Computational Complexity

Lecture 6 NL-Completeness and NL=co-NL

Time/Space Hierarchies

- Time/Space Hierarchies
- Relations across complexity measures

- Time/Space Hierarchies
- Relations across complexity measures
- SAT is NP-complete, TQBF is PSPACE-complete

- Time/Space Hierarchies
- Relations across complexity measures
- SAT is NP-complete, TQBF is PSPACE-complete
- Today

- Time/Space Hierarchies
- Relations across complexity measures
- SAT is NP-complete, TQBF is PSPACE-complete
- Today
 - Log-space reductions

- Time/Space Hierarchies
- Relations across complexity measures
- SAT is NP-complete, TQBF is PSPACE-complete
- Today
 - Log-space reductions
 - An NL-complete language:
 PATH

- Time/Space Hierarchies
- Relations across complexity measures
- SAT is NP-complete, TQBF is PSPACE-complete
- Today
 - Log-space reductions
 - An NL-complete language:
 PATH
 - NSPACE = co-NSPACE (one less kind to worry about!)

There are two (non-trivial) languages L_1 , L_2 in P, $L_2 \leq_p L_1$

For any two (non-trivial) languages L₁, L₂ in P, L₂ ≤_p L₁
 So if X ⊆ P, all languages in X are X-complete (w.r.t ≤_p)

For any two (non-trivial) languages L₁, L₂ in P, L₂ ≤_p L₁
So if X ⊆ P, all languages in X are X-complete (w.r.t ≤_p)
Need a tighter notion of reduction to capture "(almost) as

Need a fighter notion of reduction to capture (almost) as hard as it gets" within X

Many-one reduction: L₂ ≤L L₁ if there is a TM, M which maps its
 input x to f(x) such that

Many-one reduction: L₂ ≤L L₁ if there is a TM, M which maps its
 input x to f(x) such that

Many-one reduction: L₂ ≤L L₁ if there is a TM, M which maps its
 input x to f(x) such that

 $\odot x \in L_2 \Rightarrow f(x) \in L_1 \text{ and } x \notin L_2 \Rightarrow f(x) \notin L_1$

M uses only O(log|x|) work-tape

Many-one reduction: L₂ ≤L L₁ if there is a TM, M which maps its
 input x to f(x) such that

 $\odot x \in L_2 \Rightarrow f(x) \in L_1 \text{ and } x \notin L_2 \Rightarrow f(x) \notin L_1$

M uses only O(log|x|) work-tape

Is allowed to have a write-only output tape, because |f(x)| may be poly(|x|)

Many-one reduction: L₂ ≤L L₁ if there is a TM, M which maps its
 input x to f(x) such that

 $\odot x \in L_2 \Rightarrow f(x) \in L_1 \text{ and } x \notin L_2 \Rightarrow f(x) \notin L_1$

M uses only O(log|x|) work-tape

Is allowed to have a write-only output tape, because |f(x)| may be poly(|x|)

Equivalently: f "implicitly computable" in log-space

Many-one reduction: L₂ ≤L L₁ if there is a TM, M which maps its
 input x to f(x) such that

 $\odot x \in L_2 \Rightarrow f(x) \in L_1 \text{ and } x \notin L_2 \Rightarrow f(x) \notin L_1$

M uses only O(log|x|) work-tape

Is allowed to have a write-only output tape, because |f(x)| may be poly(|x|)

Equivalently: f "implicitly computable" in log-space

A log-space machine M' to output the bit $f_i(x)$ on input (x,i)

Many-one reduction: L₂ ≤L L₁ if there is a TM, M which maps its
 input x to f(x) such that

 $\odot x \in L_2 \Rightarrow f(x) \in L_1 \text{ and } x \notin L_2 \Rightarrow f(x) \notin L_1$

M uses only O(log|x|) work-tape

Is allowed to have a write-only output tape, because |f(x)| may be poly(|x|)

Equivalently: f "implicitly computable" in log-space

• A log-space machine M' to output the bit $f_i(x)$ on input (x,i)

M' from M: to keep a counter and output only the ith bit

Many-one reduction: L₂ ≤L L₁ if there is a TM, M which maps its
 input x to f(x) such that

 $\odot x \in L_2 \Rightarrow f(x) \in L_1 \text{ and } x \notin L_2 \Rightarrow f(x) \notin L_1$

M uses only O(log|x|) work-tape

Is allowed to have a write-only output tape, because |f(x)| may be poly(|x|)

