
Computational
Complexity

Lecture 5
in which we relate space and time,

and see the essence of PSPACE (TQBF)

1

SPACE and TIME

2

SPACE and TIME

DTIME(F)

NTIME(F)

2

SPACE and TIME

DTIME(F)

NTIME(F)

2

SPACE and TIME

DTIME(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

2

SPACE and TIME

DTIME(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

2

SPACE and TIME

DTIME(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

2

SPACE and TIME

DTIME(F)

DSPACE(F)

NSPACE(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

2

SPACE and TIME

DTIME(F)

DSPACE(F)

NSPACE(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

2

SPACE and TIME

DTIME(F)

DSPACE(F)

NSPACE(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

F=Ω(n) F=Ω(log n)

2

SPACE and TIME

3

SPACE and TIME
In time T(n), can use at most T(n) space

3

SPACE and TIME
In time T(n), can use at most T(n) space

DTIME(T) ⊆ DSPACE(T)

3

SPACE and TIME
In time T(n), can use at most T(n) space

DTIME(T) ⊆ DSPACE(T)

In fact, NTIME(T) ⊆ DSPACE(O(T)) (try all certificates of

length at most T, one after the other)

3

SPACE and TIME
In time T(n), can use at most T(n) space

DTIME(T) ⊆ DSPACE(T)

In fact, NTIME(T) ⊆ DSPACE(O(T)) (try all certificates of

length at most T, one after the other)

With space S(n), only 2O(S(n)) configurations (for S(n) = Ω(log n)).
So can take at most 2O(S(n)) time (else gets into an infinite loop)

3

SPACE and TIME
In time T(n), can use at most T(n) space

DTIME(T) ⊆ DSPACE(T)

In fact, NTIME(T) ⊆ DSPACE(O(T)) (try all certificates of

length at most T, one after the other)

With space S(n), only 2O(S(n)) configurations (for S(n) = Ω(log n)).
So can take at most 2O(S(n)) time (else gets into an infinite loop)

DSPACE(S) ⊆ DTIME(2O(S))

3

SPACE and TIME
In time T(n), can use at most T(n) space

DTIME(T) ⊆ DSPACE(T)

In fact, NTIME(T) ⊆ DSPACE(O(T)) (try all certificates of

length at most T, one after the other)

With space S(n), only 2O(S(n)) configurations (for S(n) = Ω(log n)).
So can take at most 2O(S(n)) time (else gets into an infinite loop)

DSPACE(S) ⊆ DTIME(2O(S))

In fact, NSPACE(S) ⊆ DTIME(2O(S))

3

NSPACE(S) ⊆ DTIME(2O(S))

4

NSPACE(S) ⊆ DTIME(2O(S))

 h=2(O(S))

4

NSPACE(S) ⊆ DTIME(2O(S))
Configuration graph as a DAG is of size 2O(S)

 h=2(O(S))

4

NSPACE(S) ⊆ DTIME(2O(S))
Configuration graph as a DAG is of size 2O(S)

Write down all configurations and
edges

 h=2(O(S))

4

NSPACE(S) ⊆ DTIME(2O(S))
Configuration graph as a DAG is of size 2O(S)

Write down all configurations and
edges

Can do it less explicitly if space
were a concern (but it’s not, here)

 h=2(O(S))

4

NSPACE(S) ⊆ DTIME(2O(S))
Configuration graph as a DAG is of size 2O(S)

Write down all configurations and
edges

Can do it less explicitly if space
were a concern (but it’s not, here)

Run (in poly time) any reachability
algorithm (say, breadth-first search)
to see if there is a (directed) path
from start config. to an accept config.

 h=2(O(S))

4

NSPACE(S) ⊆ DTIME(2O(S))
Configuration graph as a DAG is of size 2O(S)

Write down all configurations and
edges

Can do it less explicitly if space
were a concern (but it’s not, here)

Run (in poly time) any reachability
algorithm (say, breadth-first search)
to see if there is a (directed) path
from start config. to an accept config.

poly(2O(S)) = 2O(S)

 h=2(O(S))

4

SPACE and TIME

DTIME(F)

DSPACE(F)

NSPACE(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

F=Ω(n) F=Ω(log n)

5

SPACE and TIME

DTIME(F)

