
Computational
Complexity

Lecture 4
in which Diagonalization takes on itself,

and we enter Space Complexity
(But first Ladner’s Theorem)

1

Ladner’s Theorem

2

Ladner’s Theorem

2

Ladner’s Theorem

If P≠NP, then are all non-P NP languages equally
hard? (Are all NP-complete?)

2

Ladner’s Theorem

If P≠NP, then are all non-P NP languages equally
hard? (Are all NP-complete?)

No!

2

Ladner’s Theorem

If P≠NP, then are all non-P NP languages equally
hard? (Are all NP-complete?)

No!

Can show an NP language which is neither in P,
nor NP complete (unless P = NP)

2

Ladner’s Theorem: Proof

3

Ladner’s Theorem: Proof
SATH = { (x,pad) | x ∈ SAT and |pad|=|x|H(|x|)}

3

Ladner’s Theorem: Proof
SATH = { (x,pad) | x ∈ SAT and |pad|=|x|H(|x|)}

H(|x|) will be computable in poly(|x|) time. SATH in NP.

3

Ladner’s Theorem: Proof
SATH = { (x,pad) | x ∈ SAT and |pad|=|x|H(|x|)}

H(|x|) will be computable in poly(|x|) time. SATH in NP.

If SATH in P and H(|x|) bounded by const. then SAT in P!

3

Ladner’s Theorem: Proof
SATH = { (x,pad) | x ∈ SAT and |pad|=|x|H(|x|)}

H(|x|) will be computable in poly(|x|) time. SATH in NP.

If SATH in P and H(|x|) bounded by const. then SAT in P!

|pad| < |x|i* implies SAT ≤p SATH

3

Ladner’s Theorem: Proof
SATH = { (x,pad) | x ∈ SAT and |pad|=|x|H(|x|)}

H(|x|) will be computable in poly(|x|) time. SATH in NP.

If SATH in P and H(|x|) bounded by const. then SAT in P!

|pad| < |x|i* implies SAT ≤p SATH

If SATH is NPC (⇒ SATH not in P) and H(|x|) goes to infinity,

then SAT in P!

3

Ladner’s Theorem: Proof
SATH = { (x,pad) | x ∈ SAT and |pad|=|x|H(|x|)}

H(|x|) will be computable in poly(|x|) time. SATH in NP.

If SATH in P and H(|x|) bounded by const. then SAT in P!

|pad| < |x|i* implies SAT ≤p SATH

If SATH is NPC (⇒ SATH not in P) and H(|x|) goes to infinity,

then SAT in P!

Suppose f(x) = (x’,pad), |(x’,pad)| ≤ c|x|c. If |x’|>|x|/2,
then |pad| = |x’|H(|x’|) > c|x|c (for long enough x). So |x’| is
at most |x|/2. Repeat to solve SAT

3

Ladner’s Theorem: Proof
SATH = { (x,pad) | x ∈ SAT and |pad|=|x|H(|x|)}

H(|x|) will be computable in poly(|x|) time. SATH in NP.

If SATH in P and H(|x|) bounded by const. then SAT in P!

|pad| < |x|i* implies SAT ≤p SATH

If SATH is NPC (⇒ SATH not in P) and H(|x|) goes to infinity,

then SAT in P!

Suppose f(x) = (x’,pad), |(x’,pad)| ≤ c|x|c. If |x’|>|x|/2,
then |pad| = |x’|H(|x’|) > c|x|c (for long enough x). So |x’| is
at most |x|/2. Repeat to solve SAT

To define H s.t. H(n) bounded by const. iff SATH in P

3

Proof (ctd.)

4

Proof (ctd.)
Mi be ith TM. Ti be ith polynomial (i.e., Ti(t)=i.ti)

4

Proof (ctd.)

Mi|Ti be Mi restricted to Ti

Mi be ith TM. Ti be ith polynomial (i.e., Ti(t)=i.ti)

4

Mi|Ti

☑ ☒ ☒ ☑ ☒ ☒ ☒ ☒ ☑

☒ ☒ ☑ ☒ ☑ ☒ ☒ ☑ ☑

☑ ☑ ☑ ☑ ☑ ☑ ☑ ☒ ☒

☑ ☑ ☒ ☑ ☒ ☑ ☒ ☑ ☑

☑ ☑ ☒ ☒ ☒ ☒ ☑ ☒ ☒

☒ ☒ ☒ ☒ ☒ ☒ ☑ ☑ ☒

☒ ☑ ☒ ☑ ☒ ☑ ☒ ☑ ☑

|z|

Proof (ctd.)

