Computational Complexity

Lecture 4 in which Diagonalization takes on itself, and we enter Space Complexity (But first Ladner's Theorem)

If P≠NP, then are all non-P NP languages equally hard? (Are all NP-complete?)

If P≠NP, then are all non-P NP languages equally hard? (Are all NP-complete?)

Ø No!

If P≠NP, then are all non-P NP languages equally hard? (Are all NP-complete?)

Ø No!

Can show an NP language which is neither in P, nor NP complete (unless P = NP)

Ladner's Theorem: Proof

Ladner's Theorem: Proof

SAT_H = { (x,pad) | x ∈ SAT and $|pad|=|x|^{H(|x|)}$ }

Ladner's Theorem: Proof

SAT_H = { (x,pad) | x ∈ SAT and |pad|=|x|^{H(|x|)}}

• H(|x|) will be computable in poly(|x|) time. SAT_H in NP.

Ladner's Theorem: Proof SAT_H = { (x,pad) | x ∈ SAT and |pad|=|x|^{H(|x|)}} H(|x|) will be computable in poly(|x|) time. SAT_H in NP. If SAT_H in P and H(|x|) bounded by const. then SAT in P!

Ladner's Theorem: Proof
SAT_H = { (x,pad) | x ∈ SAT and |pad|=|x|^{H(|x|)}}
H(|x|) will be computable in poly(|x|) time. SAT_H in NP.
If SAT_H in P and H(|x|) bounded by const. then SAT in P!
|pad| < |x|^{i*} implies SAT ≤_P SAT_H

Ladner's Theorem: Proof SAT_H = { (x,pad) | x ∈ SAT and |pad|=|x|^{H(|x|)}} • H(|x|) will be computable in poly(|x|) time. SAT_H in NP. • If SAT_H in P and H(|x|) bounded by const. then SAT in P! If SAT_H is NPC (⇒ SAT_H not in P) and H(|x|) goes to infinity, then SAT in P!

Ladner's Theorem: Proof SAT_H = { (x,pad) | x ∈ SAT and $|pad| = |x|^{H(|x|)}$ } • H(|x|) will be computable in poly(|x|) time. SAT_H in NP. • If SAT_H in P and H(|x|) bounded by const. then SAT in P! If SAT_H is NPC (⇒ SAT_H not in P) and H(|x|) goes to infinity, then SAT in P!

 Suppose f(x) = (x',pad), |(x',pad)| ≤ c|x|^c. If |x'|>|x|/2, then |pad| = |x'|^{H(|x'|)} > c|x|^c (for long enough x). So |x'| is at most |x|/2. Repeat to solve SAT

Ladner's Theorem: Proof SAT_H = { (x,pad) | x ∈ SAT and |pad|=|x|^{H(|x|)}} • H(|x|) will be computable in poly(|x|) time. SAT_H in NP. • If SAT_H in P and H(|x|) bounded by const. then SAT in P! If SAT_H is NPC (⇒ SAT_H not in P) and H(|x|) goes to infinity, then SAT in P!

 Suppose f(x) = (x',pad), |(x',pad)| ≤ c|x|^c. If |x'|>|x|/2, then |pad| = |x'|^{H(|x'|)} > c|x|^c (for long enough x). So |x'| is at most |x|/2. Repeat to solve SAT

• To define H s.t. H(n) bounded by const. iff SAT_H in P

Mi be ith TM. Ti be ith polynomial (i.e., Ti(t)=i.tⁱ)

Mi be ith TM. Ti be ith polynomial (i.e., Ti(t)=i.tⁱ)

MilTi be Mi restricted to Ti

Mi be ith TM. Ti be ith polynomial (i.e., Ti(t)=i.tⁱ)

MilTi be Mi restricted to Ti

z MilTi									
		\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	
	\mathbf{X}	\mathbf{X}		\mathbf{X}		\mathbf{X}	\mathbf{X}		
								\mathbf{X}	X
			\mathbf{X}		\mathbf{X}		\mathbf{X}		\checkmark
			\mathbf{X}	\mathbf{X}	X	\mathbf{X}		\mathbf{X}	\mathbf{X}
	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}
	\mathbf{X}		\mathbf{X}		\mathbf{X}		\mathbf{X}		