DSPACE(F)

NSPACE(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

F=Ω(n) F=Ω(log n)

5

SPACE and TIME

DTIME(F)

DSPACE(F)

NSPACE(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

F=Ω(n) F=Ω(log n)

5

NSPACE and DSPACE:
Savitch’s Theorem

6

NSPACE and DSPACE:
Savitch’s Theorem

NSPACE(S) ⊆ DSPACE(S2)

6

NSPACE and DSPACE:
Savitch’s Theorem

NSPACE(S) ⊆ DSPACE(S2)

 h=2(O(S))

6

NSPACE and DSPACE:
Savitch’s Theorem

NSPACE(S) ⊆ DSPACE(S2)

Naive DFS (or BFS) has stack depth
h=2(O(S))

 h=2(O(S))

6

NSPACE and DSPACE:
Savitch’s Theorem

NSPACE(S) ⊆ DSPACE(S2)

Naive DFS (or BFS) has stack depth
h=2(O(S))

Look for C s.t. Start→C in h/2 steps
and C→Accept in h/2 steps h=2(O(S))

6

NSPACE and DSPACE:
Savitch’s Theorem

NSPACE(S) ⊆ DSPACE(S2)

Naive DFS (or BFS) has stack depth
h=2(O(S))

Look for C s.t. Start→C in h/2 steps
and C→Accept in h/2 steps

Recursively! Depth of recursion only
log h; at each level remember one
configuration

 h=2(O(S))

6

NSPACE and DSPACE:
Savitch’s Theorem

NSPACE(S) ⊆ DSPACE(S2)

Naive DFS (or BFS) has stack depth
h=2(O(S))

Look for C s.t. Start→C in h/2 steps
and C→Accept in h/2 steps

Recursively! Depth of recursion only
log h; at each level remember one
configuration

Space needed = O(log h)*O(S) = O(S2)

 h=2(O(S))

6

SPACE and TIME

DTIME(F)

DSPACE(F)

NSPACE(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

F=Ω(n) F=Ω(log n)

7

SPACE and TIME

DTIME(F)

DSPACE(F)

NSPACE(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

DSPACE(F2)

F=Ω(n) F=Ω(log n)

7

SPACE and TIME

DTIME(F)

DSPACE(F)

NSPACE(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

DSPACE(F2)

F=Ω(n) F=Ω(log n)

7

Zoo, so far

8

Zoo, so far
Major classes of interest (so far):

8

Zoo, so far
Major classes of interest (so far):

P, EXP; NP, NEXP; L, NL;
PSPACE, NPSPACE

8

Zoo, so far

P

PSPACE

EXP

NP

NEXP

L

NL

NPSPACE

Major classes of interest (so far):

P, EXP; NP, NEXP; L, NL;
PSPACE, NPSPACE

8

Zoo, so far

P

PSPACE

EXP

NP

NEXP

L

NL

NPSPACE

Major classes of interest (so far):

P, EXP; NP, NEXP; L, NL;
PSPACE, NPSPACE

PSPACE = NPSPACE (by Savitch)

8

Zoo, so far

P

PSPACE

EXP

NP

NEXP

L

NL

NPSPACE

Major classes of interest (so far):

P, EXP; NP, NEXP; L, NL;
PSPACE, NPSPACE

PSPACE = NPSPACE (by Savitch)

Coming up:

PSPACE-completeness

8

PSPACE completeness

9

PSPACE completeness

A language L is PSPACE-Complete if for all L’ in PSPACE, L’ ≤p L
and L in PSPACE

9

PSPACE completeness

A language L is PSPACE-Complete if for all L’ in PSPACE, L’ ≤p L
and L in PSPACE

Trivial PSPACE-complete problem:
SPACETM = { (M,z,1n) | TM M accepts z within space n }

9

PSPACE completeness

A language L is PSPACE-Complete if for all L’ in PSPACE, L’ ≤p L
and L in PSPACE

Trivial PSPACE-complete problem:
SPACETM = { (M,z,1n) | TM M accepts z within space n }

(An) essence of PSPACE: Understanding 2-player games

9

PSPACE completeness

A language L is PSPACE-Complete if for all L’ in PSPACE, L’ ≤p L
and L in PSPACE

Trivial PSPACE-complete problem:
SPACETM = { (M,z,1n) | TM M accepts z within space n }

(An) essence of PSPACE: Understanding 2-player games

Can the first/second player always win?