Mi|Ti be Mi restricted to Ti

Mi be ith TM. Ti be ith polynomial (i.e., Ti(t)=i.ti)

4

Mi|Ti

☑ ☒ ☒ ☑ ☒ ☒ ☒ ☒ ☑

☒ ☒ ☑ ☒ ☑ ☒ ☒ ☑ ☑

☑ ☑ ☑ ☑ ☑ ☑ ☑ ☒ ☒

☑ ☑ ☒ ☑ ☒ ☑ ☒ ☑ ☑

☑ ☑ ☒ ☒ ☒ ☒ ☑ ☒ ☒

☒ ☒ ☒ ☒ ☒ ☒ ☑ ☑ ☒

☒ ☑ ☒ ☑ ☒ ☑ ☒ ☑ ☑

|z|

Proof (ctd.)

Mi|Ti be Mi restricted to Ti

Put ☑ at (i,t) if Mi|Ti agrees
with SATH on all z, |z|=t;
else put ☒

Mi be ith TM. Ti be ith polynomial (i.e., Ti(t)=i.ti)

4

Mi|Ti

☑ ☒ ☒ ☑ ☒ ☒ ☒ ☒ ☑

☒ ☒ ☑ ☒ ☑ ☒ ☒ ☑ ☑

☑ ☑ ☑ ☑ ☑ ☑ ☑ ☒ ☒

☑ ☑ ☒ ☑ ☒ ☑ ☒ ☑ ☑

☑ ☑ ☒ ☒ ☒ ☒ ☑ ☒ ☒

☒ ☒ ☒ ☒ ☒ ☒ ☑ ☑ ☒

☒ ☑ ☒ ☑ ☒ ☑ ☒ ☑ ☑

|z|

Proof (ctd.)

Mi|Ti be Mi restricted to Ti

Put ☑ at (i,t) if Mi|Ti agrees
with SATH on all z, |z|=t;
else put ☒

H(n) be least i < log log n s.t.
Mi|Ti correct for all |z|<log n

Mi be ith TM. Ti be ith polynomial (i.e., Ti(t)=i.ti)

4

Mi|Ti

☑ ☒ ☒ ☑ ☒ ☒ ☒ ☒ ☑

☒ ☒ ☑ ☒ ☑ ☒ ☒ ☑ ☑

☑ ☑ ☑ ☑ ☑ ☑ ☑ ☒ ☒

☑ ☑ ☒ ☑ ☒ ☑ ☒ ☑ ☑

☑ ☑ ☒ ☒ ☒ ☒ ☑ ☒ ☒

☒ ☒ ☒ ☒ ☒ ☒ ☑ ☑ ☒

☒ ☑ ☒ ☑ ☒ ☑ ☒ ☑ ☑

|z|

Proof (ctd.)

Mi|Ti be Mi restricted to Ti

Put ☑ at (i,t) if Mi|Ti agrees
with SATH on all z, |z|=t;
else put ☒

H(n) be least i < log log n s.t.
Mi|Ti correct for all |z|<log n

log log n

log n

Mi be ith TM. Ti be ith polynomial (i.e., Ti(t)=i.ti)

4

Mi|Ti

☑ ☒ ☒ ☑ ☒ ☒ ☒ ☒ ☑

☒ ☒ ☑ ☒ ☑ ☒ ☒ ☑ ☑

☑ ☑ ☑ ☑ ☑ ☑ ☑ ☒ ☒

☑ ☑ ☒ ☑ ☒ ☑ ☒ ☑ ☑

☑ ☑ ☒ ☒ ☒ ☒ ☑ ☒ ☒

☒ ☒ ☒ ☒ ☒ ☒ ☑ ☑ ☒

☒ ☑ ☒ ☑ ☒ ☑ ☒ ☑ ☑

|z|

Proof (ctd.)

Mi|Ti be Mi restricted to Ti

Put ☑ at (i,t) if Mi|Ti agrees
with SATH on all z, |z|=t;
else put ☒

H(n) be least i < log log n s.t.
Mi|Ti correct for all |z|<log n

log log n

log n

Mi be ith TM. Ti be ith polynomial (i.e., Ti(t)=i.ti)

4

Mi|Ti

☑ ☒ ☒ ☑ ☒ ☒ ☒ ☒ ☑

☒ ☒ ☑ ☒ ☑ ☒ ☒ ☑ ☑

☑ ☑ ☑ ☑ ☑ ☑ ☑ ☒ ☒

☑ ☑ ☒ ☑ ☒ ☑ ☒ ☑ ☑

☑ ☑ ☒ ☒ ☒ ☒ ☑ ☒ ☒

☒ ☒ ☒ ☒ ☒ ☒ ☑ ☑ ☒

☒ ☑ ☒ ☑ ☒ ☑ ☒ ☑ ☑

|z|

Proof (ctd.)

