Computational
Complexity

Lecture 4
in which Diagonalization takes on itself,
and we enter Space Complexity
(But first Ladner's Theorem)
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@ No!

@ Can show an NP language which is neither in P,
nor NP complete (unless P = NP)
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@ SATh = §{ (x,pad) | x € SAT and Ipad|=|x|Hx)}
@ H(Ix|) will be computable in poly(Ix|) time. SATH in NP.
@ If SATh in P and H(Ix|) bounded by const. then SAT in P!

o |pad| < |xI” implies SAT <p SATH

o If SATy is NPC (= SATH not in P) and H(|x|) goes to infinity,
then SAT in P!
@ Suppose f(x) = (x',pad), I(x",pad)l < clxlc. If |x'[>|x|/2,

then |pad| = Ix|FXD 5 ¢|x|¢ (for long enough x). So Ix’| is
at most |x|/2. Repeat to solve SAT

@ To define H s.t. H(n) bounded by const. iff SATy in P
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Proof (ctd.)

@ M; be it TM. T; be i polynomial (i.e., Ti(t)=i.t')

@ M|Ti; be M, restricted to Ti 2
74
log n
@ Put 1 at (i,1) if MilTi agrees m i

with SATH on all z, |z|=t; 2 | = 2 | s | s
else put
@ H(n) be least i < log log n s.t.
MilTi correct for all |zl<log n
o H is poly-time computable " X X X
@ SATH in P iff H(n) < i*
X

@ Both equivalent to having

a row of all
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Meta-Questions

“Real” Questions "Meta” Questions
<€ '
SAT in DTIME(n?)? What can we do with an

oracle for SAT?
Is my problem
NP-complete? Will this proof technique
work?
Results non-specialists
would care about Tools & Techniques,
infermediate results

Under-the-hood stuff
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@ Often entire theorems/proofs carry over, with the
oracle tagging along

@ e.g. Time hierarchy theorems (and proofs!) hold
for machines with access to any given oracle A

@ Said to "relativize”
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P vs. NP with oracles

® How does P vs. NP fare relative to different oracles?
@ Does their relation (equality or not) relativize?

® No! Different in different worlds!

@ There exist languages A, B such that P" =
NP#, but PB = NPB!
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A s.t. PASNPS

o If A is EXP-complete (w.r.t <cook or =<p), P#= NP” = EXP
® A EXP-hard = EXP C PAc NPA
@ A in EXP = NP” C EXP" = EXP (note: NP C EXP, by
trying all possible witnesses)

@ A simple EXP-complete language:

@ EXPTM = { (M,x,1") | TM represented by M accepts x
within time 2" }
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@ L in NP8, To do: L not in PB
@ For each i, ensure M® in
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Building B and L, s.t. L in NPB\pP®
& L={1"| 3w, |wl=n and weB}

@ L in NP8, To do: L not in PB
@ For each i, ensure M® in
2"! time gets L(1") wrong
(for some new n)

0 1 000110 11 In

L

& Pick n s.t. B not yet set B A A
beyond 1", Run M; on 1"
for 2™! steps.

ln

@ When M; queries B on N
x > 11, set B(X)=0 - N TN [T

@ After M; finished set B up
to x=1" s.t. L(1") # MB(1")
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Meta-Result of the Day

@ P vs. NP cannot be resolved using a relativizing proof
@ "Diagonalization proofs” relativize

@ Just need a way to enumerate/encode
machines, and to simulate one without much
overhead given its encoding

@ Do not further depend on internals of
computation

@ e.g. of non-relativizing proof: that of Cook-Levin
theorem
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Space Complexity

@ Natural complexity question
@ How much memory is needed
@ More pressing than time:
@ Cant generate memory on the fly
@ Or maybe less pressing:

@ Turns ouf, often a little memory can go a long
way (if we can spare the time)
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@ Measure of working memory (work-tape) used by a TM/NTM:
input kept in a read-only tape

® Model allows o(n) memory usage
@ DSPACE(n) may already be inefficient in terms of time
@ We shall stick to Q(log n)

@ Less than log is too little space to remember locations
iIn the input

@ DSPACE/NSPACE more robust across models

@ Constant factor (+O(log n)) simulation overhead
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Two Equivalent views

M "N

@ Non-deterministic M @& Deterministic M’
@ input: X @ input: X and read-once w
® makes non-det choices @ reads bits from w (certificate)

@ X € L iff some thread of| @ x € L iff for some cert. w,

M accepts M’ accepts
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L and NL

@ L = DSPACE(O(log n))

@ L = Ugyp s 0 DSPACE(a.log n+b)
@ NL = NSPACE(O(log n))

® NL = Ugp > 0 NSPACE(a.log n+b)

@ "L and NL are to space what P and NP are to time”
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Space Hierarchy

@ UTM space-overhead is only a constant factor

@ Tight hierarchy: if T(n) = o(T"(n)) (no log slack) then
DSPACE(T(n)) &€ DSPACE(T'(n))

® Same for NSPACE

@ Again, tighter than for NTIME (where in fact,
we needed T(n+1) = o(T'(n) )

@ No “"delayed flip,” because, as we will see
later, NSPACE(O(S)) = co-NSPACE(O(S))!
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SPACE and TIME

@ In time T(n), can use at most T(n) space
@ DTIME(T) € DSPACE(T)
@ In fact, NTIME(T) <€ DSPACE(O(T)) (simulate with all T-long
certificates)

@ With space S(n), only 296G configurations (for S(n) = Q(log n)).
So can take at most 209G time (else gets into an infinite loop)

& DSPACE(S) € DTIME(200)

@ In fact, NSPACE(S) € DTIME(2°0)
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@ Configuration graph as a DAG is of size ZAO(S) E
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® Write down all configurations and
edges

@ Can do it less explicitly if space
were a concern (but it's not, here)

\
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NSPACE(S)

@ Configuration graph as a DAG is of size ZAO(S)

® Write down all configurations and
edges

@ Can do it less explicitly if space
were a concern (but it's not, here)

@ Run (in poly time) any reachability
algorithm (say, breadth-first search)
to see if there is a (directed) path
from start config. fo an accept conﬁg

@ poly(2°0)) = 206

h= 2(o<s»

DTIME(2°0))

@\

\

b b¢
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SPACE and TIME

NTIME(2°F)

F=Q(n)
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