9

QBF Game

10

QBF Game
Two players: Alice and Adversary, each given n (mutually
disjoint) sets of variables (sets numbered [1,n])

10

QBF Game
Two players: Alice and Adversary, each given n (mutually
disjoint) sets of variables (sets numbered [1,n])

Given a boolean formula over these variables

10

QBF Game
Two players: Alice and Adversary, each given n (mutually
disjoint) sets of variables (sets numbered [1,n])

Given a boolean formula over these variables

In ith round players set the values of the variables in
their ith sets. Say Alice moves first.

10

QBF Game
Two players: Alice and Adversary, each given n (mutually
disjoint) sets of variables (sets numbered [1,n])

Given a boolean formula over these variables

In ith round players set the values of the variables in
their ith sets. Say Alice moves first.

When all variables set, formula evaluated. If true Alice
wins, else adversary wins

10

QBF Game
Two players: Alice and Adversary, each given n (mutually
disjoint) sets of variables (sets numbered [1,n])

Given a boolean formula over these variables

In ith round players set the values of the variables in
their ith sets. Say Alice moves first.

When all variables set, formula evaluated. If true Alice
wins, else adversary wins

Given a QBF game does Alice have a sure-to-win strategy

10

QBF game: examples

11

QBF game: examples
Vars: x1, y1, x2, y2, x3, y3. Formula: φ(x1,y1,x2,y1,x3,y3)

11

QBF game: examples
Vars: x1, y1, x2, y2, x3, y3. Formula: φ(x1,y1,x2,y1,x3,y3)

Say, no variables for Adversary. Only x1

11

QBF game: examples
Vars: x1, y1, x2, y2, x3, y3. Formula: φ(x1,y1,x2,y1,x3,y3)

Say, no variables for Adversary. Only x1

Strategy for Alice? Is “∃x1 φ(x1)” true?

11

QBF game: examples
Vars: x1, y1, x2, y2, x3, y3. Formula: φ(x1,y1,x2,y1,x3,y3)

Say, no variables for Adversary. Only x1

Strategy for Alice? Is “∃x1 φ(x1)” true?

Say, no variables for Alice. Only y1

11

QBF game: examples
Vars: x1, y1, x2, y2, x3, y3. Formula: φ(x1,y1,x2,y1,x3,y3)

Say, no variables for Adversary. Only x1

Strategy for Alice? Is “∃x1 φ(x1)” true?

Say, no variables for Alice. Only y1

“Strategy” for Alice? Is “∀y1 φ(y1)” true?

11

QBF game: examples
Vars: x1, y1, x2, y2, x3, y3. Formula: φ(x1,y1,x2,y1,x3,y3)

Say, no variables for Adversary. Only x1

Strategy for Alice? Is “∃x1 φ(x1)” true?

Say, no variables for Alice. Only y1

“Strategy” for Alice? Is “∀y1 φ(y1)” true?

Say only x1, y1 (now, that’s more like a game):

11

QBF game: examples
Vars: x1, y1, x2, y2, x3, y3. Formula: φ(x1,y1,x2,y1,x3,y3)

Say, no variables for Adversary. Only x1

Strategy for Alice? Is “∃x1 φ(x1)” true?

Say, no variables for Alice. Only y1

“Strategy” for Alice? Is “∀y1 φ(y1)” true?

Say only x1, y1 (now, that’s more like a game):
Strategy for Alice? Is “∃x1 ∀y1 φ(x1,y1)” true?

11

QBF game: examples
Vars: x1, y1, x2, y2, x3, y3. Formula: φ(x1,y1,x2,y1,x3,y3)

Say, no variables for Adversary. Only x1

Strategy for Alice? Is “∃x1 φ(x1)” true?

Say, no variables for Alice. Only y1

“Strategy” for Alice? Is “∀y1 φ(y1)” true?

Say only x1, y1 (now, that’s more like a game):
Strategy for Alice? Is “∃x1 ∀y1 φ(x1,y1)” true?