Mi|Ti be Mi restricted to Ti

Put ☑ at (i,t) if Mi|Ti agrees
with SATH on all z, |z|=t;
else put ☒

H(n) be least i < log log n s.t.
Mi|Ti correct for all |z|<log n

H is poly-time computable log log n

log n

Mi be ith TM. Ti be ith polynomial (i.e., Ti(t)=i.ti)

4

Mi|Ti

☑ ☒ ☒ ☑ ☒ ☒ ☒ ☒ ☑

☒ ☒ ☑ ☒ ☑ ☒ ☒ ☑ ☑

☑ ☑ ☑ ☑ ☑ ☑ ☑ ☒ ☒

☑ ☑ ☒ ☑ ☒ ☑ ☒ ☑ ☑

☑ ☑ ☒ ☒ ☒ ☒ ☑ ☒ ☒

☒ ☒ ☒ ☒ ☒ ☒ ☑ ☑ ☒

☒ ☑ ☒ ☑ ☒ ☑ ☒ ☑ ☑

|z|

Proof (ctd.)

Mi|Ti be Mi restricted to Ti

Put ☑ at (i,t) if Mi|Ti agrees
with SATH on all z, |z|=t;
else put ☒

H(n) be least i < log log n s.t.
Mi|Ti correct for all |z|<log n

H is poly-time computable

SATH in P iff H(n) < i*

log log n

log n

Mi be ith TM. Ti be ith polynomial (i.e., Ti(t)=i.ti)

4

Mi|Ti

☑ ☒ ☒ ☑ ☒ ☒ ☒ ☒ ☑

☒ ☒ ☑ ☒ ☑ ☒ ☒ ☑ ☑

☑ ☑ ☑ ☑ ☑ ☑ ☑ ☒ ☒

☑ ☑ ☒ ☑ ☒ ☑ ☒ ☑ ☑

☑ ☑ ☒ ☒ ☒ ☒ ☑ ☒ ☒

☒ ☒ ☒ ☒ ☒ ☒ ☑ ☑ ☒

☒ ☑ ☒ ☑ ☒ ☑ ☒ ☑ ☑

|z|

Proof (ctd.)

Mi|Ti be Mi restricted to Ti

Put ☑ at (i,t) if Mi|Ti agrees
with SATH on all z, |z|=t;
else put ☒

H(n) be least i < log log n s.t.
Mi|Ti correct for all |z|<log n

H is poly-time computable

SATH in P iff H(n) < i*

Both equivalent to having
a row of all ☑

log log n

log n

Mi be ith TM. Ti be ith polynomial (i.e., Ti(t)=i.ti)

4

Meta-Questions

5

Meta-Questions

5

Meta-Questions

“Real” Questions

5

Meta-Questions

“Real” Questions “Meta” Questions

5

Meta-Questions

“Real” Questions

SAT in DTIME(n2)?

“Meta” Questions

5

Meta-Questions

“Real” Questions

SAT in DTIME(n2)?

Is my problem
NP-complete?

“Meta” Questions

5

Meta-Questions

“Real” Questions

SAT in DTIME(n2)?

Is my problem
NP-complete?

Results non-specialists
would care about

“Meta” Questions

5

Meta-Questions

“Real” Questions

SAT in DTIME(n2)?

Is my problem
NP-complete?

Results non-specialists
would care about

“Meta” Questions

What can we do with an
oracle for SAT?

5

Meta-Questions

“Real” Questions

SAT in DTIME(n2)?

Is my problem
NP-complete?

Results non-specialists
would care about

“Meta” Questions

What can we do with an
oracle for SAT?

Will this proof technique
work?

5

Meta-Questions

“Real” Questions

SAT in DTIME(n2)?

Is my problem
NP-complete?

Results non-specialists
would care about

“Meta” Questions

What can we do with an
oracle for SAT?

Will this proof technique
work?

Tools & Techniques,
intermediate results

5

Meta-Questions

“Real” Questions

SAT in DTIME(n2)?

Is my problem
NP-complete?

Results non-specialists
would care about

“Meta” Questions

What can we do with an
oracle for SAT?

Will this proof technique
work?