- Mi be ith TM. Ti be ith polynomial (i.e., Ti(t)=i.tⁱ)
- MilTi be Mi restricted to Ti
- Put I at (i,t) if M_i|T_i agrees with SAT_H on all z, |z|=t; else put ⊠

z MilTi									
		\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	
	\mathbf{X}	\mathbf{X}		\mathbf{X}		\mathbf{X}	\mathbf{X}		
								X	\mathbf{X}
			\mathbf{X}		X		X		
			X	X	X	\mathbf{X}		\mathbf{X}	\mathbf{X}
	\mathbf{X}	X	\mathbf{X}	\mathbf{X}	X	X			\mathbf{X}
	\mathbf{X}		\mathbf{X}		\mathbf{X}		X		

- Mi be ith TM. Ti be ith polynomial (i.e., Ti(t)=i.tⁱ)
- MilTi be Mi restricted to Ti
- Put I at (i,t) if M_i|T_i agrees with SAT_H on all z, |z|=t; else put ⊠
- H(n) be least i < log log n s.t.
 M_i|T_i correct for all |z|<log n

z Mi Ti									
		\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	
	\mathbf{X}	\mathbf{X}		\mathbf{X}		\mathbf{X}	X		
								\mathbf{X}	\mathbf{X}
			X		X		X	V	
		V	X	X	X	X		X	\mathbf{X}
	X	\mathbf{X}	X	X	\mathbf{X}	\mathbf{X}			\mathbf{X}
	\mathbf{X}		\mathbf{X}		\mathbf{X}		\mathbf{X}		

- Mi be ith TM. Ti be ith polynomial (i.e., Ti(t)=i.tⁱ)
- MilTi be Mi restricted to Ti
- Put I at (i,t) if M_i|T_i agrees with SAT_H on all z, |z|=t; else put ⊠
- H(n) be least i < log log n s.t.
 M_i|T_i correct for all |z|<log n

z MilTi							log n		
	\checkmark	X	X	\checkmark	X	X	X	\mathbf{X}	
	X	X	\checkmark	X	\checkmark	X	X		
	\checkmark	\mathbf{X}	\mathbf{X}						
log log n	\checkmark	\checkmark	X	\checkmark	X	\checkmark	X		I
			\mathbf{X}	X	X	\mathbf{X}		\mathbf{X}	\mathbf{X}
	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}
	\mathbf{X}		\mathbf{X}		\mathbf{X}		X		

- Mi be ith TM. Ti be ith polynomial (i.e., Ti(t)=i.tⁱ)
- MilTi be Mi restricted to Ti
- Put I at (i,t) if M_i|T_i agrees with SAT_H on all z, |z|=t; else put ⊠
- H(n) be least i < log log n s.t.
 M_i|T_i correct for all |z|<log n

Izl MilTi							log n		
	√	X	X	\checkmark	X	X	X	\mathbf{X}	
	X	X	\checkmark	X	\checkmark	X	\mathbf{X}		
		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\mathbf{X}	\mathbf{X}
log log n	\checkmark	\checkmark	X	\checkmark	X	\checkmark	\mathbf{X}		
			\mathbf{X}	\mathbf{X}	X	\mathbf{X}		\mathbf{X}	\mathbf{X}
	X	X	\mathbf{X}	\mathbf{X}	X	\mathbf{X}			\mathbf{X}
	\mathbf{X}		\mathbf{X}		\mathbf{X}		X		

- Mi be ith TM. Ti be ith polynomial (i.e., Ti(t)=i.tⁱ)
- MilTi be Mi restricted to Ti
- Put I at (i,t) if M_i|T_i agrees with SAT_H on all z, |z|=t; else put I
- H(n) be least i < log log n s.t. M_i|T_i correct for all |z|<log n</p>
- H is poly-time computable