In general, winning strategy for Alice exists iff

11

QBF game: examples
Vars: x1, y1, x2, y2, x3, y3. Formula: φ(x1,y1,x2,y1,x3,y3)

Say, no variables for Adversary. Only x1

Strategy for Alice? Is “∃x1 φ(x1)” true?

Say, no variables for Alice. Only y1

“Strategy” for Alice? Is “∀y1 φ(y1)” true?

Say only x1, y1 (now, that’s more like a game):
Strategy for Alice? Is “∃x1 ∀y1 φ(x1,y1)” true?

In general, winning strategy for Alice exists iff
∃x1 ∀y1 ... ∃xn ∀yn φ(x1,y1,...,xn,yn) is true

11

QBF game: examples
Vars: x1, y1, x2, y2, x3, y3. Formula: φ(x1,y1,x2,y1,x3,y3)

Say, no variables for Adversary. Only x1

Strategy for Alice? Is “∃x1 φ(x1)” true?

Say, no variables for Alice. Only y1

“Strategy” for Alice? Is “∀y1 φ(y1)” true?

Say only x1, y1 (now, that’s more like a game):
Strategy for Alice? Is “∃x1 ∀y1 φ(x1,y1)” true?

In general, winning strategy for Alice exists iff
∃x1 ∀y1 ... ∃xn ∀yn φ(x1,y1,...,xn,yn) is true

Else adversary has a winning strategy
11

TQBF, the language

12

TQBF, the language

True Quantified Boolean Formula:

12

TQBF, the language

True Quantified Boolean Formula:

ψ := ∃x1 ∀y1 ... ∃xn ∀yn φ(x1,y1,...,xn,yn)

12

TQBF, the language

True Quantified Boolean Formula:

ψ := ∃x1 ∀y1 ... ∃xn ∀yn φ(x1,y1,...,xn,yn)

TQBF = {ψ | ψ is true}

12

TQBF, the language

True Quantified Boolean Formula:

ψ := ∃x1 ∀y1 ... ∃xn ∀yn φ(x1,y1,...,xn,yn)

TQBF = {ψ | ψ is true}

e.g. ψ1: ∃x∀y (x=y), ψ2: ∀y∃x (x=y)

12

TQBF is in PSPACE

13

TQBF is in PSPACE

When is a QBF true?

13

TQBF is in PSPACE

When is a QBF true?
e.g. ∃a,b ∀c φ(a,b,c)

13

TQBF is in PSPACE

When is a QBF true?
e.g. ∃a,b ∀c φ(a,b,c)

Game-Tree

13

TQBF is in PSPACE

When is a QBF true?
e.g. ∃a,b ∀c φ(a,b,c)

∃a

∃b

∀c

∃b

φ(0,0,0) φ(0,0,1)

Game-Tree

13

TQBF is in PSPACE

When is a QBF true?
e.g. ∃a,b ∀c φ(a,b,c)

∃a

∃b

∀c

∃b

φ(0,0,0) φ(0,0,1)

Game-Tree

W
inning

strategy for Alice

if game gets

here?

13

TQBF is in PSPACE

When is a QBF true?
e.g. ∃a,b ∀c φ(a,b,c)

Ask if winning strategy from each node

∃a

∃b

∀c

∃b

φ(0,0,0) φ(0,0,1)

Game-Tree

W
inning

strategy for Alice

if game gets

here?

13

TQBF is in PSPACE

When is a QBF true?
e.g. ∃a,b ∀c φ(a,b,c)

Ask if winning strategy from each node
Yes from ∃ node if yes from either child.
Yes from ∀ node if yes from both.

∃a

∃b

∀c

∃b

φ(0,0,0) φ(0,0,1)

Game-Tree

W
inning

strategy for Alice

if game gets

here?

13

TQBF is in PSPACE

When is a QBF true?
e.g. ∃a,b ∀c φ(a,b,c)

Ask if winning strategy from each node
Yes from ∃ node if yes from either child.
Yes from ∀ node if yes from both.

Naive evaluation takes exponential
space (and time)

∃a

∃b

∀c

∃b

φ(0,0,0) φ(0,0,1)

Game-Tree

W
inning

strategy for Alice

if game gets

here?

13

TQBF is in PSPACE

When is a QBF true?
e.g. ∃a,b ∀c φ(a,b,c)

Ask if winning strategy from each node
Yes from ∃ node if yes from either child.
Yes from ∀ node if yes from both.