Tools & Techniques,
intermediate results

Under-the-hood stuff

5

Oracles

6

Oracles
What if we had an oracle for language A

6

Oracles
What if we had an oracle for language A

Class PA: L ∈ PA if

6

Oracles
What if we had an oracle for language A

Class PA: L ∈ PA if

L decided by a TM MA, in poly time

6

Oracles
What if we had an oracle for language A

Class PA: L ∈ PA if

L decided by a TM MA, in poly time

Turing reduction: L ≤T A

6

Oracles
What if we had an oracle for language A

Class PA: L ∈ PA if

L decided by a TM MA, in poly time

Turing reduction: L ≤T A

Class NPA: L ∈ NPA if

6

Oracles
What if we had an oracle for language A

Class PA: L ∈ PA if

L decided by a TM MA, in poly time

Turing reduction: L ≤T A

Class NPA: L ∈ NPA if

L decided by an NTM MA, in poly time

6

Oracles
What if we had an oracle for language A

Class PA: L ∈ PA if

L decided by a TM MA, in poly time

Turing reduction: L ≤T A

Class NPA: L ∈ NPA if

L decided by an NTM MA, in poly time

Equivalently, L = {x| ∃w, |w| < poly(|x|) s.t. (x,w) ∈ L’ },
where L’ is in PA

6

Oracles
What if we had an oracle for language A

Class PA: L ∈ PA if

L decided by a TM MA, in poly time

Turing reduction: L ≤T A

Class NPA: L ∈ NPA if

L decided by an NTM MA, in poly time

Equivalently, L = {x| ∃w, |w| < poly(|x|) s.t. (x,w) ∈ L’ },
where L’ is in PA Eq

uiv
ale

nc
e

ca
rri

es
 ov

er
!

6

Proofs that Relativize

7

Proofs that Relativize

Often entire theorems/proofs carry over, with the
oracle tagging along

7

Proofs that Relativize

Often entire theorems/proofs carry over, with the
oracle tagging along

e.g. Time hierarchy theorems (and proofs!) hold
for machines with access to any given oracle A

7

Proofs that Relativize

Often entire theorems/proofs carry over, with the
oracle tagging along

e.g. Time hierarchy theorems (and proofs!) hold
for machines with access to any given oracle A

Said to “relativize”

7

P vs. NP with oracles

8

P vs. NP with oracles

How does P vs. NP fare relative to different oracles?

8

P vs. NP with oracles

How does P vs. NP fare relative to different oracles?

Does their relation (equality or not) relativize?

8

P vs. NP with oracles

How does P vs. NP fare relative to different oracles?

Does their relation (equality or not) relativize?

No! Different in different worlds!

8

P vs. NP with oracles

How does P vs. NP fare relative to different oracles?

Does their relation (equality or not) relativize?

No! Different in different worlds!

There exist languages A, B such that PA =
NPA, but PB ≠ NPB!

8

A s.t. PA = NPA

9

A s.t. PA = NPA

If A is EXP-complete (w.r.t ≤Cook or ≤P), PA = NPA = EXP

9

A s.t. PA = NPA

If A is EXP-complete (w.r.t ≤Cook or ≤P), PA = NPA = EXP

A EXP-hard ⇒ EXP ⊆ PA ⊆ NPA

9

A s.t. PA = NPA

If A is EXP-complete (w.r.t ≤Cook or ≤P), PA = NPA = EXP

A EXP-hard ⇒ EXP ⊆ PA ⊆ NPA

A in EXP ⇒ NPA ⊆ EXPA = EXP (note: NP ⊆ EXP, by

trying all possible witnesses)

9

A s.t. PA = NPA

If A is EXP-complete (w.r.t ≤Cook or ≤P), PA = NPA = EXP

A EXP-hard ⇒ EXP ⊆ PA ⊆ NPA

A in EXP ⇒ NPA ⊆ EXPA = EXP (note: NP ⊆ EXP, by

trying all possible witnesses)

A simple EXP-complete language:

9

A s.t. PA = NPA

If A is EXP-complete (w.r.t ≤Cook or ≤P), PA = NPA = EXP

A EXP-hard ⇒ EXP ⊆ PA ⊆ NPA

A in EXP ⇒ NPA ⊆ EXPA = EXP (note: NP ⊆ EXP, by

trying all possible witnesses)

A simple EXP-complete language:

EXPTM = { (M,x,1n) | TM represented by M accepts x
within time 2n }

9

B s.t. PB ≠ NPB

10

B s.t. PB ≠ NPB

Building B and L, s.t. L in NPB\PB

10

B s.t. PB ≠ NPB

L={1n| ∃w, |w|=n and w∈B}
Building B and L, s.t. L in NPB\PB

10

B s.t. PB ≠ NPB

L={1n| ∃w, |w|=n and w∈B}

B

Building B and L, s.t. L in NPB\PB

10

B s.t. PB ≠ NPB

L={1n| ∃w, |w|=n and w∈B}

1n111

L

B

Building B and L, s.t. L in NPB\PB

0 00 01 10 ...

10

B s.t. PB ≠ NPB

L={1n| ∃w, |w|=n and w∈B}

1n111

L

B

Building B and L, s.t. L in NPB\PB

0 00 01 10 ...

10

B s.t. PB ≠ NPB

L={1n| ∃w, |w|=n and w∈B}

1n111

L

B

Building B and L, s.t. L in NPB\PB

0 00 01 10 ...

10

B s.t. PB ≠ NPB

L={1n| ∃w, |w|=n and w∈B}
L in NPB. To do: L not in PB

1n111

L

B

Building B and L, s.t. L in NPB\PB

0 00 01 10 ...