- Mi be ith TM. Ti be ith polynomial (i.e., Ti(t)=i.tⁱ)
- MilTi be Mi restricted to Ti
- Put I at (i,t) if M_i|T_i agrees with SAT_H on all z, |z|=t; else put I
- H(n) be least i < log log n s.t. M_i|T_i correct for all |z|<log n</p>
- H is poly-time computable
- SAT_H in P iff H(n) < i[★]

Izl MilTi							log n		
	√	X	X	\checkmark	X	X	\mathbf{X}	\mathbf{X}	
	X	X	\checkmark	X	\checkmark	X	\mathbf{X}		
		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\mathbf{X}	\mathbf{X}
log log n	\checkmark	\checkmark	\mathbf{X}	\checkmark	\mathbf{X}	\checkmark	\mathbf{X}		\checkmark
			\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}
	X	\mathbf{X}	\mathbf{X}	X	\mathbf{X}	\mathbf{X}			\mathbf{X}
	X		\mathbf{X}		\mathbf{X}		\mathbf{X}		

- Mi be ith TM. Ti be ith polynomial (i.e., Ti(t)=i.tⁱ)
- M_i|T_i be M_i restricted to T_i
- Put I at (i,t) if M_i|T_i agrees with SAT_H on all z, |z|=t; else put ⊠
- H(n) be least i < log log n s.t. M_i|T_i correct for all |z|<log n</p>
- H is poly-time computable
- SAT_H in P iff H(n) < i[★]
 - Both equivalent to having a row of all

	z MilTi							log n		
		√	X	X	\checkmark	X	X	X	X	
		\mathbf{X}	X	\checkmark	X	\checkmark	X	\mathbf{X}		
-			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\mathbf{X}	\mathbf{X}
	log log n	\checkmark	\checkmark	X	\checkmark	X	√	X		
				\mathbf{X}	\mathbf{X}	X	\mathbf{X}	V	\mathbf{X}	\mathbf{X}
		X	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	V		\mathbf{X}
		X		\mathbf{X}		X		X		\checkmark

"Real" Questions

"Real" Questions

"Meta" Questions

"Real" Questions

"Meta" Questions

SAT in DTIME(n²)?

"Real" Questions

"Meta" Questions

SAT in DTIME(n²)?

Is my problem NP-complete?

"Real" Questions

"Meta" Questions

SAT in $DTIME(n^2)$?

Is my problem NP-complete?

Results non-specialists would care about

"Real" Questions

"Meta" Questions

SAT in $DTIME(n^2)$?

Is my problem NP-complete?

Results non-specialists would care about What can we do with an oracle for SAT?

"Real" Questions

SAT in $DTIME(n^2)$?

Is my problem NP-complete?

Results non-specialists would care about "Meta" Questions

What can we do with an oracle for SAT?

Will this proof technique work?

"Real" Questions

SAT in $DTIME(n^2)$?

Is my problem NP-complete?

Results non-specialists would care about "Meta" Questions

What can we do with an oracle for SAT?

Will this proof technique work?

Tools & Techniques, intermediate results

"Real" Questions

SAT in $DTIME(n^2)$?

Is my problem NP-complete?

Results non-specialists would care about "Meta" Questions

What can we do with an oracle for SAT?

Will this proof technique work?

Tools & Techniques, intermediate results

Under-the-hood stuff
What if we had an oracle for language A

What if we had an oracle for language A
 O Class P^A: L ∈ P^A if

What if we had an oracle for language A
 Class P^A: L ∈ P^A if
 L decided by a TM M^A, in poly time

What if we had an oracle for language A
Class P^A: L ∈ P^A if
L decided by a TM M^A, in poly time
Turing reduction: L ≤_T A

What if we had an oracle for language A
Class P^A: L ∈ P^A if
L decided by a TM M^A, in poly time
Turing reduction: L ≤_T A
Class NP^A: L ∈ NP^A if

What if we had an oracle for language A
Class P^A: L ∈ P^A if
L decided by a TM M^A, in poly time
Turing reduction: L ≤_T A
Class NP^A: L ∈ NP^A if
L decided by an NTM M^A, in poly time

