Computational Complexity

Lecture 5 in which we relate space and time, and see the essence of PSPACE (TQBF)

In time T(n), can use at most T(n) space

In time T(n), can use at most T(n) space

In time T(n), can use at most T(n) space

In fact, NTIME(T) ⊆ DSPACE(O(T)) (try all certificates of length at most T, one after the other)

In time T(n), can use at most T(n) space

Ø DTIME(T) ⊆ DSPACE(T)

In fact, NTIME(T) ⊆ DSPACE(O(T)) (try all certificates of length at most T, one after the other)

• With space S(n), only $2^{O(S(n))}$ configurations (for S(n) = $\Omega(\log n)$). So can take at most $2^{O(S(n))}$ time (else gets into an infinite loop)

In time T(n), can use at most T(n) space

In fact, NTIME(T) ⊆ DSPACE(O(T)) (try all certificates of length at most T, one after the other)

 With space S(n), only 2^{O(S(n))} configurations (for S(n) = Ω(log n)). So can take at most 2^{O(S(n))} time (else gets into an infinite loop)
 DSPACE(S) ⊆ DTIME(2^{O(S)})

In time T(n), can use at most T(n) space

In fact, NTIME(T) ⊆ DSPACE(O(T)) (try all certificates of length at most T, one after the other)

With space S(n), only 2^{O(S(n))} configurations (for S(n) = Ω(log n)).
 So can take at most 2^{O(S(n))} time (else gets into an infinite loop)

In fact, NSPACE(S) ⊆ DTIME(2^{O(S)})

 $h=2^{(O(S))}$

h=2^{(O(S))}

Configuration graph <u>as a DAG</u> is of size 2^{O(S)}

Configuration graph <u>as a DAG</u> is of size 2^{O(S)}

 Write down all configurations and edges

Configuration graph <u>as a DAG</u> is of size 2^{O(S)}

 Write down all configurations and edges

Can do it less explicitly if space
 were a concern (but it's not, here)

- Configuration graph <u>as a DAG</u> is of size 2^{O(S)}
 - Write down all configurations and edges
 - Can do it less explicitly if space
 were a concern (but it's not, here)
 - Run (in poly time) any reachability algorithm (say, breadth-first search) to see if there is a (directed) path from start config. to an accept config.

 $h=2^{(O(S))}$

- Configuration graph <u>as a DAG</u> is of size 2^{O(S)}
 - Write down all configurations and edges
 - Can do it less explicitly if space
 were a concern (but it's not, here)
 - Run (in poly time) any reachability algorithm (say, breadth-first search) to see if there is a (directed) path from start config. to an accept config.

 \bigcirc NSPACE(S) ⊆ DSPACE(S²)

 \bigcirc NSPACE(S) ⊆ DSPACE(S²)

SPACE(S) ⊆ DSPACE(S²)

Naive DFS (or BFS) has stack depth h=2^{(O(S))}

SPACE(S) ⊆ DSPACE(S²)

Naive DFS (or BFS) has stack depth h=2^{(O(S))}

SPACE(S) ⊆ DSPACE(S²)

- Naive DFS (or BFS) has stack depth h=2^{(O(S))}
- Solution Look for C s.t. Start \rightarrow C in h/2 steps and C \rightarrow Accept in h/2 steps
- Recursively! Depth of recursion only log h; at each level remember one configuration

SPACE(S) ⊆ DSPACE(S²)

Naive DFS (or BFS) has stack depth h=2^{(O(S))}

- and C→Accept in h/2 steps
- Recursively! Depth of recursion only log h; at each level remember one configuration
- Space needed = $O(\log h)^*O(S) = O(S^2)$

SPACE and TIME

Major classes of interest (so far):

Major classes of interest (so far):

P, EXP; NP, NEXP; L, NL;PSPACE, NPSPACE

Major classes of interest (so far):

P, EXP; NP, NEXP; L, NL; PSPACE, NPSPACE

Major classes of interest (so far):

P, EXP; NP, NEXP; L, NL; PSPACE, NPSPACE

PSPACE = NPSPACE (by Savitch)

Major classes of interest (so far):

P, EXP; NP, NEXP; L, NL;
 PSPACE, NPSPACE

PSPACE = NPSPACE (by Savitch)

Oming up:

PSPACE-completeness

A language L is PSPACE-Complete if for all L' in PSPACE, L' ≤_p L
 and L in PSPACE

- A language L is PSPACE-Complete if for all L' in PSPACE, L' ≤_p L
 and L in PSPACE
- Trivial PSPACE-complete problem:
 SPACETM = { (M,z,1ⁿ) | TM M accepts z within space n }

- A language L is PSPACE-Complete if for all L' in PSPACE, L' ≤_p L
 and L in PSPACE
- Trivial PSPACE-complete problem: SPACETM = { (M,z,1ⁿ) | TM M accepts z within space n }
- (An) essence of PSPACE: Understanding 2-player games

- A language L is PSPACE-Complete if for all L' in PSPACE, L' ≤_p L
 and L in PSPACE
- Trivial PSPACE-complete problem:
 SPACETM = { (M,z,1ⁿ) | TM M accepts z within space n }

(An) essence of PSPACE: Understanding 2-player games

Can the first/second player always win?

