Computational
Complexity

Lecture 4
in which Diagonalization takes on itself,
and we enter Space Complexity
(But first Ladner's Theorem)

Ladner’s Theorem

Ladner’s Theorem

Ladner’s Theorem

@ If P#NP, then are all non-P NP languages equally
hard? (Are all NP-complete?)

Ladner’s Theorem

@ If P#NP, then are all non-P NP languages equally
hard? (Are all NP-complete?)

@ No!

Ladner’s Theorem

@ If P#NP, then are all non-P NP languages equally
hard? (Are all NP-complete?)

@ No!

@ Can show an NP language which is neither in P,
nor NP complete (unless P = NP)

Ladner’s Theorem: Proof

Ladner’s Theorem: Proof

@ SATh = { (x,pad) | x € SAT and |padl=Ix|*N}

Ladner’s Theorem: Proof

@ SATh = { (x,pad) | x € SAT and |padl=Ix|*N}

@ H(Ix|) will be computable in poly(|x|) time. SATy4 in NP.

Ladner’s Theorem: Proof

@ SATh = { (x,pad) | x € SAT and |padl=Ix|*N}

@ H(Ix|) will be computable in poly(|x|) time. SATy4 in NP.

@ If SATh in P and H(Ix|) bounded by const. then SAT in P!

Ladner’s Theorem: Proof

@ SATh = { (x,pad) | x € SAT and |padl=Ix|*N}
@ H(Ix|) will be computable in poly(|x|) time. SATy4 in NP.

@ If SATh in P and H(Ix|) bounded by const. then SAT in P!

o lpadl| < Ix|I™ implies SAT <p SATH

Ladner’s Theorem: Proof

@ SATh = { (x,pad) | x € SAT and |padl=Ix|*N}
@ H(Ix|) will be computable in poly(|x|) time. SATy4 in NP.

@ If SATh in P and H(Ix|) bounded by const. then SAT in P!

o |pad| < |xI” implies SAT <p SATH
o If SATy is NPC (= SATH not in P) and H(|x|) goes to infinity,

then SAT in P!

Ladner’s Theorem: Proof

@ SATh = §{ (x,pad) | x € SAT and Ipad|=|x|Hx)}
@ H(Ix|) will be computable in poly(Ix|) time. SATH in NP.
@ If SATh in P and H(Ix|) bounded by const. then SAT in P!

o |pad| < |xI” implies SAT <p SATH
o If SATy is NPC (= SATH not in P) and H(|x|) goes to infinity,

then SAT in P!

@ Suppose f(x) = (x',pad), |(x’,pad)l < clxl|c. If |x'[>Ix|/2,
then |pad| = Ix|FXD 5 ¢|x|¢ (for long enough x). So Ix’| is
at most |x|/2. Repeat to solve SAT

Ladner’s Theorem: Proof

@ SATh = §{ (x,pad) | x € SAT and Ipad|=|x|Hx)}
@ H(Ix|) will be computable in poly(Ix|) time. SATH in NP.
@ If SATh in P and H(Ix|) bounded by const. then SAT in P!

o |pad| < |xI” implies SAT <p SATH

o If SATy is NPC (= SATH not in P) and H(|x|) goes to infinity,
then SAT in P!
@ Suppose f(x) = (x',pad), I(x",pad)l < clxlc. If |x'[>|x|/2,

then |pad| = Ix|FXD 5 ¢|x|¢ (for long enough x). So Ix’| is
at most |x|/2. Repeat to solve SAT

@ To define H s.t. H(n) bounded by const. iff SATy in P

Proof (ctd.)

Proof (ctd.)

@ M; be i"" TM. T be i™" polynomial (i.e., Ti(t)=i.t')

Proof (ctd.)

@ M; be i"" TM. T be i™" polynomial (i.e., Ti(t)=i.t')

@ M;|T; be M restricted to T;

Proof (ctd.)

@ M be i"" TM. T; be i polynomial (i.e., Ti(t)=i.t')

w
Mil T;

@ Mi|T; be M, restricted to T,

Proof (ctd.)

@ M be i"" TM. T; be i polynomial (i.e., Ti(t)=i.t')

@ M||T; be M, restricted to T 2]
74,
@ Put 1 at (i,1) if MilTi agrees N\J\u

with SATH on all z, |z|=1;
else put

Proof (ctd.)

@ M be i"" TM. T; be i polynomial (i.e., Ti(t)=i.t')

@ M||T; be M, restricted to T 2]
74,
@ Put 1 at (i,1) if MilTi agrees N\J\u

with SATH on all z, |z|=1;
else put

@ H(n) be least i < log log n s.t.
MilTi correct for all |zl<log n a

Proof (ctd.)

@ M; be it TM. T; be i polynomial (i.e., Ti(t)=i.t')

@ M|Ti; be M, restricted to Ti 2
74
log n
@ Put 1 at (i,1) if MilTi agrees m i

with SATH on all z, |z|=t; : \ =
else put

@ H(n) be least i < log log n s.t.