Equivalently: f "implicitly computable" in log-space

A log-space machine M' to output the bit $f_i(x)$ on input (x,i)

M' from M: to keep a counter and output only the ith bit

M from M': keep a counter and repeatedly call M on each i

 \bigcirc Given M₂₋₁ and M₁₋₀ build M₂₋₀:

 \odot Given M₂₋₁ and M₁₋₀ build M₂₋₀:

Start running M₁₋₀ without input. When it wants to read ith bit of input, run M₂₋₁ (with a counter) to get the ith bit of its output

 \odot Given M₂₋₁ and M₁₋₀ build M₂₋₀:

Start running M₁₋₀ without input. When it wants to read ith bit of input, run M₂₋₁ (with a counter) to get the ith bit of its output

Space needed: O(log(|f(x)|) + log(|x|)) = O(log(|x|)), because |f(x)| is poly(|x|)

 \odot Given M₂₋₁ and M₁₋₀ build M₂₋₀:

Start running M₁₋₀ without input. When it wants to read ith bit of input, run M₂₋₁ (with a counter) to get the ith bit of its output

Space needed: O(log(|f(x)|) + log(|x|)) = O(log(|x|)), because |f(x)| is poly(|x|)

Similarly, L (the class of problems decidable in log-space) is downward closed under log-space reductions

 \odot Given M₂₋₁ and M₁₋₀ build M₂₋₀:

Start running M₁₋₀ without input. When it wants to read ith bit of input, run M₂₋₁ (with a counter) to get the ith bit of its output

Space needed: O(log(|f(x)|) + log(|x|)) = O(log(|x|)), because |f(x)| is poly(|x|)

Similarly, L (the class of problems decidable in log-space) is downward closed under log-space reductions

 $\odot \ \mathsf{L}_2 \leq_\mathsf{L} \mathsf{L}_1 \in \mathsf{L} \Rightarrow \mathsf{L}_2 \in \mathsf{L}$

□ L₀ is NL-Hard if for all L₁ in NL, L₁ ≤_L L₀
□ L₀ is NL-complete if it is NL-hard and is in NL
□ Can construct trivial NL-complete language

L₀ is NL-Hard if for all L₁ in NL, L₁ ≤_L L₀
L₀ is NL-complete if it is NL-hard and is in NL
Can construct trivial NL-complete language

{(M,x,1ⁿ,1^s) | ∃w, |w|<n, M accepts (x;w) in space log(s) } (where M takes w in a read-once tape)

■ L₀ is NL-Hard if for all L₁ in NL, L₁ ≤_L L₀
■ L₀ is NL-complete if it is NL-hard and is in NL
■ Can construct trivial NL-complete language
● { (M,x,1ⁿ,1^s) | ∃w, |w|<n, M accepts (x;w) in space log(s) } (where M takes w in a read-once tape)
■ Interesting NLC language: PATH

Directed Path
PATH = {(G,s,t) | G a directed graph with a path from s to t}

PATH = {(G,s,t) | G a directed graph with a path from s to t}

G using some representation, of size say, n² (n=#vertices)

PATH = {(G,s,t) | G a directed graph with a path from s to t}

G using some representation, of size say, n² (n=#vertices)

Such that, if two vertices x,y on work-tape, can check for edge (x,y)

PATH = {(G,s,t) | G a directed graph with a path from s to t}

G using some representation, of size say, n² (n=#vertices)

Such that, if two vertices x,y on work-tape, can check for edge (x,y)

PATH in NL

PATH = {(G,s,t) | G a directed graph with a path from s to t}

G using some representation, of size say, n² (n=#vertices)

Such that, if two vertices x,y on work-tape, can check for edge (x,y)

PATH in NL

Certificate w is the path (poly(n) long certificate)

PATH = {(G,s,t) | G a directed graph with a path from s to t}

G using some representation, of size say, n² (n=#vertices)

Such that, if two vertices x,y on work-tape, can check for edge (x,y)

PATH in NL

Certificate w is the path (poly(n) long certificate)

Need to verify adjacent vertices are connected: need keep only two vertices on the work-tape at a time

PATH = {(G,s,t) | G a directed graph with a path from s to t}

G using some representation, of size say, n² (n=#vertices)

Such that, if two vertices x,y on work-tape, can check for edge (x,y)

PATH in NL

Certificate w is the path (poly(n) long certificate)

Need to verify adjacent vertices are connected: need keep only two vertices on the work-tape at a time

Note: w is scanned only once

In proving NSPACE(S(n)) ⊆ DTIME(2^{O(S(n))}) (e.g. NL ⊆ P)