What if we had an oracle for language A \oslash Class P^A : $L \in P^A$ if L decided by a TM M^A, in poly time
 L decided by an NTM M^A, in poly time Ø Equivalently, L = {x| ∃w, |w| < poly(|x|) s.t. (x,w) ∈ L' },
</p> where L' is in P^A

What if we had an oracle for language A \oslash Class P^A : $L \in P^A$ if L decided by a TM M^A, in poly time
 Turing reduction: L ≤_T A
 L decided by an NTM M^A, in poly time
 carries over! where L' is in PA

Often entire theorems/proofs carry over, with the oracle tagging along

Often entire theorems/proofs carry over, with the oracle tagging along

 e.g. Time hierarchy theorems (and proofs!) hold for machines with access to any given oracle A

Often entire theorems/proofs carry over, with the oracle tagging along

e.g. Time hierarchy theorems (and proofs!) hold for machines with access to any given oracle A

Said to "relativize"

How does P vs. NP fare relative to different oracles?

How does P vs. NP fare relative to different oracles?
Does their relation (equality or not) relativize?

How does P vs. NP fare relative to different oracles?
Does their relation (equality or not) relativize?
No! Different in different worlds!

How does P vs. NP fare relative to different oracles?
 Does their relation (equality or not) relativize?
 No! Different in different worlds!
 There exist languages A, B such that P^A = NP^A, but P^B ≠ NP^B!

If A is EXP-complete (w.r.t ≤_{Cook} or ≤_P), $P^A = NP^A = EXP$

If A is EXP-complete (w.r.t ≤_{Cook} or ≤_P), P^A = NP^A = EXP
 A EXP-hard ⇒ EXP ⊆ P^A ⊆ NP^A

If A is EXP-complete (w.r.t ≤_{Cook} or ≤_P), P^A = NP^A = EXP
A EXP-hard ⇒ EXP ⊆ P^A ⊆ NP^A
A in EXP ⇒ NP^A ⊆ EXP^A = EXP (note: NP ⊆ EXP, by trying all possible witnesses)

If A is EXP-complete (w.r.t ≤_{Cook} or ≤_P), $P^A = NP^A = EXP$

 \bigcirc A EXP-hard \Rightarrow EXP \subseteq P^A \subseteq NP^A

A in EXP ⇒ NP^A ⊆ EXP^A = EXP (note: NP ⊆ EXP, by
 trying all possible witnesses)

A simple EXP-complete language:

- If A is EXP-complete (w.r.t ≤_{Cook} or ≤_P), $P^A = NP^A = EXP$
 - \bigcirc A EXP-hard \Rightarrow EXP \subseteq P^A \subseteq NP^A
 - A in EXP ⇒ NP^A ⊆ EXP^A = EXP (note: NP ⊆ EXP, by
 trying all possible witnesses)
- A simple EXP-complete language:
 - EXPTM = { (M,x,1ⁿ) | TM represented by M accepts x within time 2ⁿ }

B s.t. $P^B \neq NP^B$

B s.t. $P^{B} \neq NP^{B}$ Building B and L, s.t. L in NP^B\P^B

B s.t. $P^{B} \neq NP^{B}$ Building B and L, s.t. L in $NP^{B} \setminus P^{B}$ $L = \{1^{n} \mid \exists w, |w| = n \text{ and } w \in B\}$

B s.t. $P^{B} \neq NP^{B}$ Building B and L, s.t. L in $NP^{B} \setminus P^{B}$ $L=\{1^{n} \mid \exists w, |w|=n \text{ and } w \in B\}$

B s.t. $P^{B} \neq NP^{B}$ Building B and L, s.t. L in $NP^{B} \setminus P^{B}$ $L=\{1^{n} \mid \exists w, |w|=n \text{ and } w \in B\}$

B s.t. $P^{B} \neq NP^{B}$ Building B and L, s.t. L in $NP^{B} \setminus P^{B}$ $\leq L=\{1^{n} \mid \exists w, |w|=n \text{ and } w \in B\}$

B s.t. $P^{B} \neq NP^{B}$ Building B and L, s.t. L in NP^B\P^B ↓ L={1ⁿ| ∃w, |w|=n and w∈B}