Two players: Alice and Adversary, each given n (mutually disjoint) sets of variables (sets numbered [1,n])

Two players: Alice and Adversary, each given n (mutually disjoint) sets of variables (sets numbered [1,n])

Given a boolean formula over these variables

Two players: Alice and Adversary, each given n (mutually disjoint) sets of variables (sets numbered [1,n])

Given a boolean formula over these variables

In ith round players set the values of the variables in their ith sets. Say Alice moves first.

Two players: Alice and Adversary, each given n (mutually disjoint) sets of variables (sets numbered [1,n])

Given a boolean formula over these variables

In ith round players set the values of the variables in their ith sets. Say Alice moves first.

When all variables set, formula evaluated. If true Alice wins, else adversary wins

Two players: Alice and Adversary, each given n (mutually disjoint) sets of variables (sets numbered [1,n])

Given a boolean formula over these variables

- In ith round players set the values of the variables in their ith sets. Say Alice moves first.
- When all variables set, formula evaluated. If true Alice wins, else adversary wins

Given a QBF game does Alice have a sure-to-win strategy

 \oslash Vars: x₁, y₁, x₂, y₂, x₃, y₃. Formula: $\varphi(x_1, y_1, x_2, y_1, x_3, y_3)$

 \odot Say, no variables for Adversary. Only x_1

 \oslash Vars: x₁, y₁, x₂, y₂, x₃, y₃. Formula: $\varphi(x_1, y_1, x_2, y_1, x_3, y_3)$

Say, no variables for Adversary. Only x₁
 Strategy for Alice? Is "∃x₁ φ(x₁)" true?

 \oslash Vars: x₁, y₁, x₂, y₂, x₃, y₃. Formula: $\varphi(x_1, y_1, x_2, y_1, x_3, y_3)$

Say, no variables for Adversary. Only x₁
 Strategy for Alice? Is "∃x₁ φ(x₁)" true?

 \odot Say, no variables for Alice. Only y_1

Vars: x₁, y₁, x₂, y₂, x₃, y₃. Formula: $\phi(x_1, y_1, x_2, y_1, x_3, y_3)$

Say, no variables for Adversary. Only x₁
 Strategy for Alice? Is "∃x₁ φ(x₁)" true?

Say, no variables for Alice. Only y₁
 Strategy" for Alice? Is "∀y₁ φ(y₁)" true?

Vars: x₁, y₁, x₂, y₂, x₃, y₃. Formula: $\phi(x_1, y_1, x_2, y_1, x_3, y_3)$

Say, no variables for Adversary. Only x₁
 Strategy for Alice? Is "∃x₁ φ(x₁)" true?
 Say, no variables for Alice. Only y₁

Strategy" for Alice? Is " $\forall y_1 \phi(y_1)$ " true?

Say only x_1 , y_1 (now, that's more like a game):

 \oslash Vars: x₁, y₁, x₂, y₂, x₃, y₃. Formula: $\varphi(x_1, y_1, x_2, y_1, x_3, y_3)$

Say, no variables for Adversary. Only x₁
 Strategy for Alice? Is "∃x₁ φ(x₁)" true?

Say, no variables for Alice. Only y₁
 Strategy" for Alice? Is "∀y₁ φ(y₁)" true?

Say only x₁, y₁ (now, that's more like a game):
 Strategy for Alice? Is "∃x₁ ∀y₁ φ(x₁,y₁)" true?

 \odot Vars: x₁, y₁, x₂, y₂, x₃, y₃. Formula: $\varphi(x_1,y_1,x_2,y_1,x_3,y_3)$

Say, no variables for Adversary. Only x₁
 Strategy for Alice? Is "∃x₁ φ(x₁)" true?

Say, no variables for Alice. Only y₁
 Strategy" for Alice? Is "∀y₁ φ(y₁)" true?