10

B s.t. PB ≠ NPB

L={1n| ∃w, |w|=n and w∈B}
L in NPB. To do: L not in PB

For each i, ensure MiB in
2n-1 time gets L(1n) wrong
(for some new n)

1n111

L

B

Building B and L, s.t. L in NPB\PB

0 00 01 10 ...

10

B s.t. PB ≠ NPB

L={1n| ∃w, |w|=n and w∈B}
L in NPB. To do: L not in PB

For each i, ensure MiB in
2n-1 time gets L(1n) wrong
(for some new n)

Mi

1n111

L

B

Building B and L, s.t. L in NPB\PB

0 00 01 10 ...

10

B s.t. PB ≠ NPB

L={1n| ∃w, |w|=n and w∈B}
L in NPB. To do: L not in PB

For each i, ensure MiB in
2n-1 time gets L(1n) wrong
(for some new n)

1n

Mi

1n111

L

B

Building B and L, s.t. L in NPB\PB

0 00 01 10 ...

10

B s.t. PB ≠ NPB

L={1n| ∃w, |w|=n and w∈B}
L in NPB. To do: L not in PB

For each i, ensure MiB in
2n-1 time gets L(1n) wrong
(for some new n)

1n

Mi

1n111

L

B

Building B and L, s.t. L in NPB\PB

0 00 01 10 ...

10

B s.t. PB ≠ NPB

L={1n| ∃w, |w|=n and w∈B}
L in NPB. To do: L not in PB

For each i, ensure MiB in
2n-1 time gets L(1n) wrong
(for some new n)

Pick n s.t. B not yet set
beyond 1n-1. Run Mi on 1n
for 2n-1 steps. 1n

Mi

1n111

L

B

Building B and L, s.t. L in NPB\PB

0 00 01 10 ...

10

B s.t. PB ≠ NPB

L={1n| ∃w, |w|=n and w∈B}
L in NPB. To do: L not in PB

For each i, ensure MiB in
2n-1 time gets L(1n) wrong
(for some new n)

Pick n s.t. B not yet set
beyond 1n-1. Run Mi on 1n
for 2n-1 steps. 1n

Mi

1n111

L

B

Building B and L, s.t. L in NPB\PB

0 00 01 10 ...

10

B s.t. PB ≠ NPB

L={1n| ∃w, |w|=n and w∈B}
L in NPB. To do: L not in PB

For each i, ensure MiB in
2n-1 time gets L(1n) wrong
(for some new n)

Pick n s.t. B not yet set
beyond 1n-1. Run Mi on 1n
for 2n-1 steps. 1n

Mi

1n111

L

B

Building B and L, s.t. L in NPB\PB

0 00 01 10 ...

10

B s.t. PB ≠ NPB

L={1n| ∃w, |w|=n and w∈B}
L in NPB. To do: L not in PB

For each i, ensure MiB in
2n-1 time gets L(1n) wrong
(for some new n)

Pick n s.t. B not yet set
beyond 1n-1. Run Mi on 1n
for 2n-1 steps. 1n

Mi

1n111

L

B

Building B and L, s.t. L in NPB\PB

0 00 01 10 ...

10

B s.t. PB ≠ NPB

L={1n| ∃w, |w|=n and w∈B}
L in NPB. To do: L not in PB

For each i, ensure MiB in
2n-1 time gets L(1n) wrong
(for some new n)

Pick n s.t. B not yet set
beyond 1n-1. Run Mi on 1n
for 2n-1 steps. 1n

Mi

1n111

L

B

Building B and L, s.t. L in NPB\PB

0 00 01 10 ...

10

B s.t. PB ≠ NPB

L={1n| ∃w, |w|=n and w∈B}
L in NPB. To do: L not in PB

For each i, ensure MiB in
2n-1 time gets L(1n) wrong
(for some new n)

Pick n s.t. B not yet set
beyond 1n-1. Run Mi on 1n
for 2n-1 steps. 1n

Mi

1n111

L

B

Building B and L, s.t. L in NPB\PB

0 00 01 10 ...

10

B s.t. PB ≠ NPB

L={1n| ∃w, |w|=n and w∈B}
L in NPB. To do: L not in PB

For each i, ensure MiB in
2n-1 time gets L(1n) wrong
(for some new n)

Pick n s.t. B not yet set
beyond 1n-1. Run Mi on 1n
for 2n-1 steps.

When Mi queries B on
x > 1n-1, set B(X)=0

1n

Mi

1n111

L

B

Building B and L, s.t. L in NPB\PB

0 00 01 10 ...

10

B s.t. PB ≠ NPB

L={1n| ∃w, |w|=n and w∈B}
L in NPB. To do: L not in PB

For each i, ensure MiB in
2n-1 time gets L(1n) wrong
(for some new n)

Pick n s.t. B not yet set
beyond 1n-1. Run Mi on 1n
for 2n-1 steps.