B s.t. P^B ≠ NP^B Building B and L, s.t. L in NP^B\P^B L={1ⁿ| ∃w, |w|=n and w∈B} L in NP^B. To do: L not in P^B

B s.t. P^B ≠ NP^B
Building B and L, s.t. L in NP^B\P^B
L={1ⁿ| ∃w, |w|=n and w∈B}
L in NP^B. To do: L not in P^B
For each i, ensure M^B_i in 2ⁿ⁻¹ time gets L(1ⁿ) wrong (for some new n)

B s.t. P^B ≠ NP^B
Building B and L, s.t. L in NP^B\P^B
L={1ⁿ| ∃w, |w|=n and w∈B}
L in NP^B. To do: L not in P^B
For each i, ensure M^B in 2ⁿ⁻¹ time gets L(1ⁿ) wrong (for some new n)

B s.t. P^B ≠ NP^B
Building B and L, s.t. L in NP^B\P^B
L={1ⁿ| ∃w, |w|=n and w∈B}
L in NP^B. To do: L not in P^B
For each i, ensure M^B in 2ⁿ⁻¹ time gets L(1ⁿ) wrong (for some new n)

B s.t. P^B ≠ NP^B
Building B and L, s.t. L in NP^B\P^B
L={1ⁿ| ∃w, |w|=n and w∈B}
L in NP^B. To do: L not in P^B
For each i, ensure M^B in 2ⁿ⁻¹ time gets L(1ⁿ) wrong (for some new n)

- Pick n s.t. B not yet set beyond 1ⁿ⁻¹. Run M_i on 1ⁿ for 2ⁿ⁻¹ steps.
- When M_i queries B on
 x > 1ⁿ⁻¹, set B(X)=0

- Pick n s.t. B not yet set beyond 1ⁿ⁻¹. Run M_i on 1ⁿ for 2ⁿ⁻¹ steps.
- When M_i queries B on
 x > 1ⁿ⁻¹, set B(X)=0
- After M_i finished set B up to x=1ⁿ s.t. L(1ⁿ) ≠ M_i^B(1ⁿ)

P vs. NP cannot be resolved using a relativizing proof

P vs. NP cannot be resolved using a relativizing proof
 "Diagonalization proofs" relativize

P vs. NP cannot be resolved using a relativizing proof

Diagonalization proofs' relativize

Just need a way to enumerate/encode machines, and to simulate one without much overhead given its encoding

P vs. NP cannot be resolved using a relativizing proof

Diagonalization proofs" relativize

Just need a way to enumerate/encode machines, and to simulate one without much overhead given its encoding

Do not further depend on internals of computation

P vs. NP cannot be resolved using a relativizing proof

Diagonalization proofs" relativize

Just need a way to enumerate/encode machines, and to simulate one without much overhead given its encoding

Do not further depend on internals of computation

e.g. of non-relativizing proof: that of Cook-Levin theorem

Natural complexity question

Natural complexity question

How much memory is needed

Natural complexity question
How much memory is needed
More pressing than time:

Natural complexity question
How much memory is needed
More pressing than time:
Can't generate memory on the fly

Natural complexity question
How much memory is needed
More pressing than time:
Can't generate memory on the fly
Or maybe less pressing:

Natural complexity question How much memory is needed More pressing than time: Can't generate memory on the fly Or maybe less pressing: Turns out, often a little memory can go a long way (if we can spare the time)

Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape

Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape

Model allows o(n) memory usage

Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape

Model allows o(n) memory usage

DSPACE(n) may already be inefficient in terms of time

Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape

Model allows o(n) memory usage

DSPACE(n) may already be inefficient in terms of time
 We shall stick to Ω(log n)

Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape

Model allows o(n) memory usage

DSPACE(n) may already be inefficient in terms of time

• We shall stick to $\Omega(\log n)$

Less than log is too little space to remember locations in the input

Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape

Model allows o(n) memory usage

DSPACE(n) may already be inefficient in terms of time

• We shall stick to $\Omega(\log n)$

Less than log is too little space to remember locations in the input

DSPACE/NSPACE more robust across models

Measure of working memory (work-tape) used by a TM/NTM: input kept in a read-only tape