Naive evaluation takes exponential
space (and time)

Can reuse left child computation
space for the right child

∃a

∃b

∀c

∃b

φ(0,0,0) φ(0,0,1)

Game-Tree

W
inning

strategy for Alice

if game gets

here?

13

TQBF is in PSPACE

When is a QBF true?
e.g. ∃a,b ∀c φ(a,b,c)

Ask if winning strategy from each node
Yes from ∃ node if yes from either child.
Yes from ∀ node if yes from both.

Naive evaluation takes exponential
space (and time)

Can reuse left child computation
space for the right child

∃a

∃b

∀c

∃b

φ(0,0,0) φ(0,0,1)

Space needed = O(depth) + for evaluation = poly(|QBF|)

Game-Tree

W
inning

strategy for Alice

if game gets

here?

13

TQBF is PSPACE-hard

14

TQBF is PSPACE-hard
For L in PSPACE (i.e., TM ML decides L in space poly(n), or
with configs of size S(n)=poly(n)), show L ≤p TQBF

14

TQBF is PSPACE-hard
For L in PSPACE (i.e., TM ML decides L in space poly(n), or
with configs of size S(n)=poly(n)), show L ≤p TQBF

Given x, output f(x) = ψ, s.t. ψ is true iff ML accepts x

14

TQBF is PSPACE-hard
For L in PSPACE (i.e., TM ML decides L in space poly(n), or
with configs of size S(n)=poly(n)), show L ≤p TQBF

Given x, output f(x) = ψ, s.t. ψ is true iff ML accepts x

x→ψ in poly time. In particular size of ψ is poly(n)

14

TQBF is PSPACE-hard
For L in PSPACE (i.e., TM ML decides L in space poly(n), or
with configs of size S(n)=poly(n)), show L ≤p TQBF

Given x, output f(x) = ψ, s.t. ψ is true iff ML accepts x

x→ψ in poly time. In particular size of ψ is poly(n)

Note: As in Cook’s theorem, can build an unquantified
formula φ (even 3CNF) s.t. φ is true iff ML accepts x

14

TQBF is PSPACE-hard
For L in PSPACE (i.e., TM ML decides L in space poly(n), or
with configs of size S(n)=poly(n)), show L ≤p TQBF

Given x, output f(x) = ψ, s.t. ψ is true iff ML accepts x

x→ψ in poly time. In particular size of ψ is poly(n)

Note: As in Cook’s theorem, can build an unquantified
formula φ (even 3CNF) s.t. φ is true iff ML accepts x

But size is poly(time bound on ML) = exp(n)

14

TQBF is PSPACE-hard
For L in PSPACE (i.e., TM ML decides L in space poly(n), or
with configs of size S(n)=poly(n)), show L ≤p TQBF

Given x, output f(x) = ψ, s.t. ψ is true iff ML accepts x

x→ψ in poly time. In particular size of ψ is poly(n)

Note: As in Cook’s theorem, can build an unquantified
formula φ (even 3CNF) s.t. φ is true iff ML accepts x

But size is poly(time bound on ML) = exp(n)

Use power of quantification to write it succinctly

14

TQBF is PSPACE-hard

15

TQBF is PSPACE-hard
An exponential QBF:

15

TQBF is PSPACE-hard
An exponential QBF:

∃ C1 C2 ... CT ψ0(Cstart,C1) ∧ ψ0(C1,C2) ∧ ... ψ0(CT,Caccept)

15

TQBF is PSPACE-hard
An exponential QBF:

∃ C1 C2 ... CT ψ0(Cstart,C1) ∧ ψ0(C1,C2) ∧ ... ψ0(CT,Caccept)

Here Ci are variables whose value assignments correspond
to configurations. |Ci| = O(S(n)), |ψ0(C,C’)| = O(S(n)), T=2O(S(n))

15

TQBF is PSPACE-hard
An exponential QBF:

∃ C1 C2 ... CT ψ0(Cstart,C1) ∧ ψ0(C1,C2) ∧ ... ψ0(CT,Caccept)

Here Ci are variables whose value assignments correspond
to configurations. |Ci| = O(S(n)), |ψ0(C,C’)| = O(S(n)), T=2O(S(n))