Say only x₁, y₁ (now, that's more like a game):
Strategy for Alice? Is "∃x₁ ∀y₁ φ(x₁,y₁)" true?
In general, winning strategy for Alice exists iff

 \odot Vars: x₁, y₁, x₂, y₂, x₃, y₃. Formula: $\varphi(x_1,y_1,x_2,y_1,x_3,y_3)$

Say, no variables for Adversary. Only x₁
 Strategy for Alice? Is "∃x₁ φ(x₁)" true?

Say, no variables for Alice. Only y₁
 Strategy" for Alice? Is "∀y₁ φ(y₁)" true?

Say only x₁, y₁ (now, that's more like a game):
Strategy for Alice? Is "∃x₁ ∀y₁ φ(x₁,y₁)" true?
In general, winning strategy for Alice exists iff
∃x₁ ∀y₁ ... ∃x_n ∀y_n φ(x₁,y₁,...,x_n,y_n) is true

 \oslash Vars: x₁, y₁, x₂, y₂, x₃, y₃. Formula: $\varphi(x_1,y_1,x_2,y_1,x_3,y_3)$

Say, no variables for Adversary. Only x₁
 Strategy for Alice? Is "∃x₁ φ(x₁)" true?

Say, no variables for Alice. Only y₁
 Strategy" for Alice? Is "∀y₁ φ(y₁)" true?

Say only x₁, y₁ (now, that's more like a game):
Strategy for Alice? Is "∃x₁ ∀y₁ φ(x₁,y₁)" true?
In general, winning strategy for Alice exists iff
∃x₁ ∀y₁ ... ∃x_n ∀y_n φ(x₁,y₁,...,x_n,y_n) is true

Selversary has a winning strategy

True Quantified Boolean Formula:

True Quantified Boolean Formula:

True Quantified Boolean Formula:

 \oslash TQBF = { $\psi \mid \psi$ is true}

True Quantified Boolean Formula:

 \oslash TQBF = { $\psi \mid \psi$ is true}

∞ e.g. ψ_1 : ∃x∀y (x=y), ψ_2 : ∀y∃x (x=y)

TQBF is in PSPACE

TQBF is in PSPACE

When is a QBF true?

When is a QBF true?
e.g. ∃a,b ∀c φ(a,b,c)
Ask if winning strategy from each node

∃a

Game-Tree

Game-Tree

φ(0,0,C

∃a

Зb

Peres

Зb

φ(0,0

When is a QBF true?
e.g. ∃a,b ∀c φ(a,b,c)
Ask if winning strategy from each node
Yes from ∃ node if yes from either child./ Yes from ∀ node if yes from both.

Game-Tree
When is a QBF true?
e.g. ∃a,b ∀c φ(a,b,c)
Ask if winning strategy from each node
Yes from ∃ node if yes from either child. Yes from ∀ node if yes from both.
Naive evaluation takes exponential space (and time)

Зb

φ(0,0,0

φ(0,0

Game-Tree Ξa When is a QBF true? e.g. ∃a,b ∀c φ(a,b,c) Зb Зb Ask if winning strategy from each node • Yes from \exists node if yes from either child. Yes from \forall node if yes from both. $\forall c$ Naive evaluation takes exponential space (and time) φ(0,0,0) Can reuse left child computation φ(0,0 space for the right child

Game-Tree $\exists a$ When is a QBF true? e.g. ∃a,b ∀c φ(a,b,c) Зb Зb Ask if winning strategy from each node • Yes from \exists node if yes from either child. Yes from \forall node if yes from both. $\forall c$ Naive evaluation takes exponential space (and time) Can reuse left child computation φ(0,0,0) φ(0,0, space for the right child Space needed = O(depth) + for evaluation = poly(|QBF|)

For L in PSPACE (i.e., TM M_L decides L in space poly(n), or
 with configs of size S(n)=poly(n)), show L ≤_p TQBF

For L in PSPACE (i.e., TM M_L decides L in space poly(n), or
 with configs of size S(n)=poly(n)), show L ≤_p TQBF

• Given x, output $f(x) = \psi$, s.t. ψ is true iff M_{L} accepts x

For L in PSPACE (i.e., TM M_L decides L in space poly(n), or
 with configs of size S(n)=poly(n)), show L ≤_p TQBF

• Given x, output $f(x) = \psi$, s.t. ψ is true iff M_{L} accepts x

- For L in PSPACE (i.e., TM M_L decides L in space poly(n), or
 with configs of size S(n)=poly(n)), show L ≤_p TQBF
- Given x, output f(x) = Ψ, s.t. Ψ is true iff M_L accepts x

 - Note: As in Cook's theorem, can build an <u>unquantified</u> formula ϕ (even 3CNF) s.t. ϕ is true iff M_L accepts x