Model allows o(n) memory usage

DSPACE(n) may already be inefficient in terms of time

• We shall stick to $\Omega(\log n)$

Less than log is too little space to remember locations in the input

DSPACE/NSPACE more robust across models

Constant factor (+O(log n)) simulation overhead

Non-deterministic M

Non-deterministic M

- Non-deterministic M
- ∅ input: x
- makes non-det choices

- Non-deterministic M
- ø input: x
- makes non-det choices
 x ∈ L iff some thread of
 M accepts

- Non-deterministic M
- ø input: x
- makes non-det choices
 x ∈ L iff some thread of
 M accepts
- in at most S(|x|) space
- Non-deterministic M
- makes non-det choices
 x ∈ L iff some thread of
 M accepts
- in at most S(|x|) space

Deterministic M'

- Non-deterministic M
- makes non-det choices
 x ∈ L iff some thread of
 M accepts
- in at most S(|x|) space

- Ø Deterministic M'

- Non-deterministic M
- makes non-det choices

Deterministic M'
input: x and read-once w
reads bits from w (certificate)

- Non-deterministic M
- makes non-det choices
- $x \in L$ iff some thread of M accepts
- Deterministic M'
 input: x and read-once w
 reads bits from w (certificate)
 x ∈ L iff for some cert. w, M' accepts

- Non-deterministic M
- makes non-det choices
- $x \in L$ iff some thread of M accepts
- Deterministic M'
 input: x and read-once w
 reads bits from w (certificate)
 x ∈ L iff for some cert. w, M' accepts
- ∅ in at most S(|x|) space

- Non-deterministic M
- ø input: x
- makes non-det choices
- ∞ x ∈ L iff some thread ofM accepts
- Deterministic M'
 input: x and read-once w
 reads bits from w (certificate)
 x ∈ L iff for some cert. w, M' accepts
- ∅ in at most S(|x|) space

 \odot L = DSPACE(O(log n))

L = DSPACE(O(log n))
 L = U_{a,b > 0} DSPACE(a.log n+b)

L = DSPACE(O(log n))
 L = U_{a,b > 0} DSPACE(a.log n+b)
 NL = NSPACE(O(log n))

L = DSPACE(O(log n))
 L = U_{a,b > 0} DSPACE(a.log n+b)
 NL = NSPACE(O(log n))
 NL = U_{a,b > 0} NSPACE(a.log n+b)

L = DSPACE(O(log n))
L = U_{a,b > 0} DSPACE(a.log n+b)
NL = NSPACE(O(log n))
NL = U_{a,b > 0} NSPACE(a.log n+b)
*L and NL are to space what P and NP are to time"

OUTM space-overhead is only a constant factor

OUTM space-overhead is only a constant factor

Tight hierarchy: if T(n) = o(T'(n)) (no log slack) then DSPACE(T(n)) ⊊ DSPACE(T'(n))

OUTM space-overhead is only a constant factor

Tight hierarchy: if T(n) = o(T'(n)) (no log slack) then DSPACE(T(n)) ⊊ DSPACE(T'(n))

Same for NSPACE

OUTM space-overhead is only a constant factor

Tight hierarchy: if T(n) = o(T'(n)) (no log slack) then DSPACE(T(n)) ⊊ DSPACE(T'(n))

Same for NSPACE

Again, tighter than for NTIME (where in fact, we needed T(n+1) = o(T'(n))

OUTM space-overhead is only a constant factor

- Tight hierarchy: if T(n) = o(T'(n)) (no log slack) then DSPACE(T(n)) ⊊ DSPACE(T'(n))
- Same for NSPACE
 - Again, tighter than for NTIME (where in fact, we needed T(n+1) = o(T'(n))

No "delayed flip," because, as we will see later, NSPACE(O(S)) = co-NSPACE(O(S))!