ψ0(C,C’) is an unquantified formula (only variables being
C,C’), s.t. it is true iff C evolves into C’ in one step

15

TQBF is PSPACE-hard
An exponential QBF:

∃ C1 C2 ... CT ψ0(Cstart,C1) ∧ ψ0(C1,C2) ∧ ... ψ0(CT,Caccept)

Here Ci are variables whose value assignments correspond
to configurations. |Ci| = O(S(n)), |ψ0(C,C’)| = O(S(n)), T=2O(S(n))

ψ0(C,C’) is an unquantified formula (only variables being
C,C’), s.t. it is true iff C evolves into C’ in one step

F be the (const. sized) formula to derive each bit of
new config from a few bits in the previous config.
ψ0(C,C’) is conjunction of equality conditions enforcing
consistency with F. |ψ0(C,C’)| = O(|C|)

15

TQBF is PSPACE-hard
An exponential QBF:

∃ C1 C2 ... CT ψ0(Cstart,C1) ∧ ψ0(C1,C2) ∧ ... ψ0(CT,Caccept)

Here Ci are variables whose value assignments correspond
to configurations. |Ci| = O(S(n)), |ψ0(C,C’)| = O(S(n)), T=2O(S(n))

ψ0(C,C’) is an unquantified formula (only variables being
C,C’), s.t. it is true iff C evolves into C’ in one step

F be the (const. sized) formula to derive each bit of
new config from a few bits in the previous config.
ψ0(C,C’) is conjunction of equality conditions enforcing
consistency with F. |ψ0(C,C’)| = O(|C|)

ψ0(C,C’): ∧j(C’(j) = F(C(j-c),...,C(j+c)))
15

TQBF is PSPACE-hard

16

TQBF is PSPACE-hard
Plan for a more succinct ψ: A partly quantified BF ψi s.t.
ψi(C,C’) is fully quantified and is true iff C’ reachable
from C in the configuration graph G(ML,x) within 2i steps.
Output ψ=ψS(n)(start,accept)

16

TQBF is PSPACE-hard
Plan for a more succinct ψ: A partly quantified BF ψi s.t.
ψi(C,C’) is fully quantified and is true iff C’ reachable
from C in the configuration graph G(ML,x) within 2i steps.
Output ψ=ψS(n)(start,accept)

Base case (i=0): an unquantified formula, ψ0

16

TQBF is PSPACE-hard
Plan for a more succinct ψ: A partly quantified BF ψi s.t.
ψi(C,C’) is fully quantified and is true iff C’ reachable
from C in the configuration graph G(ML,x) within 2i steps.
Output ψ=ψS(n)(start,accept)

Base case (i=0): an unquantified formula, ψ0

ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

16

TQBF is PSPACE-hard
Plan for a more succinct ψ: A partly quantified BF ψi s.t.
ψi(C,C’) is fully quantified and is true iff C’ reachable
from C in the configuration graph G(ML,x) within 2i steps.
Output ψ=ψS(n)(start,accept)

Base case (i=0): an unquantified formula, ψ0

ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

c.f. Savitch’s theorem

16

TQBF is PSPACE-hard
Plan for a more succinct ψ: A partly quantified BF ψi s.t.
ψi(C,C’) is fully quantified and is true iff C’ reachable
from C in the configuration graph G(ML,x) within 2i steps.
Output ψ=ψS(n)(start,accept)

Base case (i=0): an unquantified formula, ψ0

ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

Needs to be rewritten in “Prenex Normal form”

c.f. Savitch’s theorem

16

TQBF is PSPACE-hard
Plan for a more succinct ψ: A partly quantified BF ψi s.t.
ψi(C,C’) is fully quantified and is true iff C’ reachable
from C in the configuration graph G(ML,x) within 2i steps.
Output ψ=ψS(n)(start,accept)

Base case (i=0): an unquantified formula, ψ0

ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

Needs to be rewritten in “Prenex Normal form”

Problem: |ψS(n)| still exponential in S(n)

c.f. Savitch’s theorem

16

TQBF is PSPACE-hard
Plan for a more succinct ψ: A partly quantified BF ψi s.t.
ψi(C,C’) is fully quantified and is true iff C’ reachable
from C in the configuration graph G(ML,x) within 2i steps.
Output ψ=ψS(n)(start,accept)