In proving NSPACE(S(n)) ⊆ DTIME(2^{O(S(n))}) (e.g. NL ⊆ P)

Severy problem in NL Karp reduces to PATH

In proving NSPACE(S(n)) ⊆ DTIME(2^{O(S(n))}) (e.g. NL ⊆ P)
 Every problem in NL Karp reduces to PATH
 PATH ∈ P

In proving NSPACE(S(n)) ⊆ DTIME(2^{O(S(n))}) (e.g. NL ⊆ P)
 Every problem in NL Karp reduces to PATH
 PATH ∈ P

In Savitch's theorem

In proving NSPACE(S(n)) ⊆ DTIME(2^{O(S(n))}) (e.g. NL ⊆ P)
 Every problem in NL <u>Karp reduces</u> to PATH
 PATH ∈ P

In Savitch's theorem

Log-space reducing any NL language L₁ to PATH

Given input x, output (G,s,t) where G is the configuration graph G(M,x), where M is the NTM accepting L₁, and s,t are start, accept configurations

- Given input x, output (G,s,t) where G is the configuration graph G(M,x), where M is the NTM accepting L₁, and s,t are start, accept configurations
- Outputting G: Cycle through all pairs of configurations, checking if there is an edge between them, outputting 0 or 1 in the adjacency matrix

- Given input x, output (G,s,t) where G is the configuration graph G(M,x), where M is the NTM accepting L₁, and s,t are start, accept configurations
- Outputting G: Cycle through all pairs of configurations, checking if there is an edge between them, outputting 0 or 1 in the adjacency matrix
 - Edge checking done using M's transition table

- Given input x, output (G,s,t) where G is the configuration graph G(M,x), where M is the NTM accepting L₁, and s,t are start, accept configurations
- Outputting G: Cycle through all pairs of configurations, checking if there is an edge between them, outputting 0 or 1 in the adjacency matrix
 - Edge checking done using M's transition table
 - Need to store only two configurations at a time in the work-tape

- Given input x, output (G,s,t) where G is the configuration graph G(M,x), where M is the NTM accepting L₁, and s,t are start, accept configurations
- Outputting G: Cycle through all pairs of configurations, checking if there is an edge between them, outputting 0 or 1 in the adjacency matrix
 - Edge checking done using M's transition table
 - Need to store only two configurations at a time in the work-tape
- Note: in fact O(S)-space reduction from $L \in NSPACE(S)$ to PATH

If PATH ∈ co-NL

If PATH ∈ co-NL, then co-NL ⊆ NL

If PATH ∈ co-NL, then co-NL ⊆ NL

For any L ∈ co-NL, we have L ≤_L PATH^c (as L^c ≤_L PATH), and
 if PATH^c ∈ NL, then L ∈ NL (NL is downward closed under ≤_L)

If PATH ∈ co-NL, then co-NL ⊆ NL

For any L ∈ co-NL, we have L ≤_L PATH^c (as L^c ≤_L PATH), and
 if PATH^c ∈ NL, then L ∈ NL (NL is downward closed under ≤_L)

Implies co-NL = NL (why?)

If PATH ∈ co-NL, then co-NL ⊆ NL

So For any L ∈ co-NL, we have L ≤_L PATH^c (as L^c ≤_L PATH), and if PATH^c ∈ NL, then L ∈ NL (NL is downward closed under ≤_L)

Implies co-NL = NL (why?)

If Y ⊆ X, then co-Y ⊆ co-X. Consider X = NL, Y = co-NL.

If PATH ∈ co-NL

In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)

In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)

In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)

I.e., from L' ∈ co-NSPACE(S) to PATH^c

In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)

I.e., from L' ∈ co-NSPACE(S) to PATH^c

Size of the new instance is at most N = $2^{O(|S|)}$

In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)

I.e., from L' ∈ co-NSPACE(S) to PATH^c

Size of the new instance is at most N = 2^{O(|S|)}
 PATH^c ∈ NL implies an NTM that decides if the instance is in PATH^c in NSPACE(log N) = NSPACE(S)

In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)

I.e., from L' ∈ co-NSPACE(S) to PATH^c

Size of the new instance is at most N = $2^{O(|S|)}$

- Then L' ∈ co-NSPACE(S) is also in NSPACE(S), by composing
 space-bounded computations. So, co-NSPACE(S) ⊆ NSPACE(S)

In fact, PATH ∈ co-NL implies co-NSPACE(S) = NSPACE(S)

I.e., from L' ∈ co-NSPACE(S) to PATH^c

Size of the new instance is at most N = $2^{O(|S|)}$

- Then L' ∈ co-NSPACE(S) is also in NSPACE(S), by composing
 - space-bounded computations. So, co-NSPACE(S) \subseteq NSPACE(S)
 - Hence co-NSPACE(S) = NSPACE(S)

If PATH ∈ co-NL then NSPACE(S) = co-NSPACE(S)

In particular NL = co−NL
If $PATH \in co-NL$

If PATH ∈ co-NL then NSPACE(S) = co-NSPACE(S)
In particular NL = co-NL
And indeed, PATH ∈ co-NL!