- For L in PSPACE (i.e., TM M_L decides L in space poly(n), or
 with configs of size S(n)=poly(n)), show L ≤_p TQBF
- Given x, output f(x) = Ψ, s.t. Ψ is true iff M_L accepts x

 - Note: As in Cook's theorem, can build an <u>unquantified</u> formula ϕ (even 3CNF) s.t. ϕ is true iff M_L accepts x

But size is poly(time bound on M_L) = exp(n)

- For L in PSPACE (i.e., TM M_L decides L in space poly(n), or
 with configs of size S(n)=poly(n)), show L ≤_p TQBF
- Siven x, output $f(x) = \psi$, s.t. ψ is true iff M_L accepts x

 - Note: As in Cook's theorem, can build an <u>unquantified</u> formula ϕ (even 3CNF) s.t. ϕ is true iff M_L accepts x
 - But size is poly(time bound on M_L) = exp(n)
 - Output Use power of quantification to write it succinctly

An exponential QBF:

An exponential QBF:

Here C_i are variables whose value assignments correspond to configurations. $|C_i| = O(S(n)), |\psi_0(C,C')| = O(S(n)), T=2^{O(S(n))}$

- $\exists C_1 C_2 ... C_T \psi_0(C_{start}, C_1) \land \psi_0(C_1, C_2) \land ... \psi_0(C_T, C_{accept})$
- Here C_i are variables whose value assignments correspond to configurations. $|C_i| = O(S(n)), |\Psi_0(C,C')| = O(S(n)), T=2^{O(S(n))}$
- $\Psi_0(C,C')$ is an unquantified formula (only variables being C,C'), s.t. it is true iff C evolves into C' in one step

- Here C_i are variables whose value assignments correspond to configurations. $|C_i| = O(S(n)), |\Psi_0(C,C')| = O(S(n)), T=2^{O(S(n))}$
- $\Psi_0(C,C')$ is an unquantified formula (only variables being C,C'), s.t. it is true iff C evolves into C' in one step
 - F be the (const. sized) formula to derive each bit of new config from a few bits in the previous config.
 ψ₀(C,C') is conjunction of equality conditions enforcing consistency with F. |ψ₀(C,C')| = O(|C|)

- Here C_i are variables whose value assignments correspond to configurations. $|C_i| = O(S(n)), |\Psi_0(C,C')| = O(S(n)), T=2^{O(S(n))}$
- $\Psi_0(C,C')$ is an unquantified formula (only variables being C,C'), s.t. it is true iff C evolves into C' in one step
 - F be the (const. sized) formula to derive each bit of new config from a few bits in the previous config.
 ψ₀(C,C') is conjunction of equality conditions enforcing consistency with F. |ψ₀(C,C')| = O(|C|)

•
$$\psi_0(C,C'): \bigwedge_j (C'^{(j)} = F(C^{(j-c)},...,C^{(j+c)})$$

Plan for a more succinct ψ: A partly quantified BF ψ_i s.t. ψ_i(C,C') is fully quantified and is true iff C' reachable from C in the configuration graph G(M_L,x) within 2ⁱ steps. Output ψ=ψ_{s(n}(start,accept))

Plan for a more succinct ψ: A partly quantified BF ψ_i s.t. ψ_i(C,C') is fully quantified and is true iff C' reachable from C in the configuration graph G(M_L,x) within 2ⁱ steps. Output ψ=ψ_{st}(start,accept)

The Base case (i=0): an unquantified formula, Ψ_0

- Plan for a more succinct ψ: A partly quantified BF ψ_i s.t.
 ψ_i(C,C') is fully quantified and is true iff C' reachable
 from C in the configuration graph G(M_L,x) within 2ⁱ steps.
 Output ψ=ψ_{sin}(start,accept)
 - The Base case (i=0): an unquantified formula, Ψ_0

Plan for a more succinct ψ: A partly quantified BF ψ_i s.t. ψ_i(C,C') is fully quantified and is true iff C' reachable from C in the configuration graph G(M_L,x) within 2ⁱ steps. Output ψ=ψ₅₀₀(start,accept)

 ${\it \oslash}$ Base case (i=0): an unquantified formula, ψ_0

 $= \exists C'' \psi_i(C,C') \land \psi_i(C'',C') \land \psi_i(C'',C')$

Plan for a more succinct ψ: A partly quantified BF ψ_i s.t. ψ_i(C,C') is fully quantified and is true iff C' reachable from C in the configuration graph G(M_L,x) within 2ⁱ steps. Output ψ=ψ₅₀(start,accept)

Savitch's

 ${\it @}$ Base case (i=0): an unquantified formula, ψ_0

 $\Psi_{i+1}(C,C') := \exists C'' \Psi_i(C,C'') \land \Psi_i(C'',C')$

Needs to be rewritten in "Prenex Normal form"