When Mi queries B on
x > 1n-1, set B(X)=0

After Mi finished set B up
to x=1n s.t. L(1n) ≠ MiB(1n)

1n

Mi

1n111

L

B

Building B and L, s.t. L in NPB\PB

0 00 01 10 ...

10

Meta-Result of the Day

11

Meta-Result of the Day

P vs. NP cannot be resolved using a relativizing proof

11

Meta-Result of the Day

P vs. NP cannot be resolved using a relativizing proof

“Diagonalization proofs” relativize

11

Meta-Result of the Day

P vs. NP cannot be resolved using a relativizing proof

“Diagonalization proofs” relativize

Just need a way to enumerate/encode
machines, and to simulate one without much
overhead given its encoding

11

Meta-Result of the Day

P vs. NP cannot be resolved using a relativizing proof

“Diagonalization proofs” relativize

Just need a way to enumerate/encode
machines, and to simulate one without much
overhead given its encoding

Do not further depend on internals of
computation

11

Meta-Result of the Day

P vs. NP cannot be resolved using a relativizing proof

“Diagonalization proofs” relativize

Just need a way to enumerate/encode
machines, and to simulate one without much
overhead given its encoding

Do not further depend on internals of
computation

e.g. of non-relativizing proof: that of Cook-Levin
theorem

11

Space Complexity

12

Space Complexity

13

Space Complexity

Natural complexity question

13

Space Complexity

Natural complexity question

How much memory is needed

13

Space Complexity

Natural complexity question

How much memory is needed

More pressing than time:

13

Space Complexity

Natural complexity question

How much memory is needed

More pressing than time:

Can’t generate memory on the fly

13

Space Complexity

Natural complexity question

How much memory is needed

More pressing than time:

Can’t generate memory on the fly

Or maybe less pressing:

13

Space Complexity

Natural complexity question

How much memory is needed

More pressing than time:

Can’t generate memory on the fly

Or maybe less pressing:

Turns out, often a little memory can go a long
way (if we can spare the time)

13

DSPACE and NSPACE

14

DSPACE and NSPACE
Measure of working memory (work-tape) used by a TM/NTM:
input kept in a read-only tape

14

DSPACE and NSPACE
Measure of working memory (work-tape) used by a TM/NTM:
input kept in a read-only tape

Model allows o(n) memory usage

14

DSPACE and NSPACE
Measure of working memory (work-tape) used by a TM/NTM:
input kept in a read-only tape

Model allows o(n) memory usage

DSPACE(n) may already be inefficient in terms of time

14

DSPACE and NSPACE
Measure of working memory (work-tape) used by a TM/NTM:
input kept in a read-only tape

Model allows o(n) memory usage

DSPACE(n) may already be inefficient in terms of time

We shall stick to Ω(log n)

14

DSPACE and NSPACE
Measure of working memory (work-tape) used by a TM/NTM:
input kept in a read-only tape

Model allows o(n) memory usage

DSPACE(n) may already be inefficient in terms of time

We shall stick to Ω(log n)

Less than log is too little space to remember locations
in the input

14

DSPACE and NSPACE
Measure of working memory (work-tape) used by a TM/NTM:
input kept in a read-only tape

Model allows o(n) memory usage

DSPACE(n) may already be inefficient in terms of time

We shall stick to Ω(log n)

Less than log is too little space to remember locations
in the input

DSPACE/NSPACE more robust across models

14

DSPACE and NSPACE
Measure of working memory (work-tape) used by a TM/NTM:
input kept in a read-only tape

Model allows o(n) memory usage

DSPACE(n) may already be inefficient in terms of time

We shall stick to Ω(log n)

Less than log is too little space to remember locations
in the input

DSPACE/NSPACE more robust across models

Constant factor (+O(log n)) simulation overhead

14

L ∈ NSPACE(S):
Two Equivalent views

15

L ∈ NSPACE(S):
Two Equivalent views

Non-deterministic M

15

L ∈ NSPACE(S):
Two Equivalent views

Non-deterministic M

input: x

15

L ∈ NSPACE(S):
Two Equivalent views

Non-deterministic M

input: x

makes non-det choices

15

L ∈ NSPACE(S):
Two Equivalent views

Non-deterministic M

input: x

makes non-det choices

x ∈ L iff some thread of

M accepts

15

L ∈ NSPACE(S):
Two Equivalent views

Non-deterministic M

input: x

makes non-det choices

x ∈ L iff some thread of

M accepts

in at most S(|x|) space

15

L ∈ NSPACE(S):
Two Equivalent views

Non-deterministic M

input: x

makes non-det choices

x ∈ L iff some thread of

M accepts

in at most S(|x|) space

Deterministic M’