If $PATH \in co-NL$

If PATH ∈ co-NL then NSPACE(S) = co-NSPACE(S)
In particular NL = co-NL
And indeed, PATH ∈ co-NL!

There is a (polynomial sized) certificate that can be verified in log-space, that there is no path from s to t in a graph G

PATH^c ∈ NL

Certificate for (s,t) connected is just the path

PATH^c ∈ NL

Certificate for (s,t) connected is just the path
What is a certificate that (s,t) not connected?

Certificate for (s,t) connected is just the path
What is a certificate that (s,t) not connected?
size c of the connected component of s, C; a list of all v ∈ C (with certificates) in order; and (somehow) a certificate for c = |C|

Certificate for (s,t) connected is just the path

What is a certificate that (s,t) not connected?

size c of the connected component of s, C; a list of all v ∈ C
 (with certificates) in order; and (somehow) a certificate for
 c = |C|

Log-space, one-scan verification of certified C (believing |C|): scan list, checking certificates, counting, ensuring order, and that t not in the list. Verify count.

Certificate for (s,t) connected is just the path

What is a certificate that (s,t) not connected?

size c of the connected component of s, C; a list of all v ∈ C
 (with certificates) in order; and (somehow) a certificate for
 c = |C|

Log-space, one-scan verification of certified C (believing |C|): scan list, checking certificates, counting, ensuring order, and that t not in the list. Verify count.

So List has |C| many $v \in C$, without repeating

The Let C_i := set of nodes within distance i of s. Then $C = C_N$

Let C_i := set of nodes within distance i of s. Then C = C_N
Tail recursion to verify $|C_N|$:

Let C_i := set of nodes within distance i of s. Then C = C_N
 Tail recursion to verify |C_N|:
 Read |C_{N-1}|, believing it verify |C_N|, forget |C_N|;

Let C_i := set of nodes within distance i of s. Then C = C_N
Tail recursion to verify |C_N|:
Read |C_{N-1}|, believing it verify |C_N|, forget |C_N|;
Read |C_{N-2}|, believing it verify |C_{N-1}|, forget |C_{N-1}|; ...

Let C_i := set of nodes within distance i of s. Then C = C_N
Tail recursion to verify $|C_N|$:

- Read $|C_{N-1}|$, believing it verify $|C_N|$, forget $|C_N|$;
- Read $|C_{N-2}|$, believing it verify $|C_{N-1}|$, forget $|C_{N-1}|$; ...

Let C_i := set of nodes within distance i of s. Then C = C_N
Tail recursion to verify |C_N|:

Read |C_{N-1}|, believing it verify |C_N|, forget |C_N|;
Read |C_{N-2}|, believing it verify |C_{N-1}|, forget |C_{N-1}|; ...
Base case: |C₀|=1

Believing |C_{i-1}| verify |C_i|: for each vertex v certificate that v ∈ C_i or that v ∉ C_i (these certificates are poly(N) long)

It is the constraint of th Tail recursion to verify $|C_N|$: Read $|C_{N-1}|$, believing it verify $|C_N|$, forget $|C_N|$; Read $|C_{N-2}|$, believing it verify $|C_{N-1}|$, forget $|C_{N-1}|$; ... \oslash Base case: $|C_0|=1$ ^(a) Believing $|C_{i-1}|$ verify $|C_i|$: for each vertex v certificate that $v \in C_i$ or that $v \notin C_i$ (these certificates are poly(N) long) • Certificate that $v \notin C_i$ given (i.e., believing) $|C_{i-1}|$: list of all vertices in C_{i-1} in order, with certificates. As before verify C_{i-1} believing $|C_{i-1}|$ (scan and ensure list is correct/complete), but also check that no node in the list has v as a neighbor

 $\mathbf{t} \in \mathbf{C}_{\mathbf{N}}$

 $\mathbf{t} \in \mathbf{C}_{\mathbf{N}}$