Plan for a more succinct ψ: A partly quantified BF ψ_i s.t. ψ_i(C,C') is fully quantified and is true iff C' reachable from C in the configuration graph G(M_L,x) within 2ⁱ steps. Output ψ=ψ₅₀(start,accept)

 ${\it @}$ Base case (i=0): an unquantified formula, ψ_0

eorem

ψ_{i+1}(C,C') := ∃C" ψ_i(C,C") ∧ ψ_i(C",C')
Needs to be rewritten in "Prenex Normal form"
Problem: |ψ_{S(n)}| still exponential in S(n)

Plan for a more succinct ψ: A partly quantified BF ψ_i s.t. ψ_i(C,C') is fully quantified and is true iff C' reachable from C in the configuration graph G(M_L,x) within 2ⁱ steps. Output ψ=ψ₅₀₀(start,accept)

 ${\it @}$ Base case (i=0): an unquantified formula, ψ_0

• $\psi_{i+1}(C,C') := \exists C'' \psi_i(C,C'') \land \psi_i(C'',C')$ • Needs to be rewritten in "Prenex Normal form"

• Problem: $|\psi_{S(n)}|$ still exponential in S(n)

In fact, same as naive formula!

• $\psi_{i+1}(C,C') := \exists C'' \psi_i(C,C'') \land \psi_i(C'',C')$ • Problem: $|\psi_{S(n)}|$ exponential in S(n)

ψ_{i+1}(C,C') := ∃C" ψ_i(C,C") ∧ ψ_i(C",C')
 Problem: |ψ_{S(n)}| exponential in S(n)
 More variables/quantification to "reuse" formula

ψ_{i+1}(C,C') := ∃C" ψ_i(C,C") ∧ ψ_i(C",C')
 Problem: |ψ_{S(n)}| exponential in S(n)
 More variables/quantification to "reuse" formula
 ψ_{i+1}(C,C') := ∃C" ∀(D,D') ((D,D')=(C,C") ∨ (D,D')=(C",C')) → ψ_i(D,D')
ψ_{i+1}(C,C') := ∃C" ψ_i(C,C") ∧ ψ_i(C",C')
Problem: |ψ_{s(n)}| exponential in S(n)
More variables/quantification to "reuse" formula
ψ_{i+1}(C,C') := ∃C" ∀(D,D') (D,D') (C,C") ∨ (D,D') (C",C') → ψ_i(D,D')
and ⇒ shorthands for slightly longer formulas

♥i+1(C,C') := ∃C" ψi(C,C") ∧ ψi(C",C')
 Problem: |ψ_{s(n)}| exponential in S(n)
 More variables/quantification to "reuse" formula
 ♥i+1(C,C') := ∃C" ∀(D,D') (D,D') - (C,C") ∨ (D,D') - (C",C') → ψi(D,D')
 and → shorthands for slightly longer formulas

 c_{r} Problem: $|\psi_{S(n)}|$ exponential in S(n) $S_{a_{V,k}}$ Problem (1997) $S_{a_{V,k}}$ More variables/quantification to "reuse" formula \varnothing = and \Rightarrow shorthands for slightly longer formulas $| \psi_{S(n)} | = O(S(n)) + | \psi_{S(n)-1} | = O(S(n)^2) + | \psi_0 | = O(S(n)^2)$

 S_{r} Problem: $|\Psi_{S(n)}|$ exponential in S(n) Savik Beorem More variables/quantification to "reuse" formula \varnothing = and \Rightarrow shorthands for slightly longer formulas $| \psi_{S(n)} | = O(S(n)) + | \psi_{S(n)-1} | = O(S(n)^2) + | \psi_0 | = O(S(n)^2)$ "Quantification is a powerful programming language"

SPACE-complete

SPACE-complete

Generalizes SAT and SAT^c (which have only one quantifier)

SPACE-complete

Generalizes SAT and SAT^c (which have only one quantifier)

How about 2, 3, 4, ... quantifier alternations?

SPACE-complete

- Generalizes SAT and SAT^c (which have only one quantifier)
- How about 2, 3, 4, ... quantifier alternations?

Coming soon!

TQBF

SPACE complete

TQBF

SPACE complete

Will see more of it soon

PSPACE complete
Will see more of it soon
Next Lecture: NL

Zoo (more later)
TQBF
PSPACE complete
Will see more of it soon
Next Lecture: NL
NL-completeness

Zoo (more later) SPACE complete Will see more of it soon Ø Next Lecture: NL NL-completeness \oslash NL = co-NL