15

L ∈ NSPACE(S):
Two Equivalent views

Non-deterministic M

input: x

makes non-det choices

x ∈ L iff some thread of

M accepts

in at most S(|x|) space

Deterministic M’

input: x and read-once w

15

L ∈ NSPACE(S):
Two Equivalent views

Non-deterministic M

input: x

makes non-det choices

x ∈ L iff some thread of

M accepts

in at most S(|x|) space

Deterministic M’

input: x and read-once w

reads bits from w (certificate)

15

L ∈ NSPACE(S):
Two Equivalent views

Non-deterministic M

input: x

makes non-det choices

x ∈ L iff some thread of

M accepts

in at most S(|x|) space

Deterministic M’

input: x and read-once w

reads bits from w (certificate)

x ∈ L iff for some cert. w,

M’ accepts

15

L ∈ NSPACE(S):
Two Equivalent views

Non-deterministic M

input: x

makes non-det choices

x ∈ L iff some thread of

M accepts

in at most S(|x|) space

Deterministic M’

input: x and read-once w

reads bits from w (certificate)

x ∈ L iff for some cert. w,

M’ accepts

in at most S(|x|) space

15

L ∈ NSPACE(S):
Two Equivalent views

Non-deterministic M

input: x

makes non-det choices

x ∈ L iff some thread of

M accepts

in at most S(|x|) space

Deterministic M’

input: x and read-once w

reads bits from w (certificate)

x ∈ L iff for some cert. w,

M’ accepts

in at most S(|x|) space

Equivalent

15

L and NL

16

L and NL

L = DSPACE(O(log n))

16

L and NL

L = DSPACE(O(log n))

L = ∪a,b > 0 DSPACE(a.log n+b)

16

L and NL

L = DSPACE(O(log n))

L = ∪a,b > 0 DSPACE(a.log n+b)

NL = NSPACE(O(log n))

16

L and NL

L = DSPACE(O(log n))

L = ∪a,b > 0 DSPACE(a.log n+b)

NL = NSPACE(O(log n))

NL = ∪a,b > 0 NSPACE(a.log n+b)

16

L and NL

L = DSPACE(O(log n))

L = ∪a,b > 0 DSPACE(a.log n+b)

NL = NSPACE(O(log n))

NL = ∪a,b > 0 NSPACE(a.log n+b)

“L and NL are to space what P and NP are to time”

16

Space Hierarchy

17

Space Hierarchy

UTM space-overhead is only a constant factor

17

Space Hierarchy

UTM space-overhead is only a constant factor

Tight hierarchy: if T(n) = o(T’(n)) (no log slack) then
DSPACE(T(n)) ⊊ DSPACE(T’(n))

17

Space Hierarchy

UTM space-overhead is only a constant factor

Tight hierarchy: if T(n) = o(T’(n)) (no log slack) then
DSPACE(T(n)) ⊊ DSPACE(T’(n))

Same for NSPACE

17

Space Hierarchy

UTM space-overhead is only a constant factor

Tight hierarchy: if T(n) = o(T’(n)) (no log slack) then
DSPACE(T(n)) ⊊ DSPACE(T’(n))

Same for NSPACE

Again, tighter than for NTIME (where in fact,
we needed T(n+1) = o(T’(n))

17

Space Hierarchy

UTM space-overhead is only a constant factor

Tight hierarchy: if T(n) = o(T’(n)) (no log slack) then
DSPACE(T(n)) ⊊ DSPACE(T’(n))

Same for NSPACE

Again, tighter than for NTIME (where in fact,
we needed T(n+1) = o(T’(n))

No “delayed flip,” because, as we will see
later, NSPACE(O(S)) = co-NSPACE(O(S))!

17

SPACE and TIME

18

SPACE and TIME
In time T(n), can use at most T(n) space

18

SPACE and TIME
In time T(n), can use at most T(n) space

DTIME(T) ⊆ DSPACE(T)

18

SPACE and TIME
In time T(n), can use at most T(n) space

DTIME(T) ⊆ DSPACE(T)

In fact, NTIME(T) ⊆ DSPACE(O(T)) (simulate with all T-long

certificates)

18

SPACE and TIME
In time T(n), can use at most T(n) space

DTIME(T) ⊆ DSPACE(T)

In fact, NTIME(T) ⊆ DSPACE(O(T)) (simulate with all T-long

certificates)

With space S(n), only 2O(S(n)) configurations (for S(n) = Ω(log n)).
So can take at most 2O(S(n)) time (else gets into an infinite loop)

18

SPACE and TIME
In time T(n), can use at most T(n) space

DTIME(T) ⊆ DSPACE(T)

In fact, NTIME(T) ⊆ DSPACE(O(T)) (simulate with all T-long

certificates)

