v certificate that v ∈ Ci

or that v ∉ Ci (these certificates are poly(N) long)

14

Certificate for |C|
Let Ci := set of nodes within distance i of s. Then C = CN

Tail recursion to verify |CN|:
Read |CN-1|, believing it verify |CN|, forget |CN|;
Read |CN-2|, believing it verify |CN-1|, forget |CN-1|; ...
Base case: |C0|=1

Believing |Ci-1| verify |Ci|: for each vertex v certificate that v ∈ Ci

or that v ∉ Ci (these certificates are poly(N) long)

Certificate that v ∉ Ci given (i.e., believing) |Ci-1|: list of all

vertices in Ci-1 in order, with certificates. As before verify Ci-1
believing |Ci-1| (scan and ensure list is correct/complete), but also
check that no node in the list has v as a neighbor

14

Certificate for t∉CN

15

Certificate for t∉CN

t ∉ CN

15

|CN| |CN-1| |CN-2|

Certificate for t∉CN

t ∉ CN

15

|CN| |CN-1| |CN-2|

t ∉ CN /|CN|

Certificate for t∉CN

t ∉ CN

|CN|

15

|CN| |CN-1| |CN-2|

t ∉ CN /|CN|

Certificate for t∉CN

t ∉ CN

|CN|

|CN| vertices

15

|CN| |CN-1| |CN-2|

t ∉ CN /|CN|

Certificate for t∉CN

t ∉ CN

|CN|

vi ∈CN path(s,vi)

|CN| vertices

15

|CN| |CN-1| |CN-2|

t ∉ CN /|CN|

Certificate for t∉CN

t ∉ CN

|CN|

vi ∈CN path(s,vi)

|CN| vertices

vi ≠ t

15

|CN| |CN-1| |CN-2|

t ∉ CN /|CN|

Certificate for t∉CN

t ∉ CN

|CN|

vi ∈CN path(s,vi)

|CN| vertices

vi ≠ t

15

|CN| |CN-1| |CN-2|

t ∉ CN /|CN|

Certificate for t∉CN

t ∉ CN

|CN|

|CN| /|CN-1| |CN-1|

vi ∈CN path(s,vi)

|CN| vertices

vi ≠ t

15

|CN| |CN-1| |CN-2|

t ∉ CN /|CN|

Certificate for t∉CN

t ∉ CN

|CN|

|CN| /|CN-1| |CN-1|

vi ∈CN path(s,vi)

|CN| vertices all N vertices

vi ≠ t

15

|CN| |CN-1| |CN-2|

t ∉ CN /|CN|

Certificate for t∉CN

t ∉ CN

|CN|

|CN| /|CN-1| |CN-1|

vi ∈CN path(s,vi) vi ∈CN path(s,vi)

|CN| vertices all N vertices

vi ≠ t

15

|CN| |CN-1| |CN-2|

t ∉ CN /|CN|

Certificate for t∉CN

t ∉ CN

|CN|

|CN| /|CN-1| |CN-1|

vi ∈CN path(s,vi) vi ∈CN path(s,vi) vi ∉CN

|CN| vertices all N vertices

vi ≠ t

15

|CN| |CN-1| |CN-2|

t ∉ CN /|CN|

Certificate for t∉CN

t ∉ CN

|CN|

|CN| /|CN-1| |CN-1|

vi ∈CN path(s,vi) vi ∈CN path(s,vi) vi ∉CN

|CN| vertices all N vertices

vi ∉ CN /|CN-1|

vi ≠ t

15

|CN| |CN-1| |CN-2|

t ∉ CN /|CN|

Certificate for t∉CN

t ∉ CN

|CN|

|CN| /|CN-1| |CN-1|

vi ∈CN path(s,vi) vi ∈CN path(s,vi) vi ∉CN

|CN| vertices all N vertices

|CN-1| vertices

vi ∉ CN /|CN-1|

vi ≠ t

15

|CN| |CN-1| |CN-2|

t ∉ CN /|CN|

Certificate for t∉CN

t ∉ CN

|CN|

|CN| /|CN-1| |CN-1|

vi ∈CN path(s,vi) vi ∈CN path(s,vi) vi ∉CN

vj ∈CN-1 path(s,vj)

|CN| vertices all N vertices

|CN-1| vertices

vi ∉ CN /|CN-1|

vi ≠ t

15

|CN| |CN-1| |CN-2|

t ∉ CN /|CN|

Certificate for t∉CN

t ∉ CN

|CN|

|CN| /|CN-1| |CN-1|

vi ∈CN path(s,vi) vi ∈CN path(s,vi) vi ∉CN

vj ∈CN-1 path(s,vj)

|CN| vertices all N vertices

|CN-1| vertices

vi ∉ CN /|CN-1|

vj ↛ vi

vi ≠ t

15

|CN| |CN-1| |CN-2|

t ∉ CN /|CN|

Certificate for t∉CN

t ∉ CN

|CN|

|CN| /|CN-1| |CN-1|

vi ∈CN path(s,vi) vi ∈CN path(s,vi) vi ∉CN

vj ∈CN-1 path(s,vj)

|CN| vertices all N vertices

|CN-1| vertices

vi ∉ CN /|CN-1|

vj ↛ vi

vi ≠ t

15

|CN| |CN-1| |CN-2|

t ∉ CN /|CN|

Certificate for t∉CN

t ∉ CN

|CN|

|CN| /|CN-1| |CN-1|

vi ∈CN path(s,vi) vi ∈CN path(s,vi) vi ∉CN

vj ∈CN-1 path(s,vj)

|CN| vertices all N vertices

|CN-1| vertices

vi ∉ CN /|CN-1|

vj ↛ vi

vi ≠ t

15