In time T(n), can use at most T(n) space

In time T(n), can use at most T(n) space

In time T(n), can use at most T(n) space

In fact, NTIME(T) ⊆ DSPACE(O(T)) (simulate with all T-long certificates)

In time T(n), can use at most T(n) space

In fact, NTIME(T) ⊆ DSPACE(O(T)) (simulate with all T-long certificates)

• With space S(n), only $2^{O(S(n))}$ configurations (for S(n) = $\Omega(\log n)$). So can take at most $2^{O(S(n))}$ time (else gets into an infinite loop)

In time T(n), can use at most T(n) space

In fact, NTIME(T) ⊆ DSPACE(O(T)) (simulate with all T-long certificates)

 With space S(n), only 2^{O(S(n))} configurations (for S(n) = Ω(log n)). So can take at most 2^{O(S(n))} time (else gets into an infinite loop)
 DSPACE(S) ⊆ DTIME(2^{O(S)})

In time T(n), can use at most T(n) space

In fact, NTIME(T) ⊆ DSPACE(O(T)) (simulate with all T-long certificates)

With space S(n), only 2^{O(S(n))} configurations (for S(n) = Ω(log n)).
 So can take at most 2^{O(S(n))} time (else gets into an infinite loop)

In fact, NSPACE(S) ⊆ DTIME(2^{O(S)})

 $h=2^{(O(S))}$

h=2^{(O(S))}

Configuration graph <u>as a DAG</u> is of size 2^{O(S)}

Configuration graph <u>as a DAG</u> is of size 2^{O(S)}

 Write down all configurations and edges

Configuration graph <u>as a DAG</u> is of size 2^{O(S)}

 Write down all configurations and edges

Can do it less explicitly if space
 were a concern (but it's not, here)

- Configuration graph <u>as a DAG</u> is of size 2^{O(S)}
 - Write down all configurations and edges
 - Can do it less explicitly if space
 were a concern (but it's not, here)
 - Run (in poly time) any reachability algorithm (say, breadth-first search) to see if there is a (directed) path from start config. to an accept config.

 $h=2^{(O(S))}$

- Configuration graph <u>as a DAG</u> is of size 2^{O(S)}
 - Write down all configurations and edges
 - Can do it less explicitly if space
 were a concern (but it's not, here)
 - Run (in poly time) any reachability algorithm (say, breadth-first search) to see if there is a (directed) path from start config. to an accept config.
 - $o poly(2^{O(S)}) = 2^{O(S)}$

Ø DSPACE, NSPACE

Ø DSPACE, NSPACE

Tight hierarchy.

- DSPACE, NSPACE
- Tight hierarchy.
- Connections with DTIME/NTIME

- Ø DSPACE, NSPACE
- Tight hierarchy.
- Connections with DTIME/NTIME
- Next class

- Ø DSPACE, NSPACE
- Tight hierarchy.
- Connections with DTIME/NTIME
- Next class

Savitch's theorem: NSPACE(S) ⊆ DSPACE(S²)

- **Ø** DSPACE, NSPACE
- Tight hierarchy.
- Connections with DTIME/NTIME
- Next class

Savitch's theorem: NSPACE(S) ⊆ DSPACE(S²)
 Hence PSPACE = NPSPACE

- DSPACE, NSPACE
- Tight hierarchy.
- Connections with DTIME/NTIME
- Next class

Savitch's theorem: NSPACE(S) ⊆ DSPACE(S²)
 Hence PSPACE = NPSPACE
 PSPACE-completeness and NL-completeness

- Ø DSPACE, NSPACE
- Tight hierarchy.
- Connections with DTIME/NTIME
- Next class
 - Savitch's theorem: NSPACE(S) ⊆ DSPACE(S²)
 Hence PSPACE = NPSPACE
 PSPACE-completeness and NL-completeness
 NSPACE = co-NSPACE

- Ø DSPACE, NSPACE
- Tight hierarchy.
- Connections with DTIME/NTIME
- Next class

Savitch's theorem: NSPACE(S) ⊆ DSPACE(S²)

Hence PSPACE = NPSPACE
 PSPACE-completeness and NL-completeness
 NSPACE = co-NSPACE