MilT: correct for all |zl<log n
log log n X]] X]
X

Proof (ctd.)

@ M; be it TM. T; be i polynomial (i.e., Ti(t)=i.t')

® M|T; be M, restricted to T, 2|
z
log n
o Put = at (i,f) if MiIT; agrees m -

with SATH on all z, |z|=t; : \ =
else put

@ H(n) be least i < log log n s.t.
MilTi correct for all |zl<log n

Proof (ctd.)

@ M; be it TM. T; be i polynomial (i.e., Ti(t)=i.t')

@ M|Ti; be M, restricted to Ti 2
74
log n
@ Put 1 at (i,1) if MilTi agrees m >

with SATy on all z, |z|=t; X | X R ||
else put
@ H(n) be least i < log log n s.t.
MilTi correct for all |zl<log n
o H is poly-time computable " = > =
&

Proof (ctd.)

@ M; be it TM. T; be i polynomial (i.e., Ti(t)=i.t')

@ MilTi be M; restricted to T .
z
log n
@ Put 1 at (i,t) if Mi|Ti agrees m o9

with SATH on all z, |z|=t; 2 | = 2 | s | s
else put
@ H(n) be least i < log log n s.t.
MilTi correct for all |zl<log n
o H is poly-time computable " X X X
@ SATH in P iff H(n) < i*
X

Proof (ctd.)

@ M; be it TM. T; be i polynomial (i.e., Ti(t)=i.t')

@ M|Ti; be M, restricted to Ti 2
74
log n
@ Put 1 at (i,1) if MilTi agrees m i

with SATH on all z, |z|=t; 2 | = 2 | s | s
else put
@ H(n) be least i < log log n s.t.
MilTi correct for all |zl<log n
o H is poly-time computable " X X X
@ SATH in P iff H(n) < i*
X

@ Both equivalent to having

a row of all

Meta-Questions

Meta-Questions

Meta-Questions

“Real” Questions

< >

Meta-Questions

“Real” Questions *Meta” Questions

< >

Meta-Questions

“Real” Questions *Meta” Questions
<€ >

SAT in DTIME(n?)?

Meta-Questions

“Real” Questions *Meta” Questions
<€ >

SAT in DTIME(n?)?

Is my problem
NP-complete?

Meta-Questions

“Real” Questions *Meta” Questions
<€ >

SAT in DTIME(n?)?

Is my problem
NP-complete?

Results non-specialists
would care about

Meta-Questions

“Real” Questions "Meta” Questions
<€ '
SAT in DTIME(n?)? What can we do with an

oracle for SAT?
Is my problem
NP-complete?

Results non-specialists
would care about

Meta-Questions

“Real” Questions "Meta” Questions
<€ '
SAT in DTIME(n?)? What can we do with an

oracle for SAT?
Is my problem
NP-complete? Will this proof technique
work?

Results non-specialists
would care about

Meta-Questions

“Real” Questions "Meta” Questions
<€ '
SAT in DTIME(n?)? What can we do with an

oracle for SAT?
Is my problem
NP-complete? Will this proof technique
work?

Results non-specialists
would care about Tools & Techniques,
infermediate results

Meta-Questions

“Real” Questions "Meta” Questions
<€ '
SAT in DTIME(n?)? What can we do with an

oracle for SAT?
Is my problem
NP-complete? Will this proof technique
work?
Results non-specialists
would care about Tools & Techniques,
infermediate results

Under-the-hood stuff

Oracles

Oracles

@ What if we had an oracle for language A

Oracles

@ What if we had an oracle for language A

@ Class P L € PA if

Oracles

@ What if we had an oracle for language A

@ Class P L € PA if

o L decided by a TM M#, in poly time

Oracles

@ What if we had an oracle for language A

@ Class P*: L € P if
o L decided by a TM M#, in poly time

@ Turing reduction: L <1 A

Oracles

@ What if we had an oracle for language A

@ Class P*: L € P if
o L decided by a TM M#, in poly time

@ Turing reduction: L <1 A

@ Class NP L € NP” if

Oracles

@ What if we had an oracle for language A

@ Class P*: L € P if
o L decided by a TM M#, in poly time

@ Turing reduction: L <1 A

@ Class NP*: L € NP~ if
o L decided by an NTM M#, in poly time

Oracles

@ What if we had an oracle for language A

@ Class P*: L € P if
o L decided by a TM M#, in poly time

@ Turing reduction: L <1 A

@ Class NP*: L € NP~ if
o L decided by an NTM M#, in poly time

@ Equivalently, L = {x| Iw, lwl < poly(Ix]) s.t. (x,w) € L'},

where L is in P#

Oracles

@ What if we had an oracle for language A

@ Class P*: L € P if
o L decided by a TM M#, in poly time

@ Turing reduction: L <1 A

@ Class NP*: L € NP~ if
o L decided by an NTM M#, in poly time

@ Equivalently, L = {x| 3w, lwl < poly(Ix]) s.t. (x,w) € L'},

where L is in P#

Proofs that Relativize

Proofs that Relativize

@ Often entire theorems/proofs carry over, with the
oracle tagging along

Proofs that Relativize

@ Often entire theorems/proofs carry over, with the
oracle tagging along

@ e.g. Time hierarchy theorems (and proofs!) hold
for machines with access to any given oracle A

