
Computational 
Complexity

Lecture 5
in which we relate space and time,

and see the essence of PSPACE (TQBF)
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were a concern (but it’s not, here)

Run (in poly time) any reachability 
algorithm (say, breadth-first search)    
to see if there is a (directed) path   
from start config. to an accept config.

poly(2O(S)) = 2O(S)

 h=2(O(S))
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Naive DFS (or BFS) has stack depth 
h=2(O(S))

Look for C s.t. Start→C in h/2 steps 
and C→Accept in h/2 steps

Recursively! Depth of recursion only 
log h; at each level remember one 
configuration

Space needed = O(log h)*O(S) = O(S2)

 h=2(O(S))
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PSPACE completeness

A language L is PSPACE-Complete if for all L’ in PSPACE, L’ ≤p L 
and L in PSPACE

Trivial PSPACE-complete problem:                                       
SPACETM = { (M,z,1n) | TM M accepts z within space n }

(An) essence of PSPACE: Understanding 2-player games

Can the first/second player always win?
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Two players: Alice and Adversary, each given n (mutually 
disjoint) sets of variables (sets numbered [1,n])

Given a boolean formula over these variables

In ith round players set the values of the variables in 
their ith sets. Say Alice moves first.

When all variables set, formula evaluated. If true Alice 
wins, else adversary wins

Given a QBF game does Alice have a sure-to-win strategy
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Say, no variables for Adversary. Only x1

Strategy for Alice? Is “∃x1  φ(x1 )” true?

Say, no variables for Alice. Only y1

“Strategy” for Alice? Is “∀y1  φ(y1)” true?

Say only x1, y1 (now, that’s more like a game):
Strategy for Alice? Is “∃x1 ∀y1 φ(x1,y1 )” true?

In general, winning strategy for Alice exists iff
∃x1 ∀y1  ... ∃xn ∀yn  φ(x1,y1,...,xn,yn ) is true

Else adversary has a winning strategy
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True Quantified Boolean Formula:

ψ := ∃x1 ∀y1  ... ∃xn ∀yn  φ(x1,y1,...,xn,yn )

TQBF = {ψ | ψ is true}

e.g. ψ1: ∃x∀y  (x=y),  ψ2: ∀y∃x  (x=y) 
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space (and time)

Can reuse left child computation          
space for the right child

∃a

∃b
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Space needed = O(depth) + for evaluation = poly(|QBF|)
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For L in PSPACE (i.e., TM ML decides L in space poly(n), or 
with configs of size S(n)=poly(n) ), show L ≤p TQBF

Given x, output f(x) = ψ, s.t. ψ is true iff ML accepts x

x→ψ in poly time. In particular size of ψ is poly(n)

Note: As in Cook’s theorem, can build an unquantified 
formula φ (even 3CNF) s.t. φ is true iff ML accepts x

But size is poly(time bound on ML) = exp(n)

Use power of quantification to write it succinctly
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ψ0(C,C’) is an unquantified formula (only variables being 
C,C’), s.t. it is true iff C evolves into C’ in one step

F be the (const. sized) formula to derive each bit of 
new config from a few bits in the previous config.     
ψ0(C,C’) is conjunction of equality conditions enforcing 
consistency with F.   |ψ0(C,C’)| = O(|C|)

ψ0(C,C’): ∧j(C’(j) = F(C(j-c),...,C(j+c)))
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Plan for a more succinct ψ: A partly quantified BF ψi s.t. 
ψi(C,C’) is fully quantified and is true iff C’ reachable 
from C in the configuration graph G(ML,x) within 2i steps. 
Output ψ=ψS(n)(start,accept)

Base case (i=0): an unquantified formula, ψ0

ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

Needs to be rewritten in “Prenex Normal form”

Problem: |ψS(n)| still exponential in S(n)

In fact, same as naive formula!

c.f. Savitch’s theorem

16



TQBF is PSPACE-hard

17



TQBF is PSPACE-hard
ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

17



TQBF is PSPACE-hard
ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

Problem: |ψS(n)| exponential in S(n)

17



TQBF is PSPACE-hard
ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

Problem: |ψS(n)| exponential in S(n)

More variables/quantification to “reuse” formula

17



TQBF is PSPACE-hard
ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

Problem: |ψS(n)| exponential in S(n)

More variables/quantification to “reuse” formula

ψi+1(C,C’) := ∃C’’ ∀(D,D’)  ((D,D’)=(C,C’’) ∨ (D,D’)=(C’’,C’)) ⇒ ψi(D,D’)

17



TQBF is PSPACE-hard
ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

Problem: |ψS(n)| exponential in S(n)

More variables/quantification to “reuse” formula

ψi+1(C,C’) := ∃C’’ ∀(D,D’)  ((D,D’)=(C,C’’) ∨ (D,D’)=(C’’,C’)) ⇒ ψi(D,D’)

= and ⇒ shorthands for slightly longer formulas

17



TQBF is PSPACE-hard
ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

Problem: |ψS(n)| exponential in S(n)

More variables/quantification to “reuse” formula

ψi+1(C,C’) := ∃C’’ ∀(D,D’)  ((D,D’)=(C,C’’) ∨ (D,D’)=(C’’,C’)) ⇒ ψi(D,D’)

= and ⇒ shorthands for slightly longer formulas

c.f. Savitch’s 
theorem

17



TQBF is PSPACE-hard
ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

Problem: |ψS(n)| exponential in S(n)

More variables/quantification to “reuse” formula

ψi+1(C,C’) := ∃C’’ ∀(D,D’)  ((D,D’)=(C,C’’) ∨ (D,D’)=(C’’,C’)) ⇒ ψi(D,D’)

= and ⇒ shorthands for slightly longer formulas

|ψS(n)| = O(S(n)) + |ψS(n)-1| = O(S(n)2) + |ψ0| = O(S(n)2)

c.f. Savitch’s 
theorem

17



TQBF is PSPACE-hard
ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

Problem: |ψS(n)| exponential in S(n)

More variables/quantification to “reuse” formula

ψi+1(C,C’) := ∃C’’ ∀(D,D’)  ((D,D’)=(C,C’’) ∨ (D,D’)=(C’’,C’)) ⇒ ψi(D,D’)

= and ⇒ shorthands for slightly longer formulas

|ψS(n)| = O(S(n)) + |ψS(n)-1| = O(S(n)2) + |ψ0| = O(S(n)2)

“Quantification is a powerful programming language”

c.f. Savitch’s 
theorem
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Coming soon!
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Today
Zoo (more later)

TQBF

PSPACE complete

Will see more of it soon

Next Lecture: NL

NL-completeness

NL = co-NL
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