Base case (i=0): an unquantified formula, ψ0

ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

Needs to be rewritten in “Prenex Normal form”

Problem: |ψS(n)| still exponential in S(n)

In fact, same as naive formula!

c.f. Savitch’s theorem

16

TQBF is PSPACE-hard

17

TQBF is PSPACE-hard
ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

17

TQBF is PSPACE-hard
ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

Problem: |ψS(n)| exponential in S(n)

17

TQBF is PSPACE-hard
ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

Problem: |ψS(n)| exponential in S(n)

More variables/quantification to “reuse” formula

17

TQBF is PSPACE-hard
ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

Problem: |ψS(n)| exponential in S(n)

More variables/quantification to “reuse” formula

ψi+1(C,C’) := ∃C’’ ∀(D,D’) ((D,D’)=(C,C’’) ∨ (D,D’)=(C’’,C’)) ⇒ ψi(D,D’)

17

TQBF is PSPACE-hard
ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

Problem: |ψS(n)| exponential in S(n)

More variables/quantification to “reuse” formula

ψi+1(C,C’) := ∃C’’ ∀(D,D’) ((D,D’)=(C,C’’) ∨ (D,D’)=(C’’,C’)) ⇒ ψi(D,D’)

= and ⇒ shorthands for slightly longer formulas

17

TQBF is PSPACE-hard
ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

Problem: |ψS(n)| exponential in S(n)

More variables/quantification to “reuse” formula

ψi+1(C,C’) := ∃C’’ ∀(D,D’) ((D,D’)=(C,C’’) ∨ (D,D’)=(C’’,C’)) ⇒ ψi(D,D’)

= and ⇒ shorthands for slightly longer formulas

c.f. Savitch’s
theorem

17

TQBF is PSPACE-hard
ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

Problem: |ψS(n)| exponential in S(n)

More variables/quantification to “reuse” formula

ψi+1(C,C’) := ∃C’’ ∀(D,D’) ((D,D’)=(C,C’’) ∨ (D,D’)=(C’’,C’)) ⇒ ψi(D,D’)

= and ⇒ shorthands for slightly longer formulas

|ψS(n)| = O(S(n)) + |ψS(n)-1| = O(S(n)2) + |ψ0| = O(S(n)2)

c.f. Savitch’s
theorem

17

TQBF is PSPACE-hard
ψi+1(C,C’) := ∃C’’ ψi(C,C’’) ∧ ψi(C’’,C’)

Problem: |ψS(n)| exponential in S(n)

More variables/quantification to “reuse” formula

ψi+1(C,C’) := ∃C’’ ∀(D,D’) ((D,D’)=(C,C’’) ∨ (D,D’)=(C’’,C’)) ⇒ ψi(D,D’)

= and ⇒ shorthands for slightly longer formulas

|ψS(n)| = O(S(n)) + |ψS(n)-1| = O(S(n)2) + |ψ0| = O(S(n)2)

“Quantification is a powerful programming language”

c.f. Savitch’s
theorem

17

TQBF

18

TQBF

PSPACE-complete

18

TQBF

PSPACE-complete

Generalizes SAT and SATc (which have only one
quantifier)

18

TQBF

PSPACE-complete

Generalizes SAT and SATc (which have only one
quantifier)

How about 2, 3, 4, ... quantifier alternations?

18

TQBF

PSPACE-complete

Generalizes SAT and SATc (which have only one
quantifier)

How about 2, 3, 4, ... quantifier alternations?

Coming soon!

18

Today

19

Today
Zoo (more later)

19

Today
Zoo (more later)

TQBF

19

Today
Zoo (more later)

TQBF

PSPACE complete

19

Today
Zoo (more later)

TQBF

PSPACE complete

Will see more of it soon

19

Today
Zoo (more later)

TQBF

PSPACE complete

Will see more of it soon

Next Lecture: NL

19

Today
Zoo (more later)

TQBF

PSPACE complete

Will see more of it soon

Next Lecture: NL

NL-completeness

19

Today
Zoo (more later)

TQBF

PSPACE complete

Will see more of it soon

Next Lecture: NL

NL-completeness

NL = co-NL

19