With space S(n), only 2O(S(n)) configurations (for S(n) = Ω(log n)).
So can take at most 2O(S(n)) time (else gets into an infinite loop)

DSPACE(S) ⊆ DTIME(2O(S))

18

SPACE and TIME
In time T(n), can use at most T(n) space

DTIME(T) ⊆ DSPACE(T)

In fact, NTIME(T) ⊆ DSPACE(O(T)) (simulate with all T-long

certificates)

With space S(n), only 2O(S(n)) configurations (for S(n) = Ω(log n)).
So can take at most 2O(S(n)) time (else gets into an infinite loop)

DSPACE(S) ⊆ DTIME(2O(S))

In fact, NSPACE(S) ⊆ DTIME(2O(S))

18

NSPACE(S) ⊆ DTIME(2O(S))

19

NSPACE(S) ⊆ DTIME(2O(S))

 h=2(O(S))

19

NSPACE(S) ⊆ DTIME(2O(S))
Configuration graph as a DAG is of size 2O(S)

 h=2(O(S))

19

NSPACE(S) ⊆ DTIME(2O(S))
Configuration graph as a DAG is of size 2O(S)

Write down all configurations and
edges

 h=2(O(S))

19

NSPACE(S) ⊆ DTIME(2O(S))
Configuration graph as a DAG is of size 2O(S)

Write down all configurations and
edges

Can do it less explicitly if space
were a concern (but it’s not, here)

 h=2(O(S))

19

NSPACE(S) ⊆ DTIME(2O(S))
Configuration graph as a DAG is of size 2O(S)

Write down all configurations and
edges

Can do it less explicitly if space
were a concern (but it’s not, here)

Run (in poly time) any reachability
algorithm (say, breadth-first search)
to see if there is a (directed) path
from start config. to an accept config.

 h=2(O(S))

19

NSPACE(S) ⊆ DTIME(2O(S))
Configuration graph as a DAG is of size 2O(S)

Write down all configurations and
edges

Can do it less explicitly if space
were a concern (but it’s not, here)

Run (in poly time) any reachability
algorithm (say, breadth-first search)
to see if there is a (directed) path
from start config. to an accept config.

poly(2O(S)) = 2O(S)

 h=2(O(S))

19

SPACE and TIME

20

SPACE and TIME

DTIME(F)

NTIME(F)

20

SPACE and TIME

DTIME(F)

NTIME(F)

20

SPACE and TIME

DTIME(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

20

SPACE and TIME

DTIME(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

20

SPACE and TIME

DTIME(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

20

SPACE and TIME

DTIME(F)

DSPACE(F)

NSPACE(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

20

SPACE and TIME

DTIME(F)

DSPACE(F)

NSPACE(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

20

SPACE and TIME

DTIME(F)

DSPACE(F)

NSPACE(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

20

SPACE and TIME

DTIME(F)

DSPACE(F)

NSPACE(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

20

SPACE and TIME

DTIME(F)

DSPACE(F)

NSPACE(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

F=Ω(n) F=Ω(log n)

20

Space, Today

21

Space, Today

DSPACE, NSPACE

21

Space, Today

DSPACE, NSPACE

Tight hierarchy.

21

Space, Today

DSPACE, NSPACE

Tight hierarchy.

Connections with DTIME/NTIME

21

Space, Today

DSPACE, NSPACE

Tight hierarchy.

Connections with DTIME/NTIME

Next class

21

Space, Today

DSPACE, NSPACE

Tight hierarchy.

Connections with DTIME/NTIME

Next class

Savitch’s theorem: NSPACE(S) ⊆ DSPACE(S2)

21

Space, Today

DSPACE, NSPACE

Tight hierarchy.

Connections with DTIME/NTIME

Next class

Savitch’s theorem: NSPACE(S) ⊆ DSPACE(S2)

Hence PSPACE = NPSPACE

21

Space, Today

DSPACE, NSPACE

Tight hierarchy.

Connections with DTIME/NTIME

Next class

Savitch’s theorem: NSPACE(S) ⊆ DSPACE(S2)

Hence PSPACE = NPSPACE
PSPACE-completeness and NL-completeness

21

Space, Today

DSPACE, NSPACE

Tight hierarchy.

Connections with DTIME/NTIME

Next class

Savitch’s theorem: NSPACE(S) ⊆ DSPACE(S2)

Hence PSPACE = NPSPACE
PSPACE-completeness and NL-completeness
NSPACE = co-NSPACE

21

Space, Today

P

PSPACE

EXP

NP

NEXP

L

NL

NPSPACE

DSPACE, NSPACE

Tight hierarchy.

Connections with DTIME/NTIME

Next class

Savitch’s theorem: NSPACE(S) ⊆ DSPACE(S2)

Hence PSPACE = NPSPACE
PSPACE-completeness and NL-completeness
NSPACE = co-NSPACE

21

