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Relations across complexity measures

SAT is NP-complete, TQBF is       
PSPACE-complete

Today

Log-space reductions

An NL-complete language:         
PATH

NSPACE = co-NSPACE (one           
less kind to worry about!)
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NL-completeness

For any two (non-trivial) languages L1, L2 in P, L2 ≤p L1

So if X ⊆ P, all languages in X are X-complete (w.r.t ≤p)

Need a tighter notion of reduction to capture “(almost) as 
hard as it gets” within X
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Log-Space Reduction
Many-one reduction: L2 ≤L L1 if there is a TM, M which  maps its 
input x to f(x) such that

x ∈ L2 ⇒ f(x) ∈ L1 and x ∉ L2 ⇒ f(x) ∉ L1

M uses only O(log|x|) work-tape

Is allowed to have a write-only output tape, because |f(x)| 
may be poly(|x|)

Equivalently: f  “implicitly computable” in log-space

A log-space machine M’ to output the bit fi(x) on input (x,i)

M’ from M: to keep a counter and output only the ith bit

M from M’: keep a counter and repeatedly call M on each i
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Given M2-1 and M1-0 build M2-0:

Start running M1-0 without input. When it wants to read 
ith bit of input, run M2-1 (with a counter) to get the ith 
bit of its output

Space needed: O(log(|f(x)|) + log(|x|)) = O(log(|x|)), 
because |f(x)| is poly(|x|)

Similarly, L (the class of problems decidable in log-space) is 
downward closed under log-space reductions

L2 ≤L L1 ∈ L ⇒ L2 ∈ L

Log-Space Reduction
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L0 is NL-Hard if for all L1 in NL, L1 ≤L L0

L0 is NL-complete if it is NL-hard and is in NL

Can construct trivial NL-complete language

{ (M,x,1n,1s) | ∃w, |w|<n, M accepts (x;w) in space  

log(s) } (where M takes w in a read-once tape)

Interesting NLC language: PATH
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Directed Path
PATH = {(G,s,t) | G a directed graph with a path from s to t}

G using some representation, of size say, n2 (n=#vertices)

Such that, if two vertices x,y on work-tape, can 
check for edge (x,y)

PATH in NL

Certificate w is the path (poly(n) long certificate)

Need to verify adjacent vertices are connected: need 
keep only two vertices on the work-tape at a time

Note: w is scanned only once
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Seen PATH before?

In proving NSPACE(S(n)) ⊆ DTIME(2O(S(n))) (e.g. NL ⊆ P)

Every problem in NL Karp reduces to PATH

PATH ∈ P

In Savitch’s theorem

PATH ∈ DSPACE(log2(n))
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PATH is NL-complete
Log-space reducing any NL language L1 to PATH

Given input x, output (G,s,t) where G is the configuration graph 
G(M,x), where M is the NTM accepting L1, and s,t are start, 
accept configurations

Outputting G: Cycle through all pairs of configurations, 
checking if there is an edge between them, outputting 0 or 1 
in the adjacency matrix

Edge checking done using M’s transition table

Need to store only two configurations at a time in the 
work-tape

Note: in fact O(S)-space reduction from L ∈ NSPACE(S) to PATH
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If PATH ∈ co-NL, then co-NL ⊆ NL

For any L ∈ co-NL, we have L ≤L PATHc (as Lc ≤L PATH), and 

if PATHc ∈ NL, then L ∈ NL (NL is downward closed under ≤L)

Implies co-NL = NL (why?)

If Y ⊆ X, then co-Y ⊆ co-X. Consider X = NL, Y = co-NL.
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PATHc ∈ NL implies an NTM that decides if the instance is in 

PATHc in NSPACE(log N) = NSPACE(S)

Then L’ ∈ co-NSPACE(S) is also in NSPACE(S), by composing 

space-bounded computations. So, co-NSPACE(S) ⊆ NSPACE(S)

Hence co-NSPACE(S) = NSPACE(S)
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If PATH ∈ co-NL

If PATH ∈ co-NL then NSPACE(S) = co-NSPACE(S)

In particular NL = co-NL

And indeed, PATH ∈ co-NL!

There is a (polynomial sized) certificate that can 
be verified in log-space, that there is no path 
from s to t in a graph G
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What is a certificate that (s,t) not connected?

size c of the connected component of s, C; a list of all v ∈ C 

(with certificates) in order; and (somehow) a certificate for  
c = |C|

Log-space, one-scan verification of certified C (believing   
|C|): scan list, checking certificates, counting, ensuring 
order, and that t not in the list. Verify count.

List has |C| many v ∈ C, without repeating

13
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Let Ci := set of nodes within distance i of s. Then C = CN

Tail recursion to verify |CN|:
Read |CN-1|, believing it verify |CN|, forget |CN|;
Read |CN-2|, believing it verify |CN-1|, forget |CN-1|; ...
Base case: |C0|=1

Believing |Ci-1| verify |Ci|: for each vertex v certificate that v ∈ Ci 

or that v ∉ Ci (these certificates are poly(N) long)

Certificate that v ∉ Ci given (i.e., believing) |Ci-1|: list of all 

vertices in Ci-1 in order, with certificates. As before verify Ci-1 
believing |Ci-1| (scan and ensure list is correct/complete), but also 
check that no node in the list has v as a neighbor

14
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