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@ Time/Space Hierarchies
@ Relations across complexity measures

@ SAT is NP-complete, TQBF is
PSPACE-complete

@ Today

@ Log-space reductions

@ An NL-complete language:
PATH

@ NSPACE = co-NSPACE (one
less kind to worry about!)
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NL-completeness

@ For any two (non-trivial) languages L;, Lz in P, L2 <p L,

@ So if X € P, all languages in X are X-complete (w.r.t <p)

@ Need a tighter notion of reduction to capture “(almost) as
hard as it gets” within X
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® Many-one reduction: L <. L, if there is a TM, M which maps its
input x to f(x) such that

@ xe L, = f(x) e L, and =N

@ M uses only O(loglx|) work-tape

o Is allowed to have a write-only output tape, because |f(x)|
may be poly(IxI)

@ Equivalently: f “implicitly computable” in log-space
@ A log-space machine M’ to output the bit fi(x) on input (x,i)
@ M’ from M: to keep a counter and output only the i™ bit

@ M from M’: keep a counter and repeatedly call M on each i
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@ Log-space reductions "compose”: Lz <L L; <i Lo = L2 <¢ Lo

@ Given M2_1 and N\1_o build Mz_o:

@ Start running Mi_o without input. When it wants to read
ith bit of input, run Mz, (with a counter) to get the i
bit of its output

@ Space needed: O(log(If(x)l) + log(Ixl)) = O(log(IxI)),
because |f(x)| is poly(IxI)

@ Similarly, L (the class of problems decidable in log-space) is
downward closed under log-space reductions

d L,SLLieL=Lel
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@ Lo is NL-Hard if for all L; in NL, L1 <L Lo
@ Lois NL-complete if it is NL-hard and is in NL
@ Can construct trivial NL-complete language

o { (M,x,1n1°) | dw, [wlkn, M accepts (x;w) in space

log(s) } (where M takes w in a read-once tape)

@ Interesting NLC language: PATH
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Directed Path

o PATH = {(G,s,t) | G a directed graph with a path from s to t}
@ G using some representation, of size say, n® (n=#vertices)

@ Such that, if two vertices X,y on work-tape, can
check for edge (x,y)

@ PATH in NL
@ Certificate w is the path (poly(n) long certificate)

@ Need to verify adjacent vertices are connected: need
keep only two vertices on the work-tape at a time

@ Note: w is scanned only once
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@ In proving NSPACE(S(n)) € DTIME(2°G() (e.g. NL € P)

@ Every problem in NL Karp reduces to PATH

o PATH e P

@ In Savitch's theorem

@ PATH € DSPACE(log?(n))
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@ Log-space reducing any NL language L; fo PATH

@ Given input x, output (G,s,t) where G is the configuration graph
G(M,x), where M is the NTM accepting Li, and s,t are start,
accept configurations

@ Outputting G: Cycle through all pairs of configurations,
checking if there is an edge between them, outputting O or 1
in the adjacency matrix

@ Edge checking done using Ms transition table

@ Need to store only two configurations at a time in the
work-tape

@ Note: in fact O(S)-space reduction from L € NSPACE(S) to PATH
g
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@ If PATH € co-NL, then co-NL € NL

@ For any L € co-NL, we have L < PATH® (as L® <L PATH), and
if PATH® € NL, then L € NL (NL is downward closed under <)

@ Implies co-NL = NL (why?)

@ IfY C X, then co-Y C co-X. Consider X = NL, Y = co-NL.
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@ In fact, PATH € co-NL implies co-NSPACE(S) = NSPACE(S)

@ Recall: O(S)-space reduction from L € NSPACE(S) to PATH

@ i.e., from L' € co-NSPACE(S) to PATH¢

@ Size of the new instance is at most N = 20(sD
@ PATH¢ € NL implies an NTM that decides if the instance is in

PATH® in NSPACE(log N) = NSPACE(S)
@ Then L' € co-NSPACE(S) is also in NSPACE(S), by composing
space-bounded computations. So, co-NSPACE(S) S NSPACE(S)

@ Hence co-NSPACE(S) = NSPACE(S)
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@ If PATH € co-NL then NSPACE(S) = co-NSPACE(S)

@ In particular NL = co-NL

® And indeed, PATH € co-NL!

@ There is a (polynomial sized) certificate that can
be verified in log-space, that there is no path
from s to t in a graph G
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PATH® € NL

@ Certificate for (s,t) connected is just the path
® What is a certificate that (s,t) not connected?

@ size ¢ of the connected component of s, C; a list of all veE C

(with certificates) in order; and (somehow) a certificate for
c = |C|

@ Log-space, one-scan verification of certified C (believing
ICI): scan list, checking certificates, counting, ensuring
order, and that t not in the list. Verify count.

@ List has IC| many v € C, without repeating
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Certificate for |C|

@ Let Ci := set of nodes within distance i of s. Then C = Cy
@ Tail recursion to verify |Cyl:
@ Read ICn.il, believing it verify |Cul, forget ICul;

@ Read |Cn-2l, believing it verify |Cnal, forget |Cn.il; ...
@ Base case: |Col=1

@ Believing |Cii| verify |Cil: for each vertex v certificate that v € C;
or that v & C; (these certificates are poly(N) long)

@ Certificate that v & C; given (i.e., believing) |Ci_il: list of all

vertices in Ci.; in order, with certificates. As before verify Ci_
believing ICi-il (scan and ensure list is correct/complete), but also
check that no node in the list has v as a neighbor
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2 t & Cn %
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<€ >
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