Proofs that Relativize

@ Often entire theorems/proofs carry over, with the
oracle tagging along

@ e.g. Time hierarchy theorems (and proofs!) hold
for machines with access to any given oracle A

@ Said to "relativize”

P vs. NP with oracles

P vs. NP with oracles

® How does P vs. NP fare relative to different oracles?

P vs. NP with oracles

® How does P vs. NP fare relative to different oracles?

@ Does their relation (equality or not) relativize?

P vs. NP with oracles

® How does P vs. NP fare relative to different oracles?

@ Does their relation (equality or not) relativize?

® No! Different in different worlds!

P vs. NP with oracles

® How does P vs. NP fare relative to different oracles?
@ Does their relation (equality or not) relativize?

® No! Different in different worlds!

@ There exist languages A, B such that P" =
NP#, but PB = NPB!

A s.t. PA
= NPA

A s.t. PA = NPA

o If A is EXP-complete (w.r.t <cook or =<p), P#= NP” = EXP

A s.t. PA = NPA

o If A is EXP-complete (w.r.t <cook or =<p), P#= NP” = EXP

@ A EXP-hard = EXP C PAc NP~

A s.t. PASNPS

o If A is EXP-complete (w.r.t <cook or =<p), P#= NP” = EXP

@ A EXP-hard = EXP C PAc NP~

@ A in EXP = NP” C EXP" = EXP (note: NP C EXP, by

trying all possible witnesses)

A s.t. PASNPS

o If A is EXP-complete (w.r.t <cook or =<p), P#= NP” = EXP

@ A EXP-hard = EXP C PAc NP~

@ A in EXP = NP” C EXP" = EXP (note: NP C EXP, by

trying all possible witnesses)

@ A simple EXP-complete language:

A s.t. PASNPS

o If A is EXP-complete (w.r.t <cook or =<p), P#= NP” = EXP
® A EXP-hard = EXP C PAc NPA
@ A in EXP = NP” C EXP" = EXP (note: NP C EXP, by
trying all possible witnesses)

@ A simple EXP-complete language:

@ EXPTM = { (M,x,1") | TM represented by M accepts x
within time 2" }

B s.t. PB# NPE

B s.t. PB# NPB

Building B and L, s.t. L in NPB\pP®

B s.t. PB# NPE

Building B and L, s.t. L in NPB\pP®

& L={1"| 3w, |wl=n and weB}

B s.t. PB# NPE

Building B and L, s.t. L in NPB\pP®

& L={1"| 3w, |wl=n and weB}

B s.t. PB# NPE

Building B and L, s.t. L in NPB\pP®

& L={1"| 3w, |wl=n and weB}

0 52#00: 01:10 11 In

B s.t. PB# NPE

Building B and L, s.t. L in NPB\pP®

& L={1"| 3w, |wl=n and weB}

0 52#00: 01:10 11 In

Ve S

B s.t. PB# NPE

Building B and L, s.t. L in NPB\pP®

& L={1"| 3w, |wl=n and weB}

0 52#00: 01:10 11 In

B s.t. PB# NPE

Building B and L, s.t. L in NPB\pP®
& L={1"| 3w, |wl=n and weB}

@ L in NPB. To do: L not in PE

0 52#00: 01:10 11 In

B s.t. P8+ NPB

Building B and L, s.t. L in NPB\pP®
& L={1"| 3w, |wl=n and weB}

@ L in NP8, To do: L not in PB
@ For each i, ensure M® in
2"! time gets L(1") wrong
(for some new n)

0 1 000110 11 In

L

B

B s.t. P8+ NPB

Building B and L, s.t. L in NPB\pP®
& L={1"| 3w, |wl=n and weB}

@ L in NP8, To do: L not in PB
@ For each i, ensure M® in
2"! time gets L(1") wrong
(for some new n)

0 1 000110 11 In

L

B

B s.t. P8+ NPB

Building B and L, s.t. L in NPB\pP®
& L={1"| 3w, |wl=n and weB}

@ L in NP8, To do: L not in PB
@ For each i, ensure M® in
2"! time gets L(1") wrong
(for some new n)

0 1 000110 11 In

L

B

ln

B s.t. P8+ NPB

Building B and L, s.t. L in NPB\pP®
& L={1"| 3w, |wl=n and weB}

@ L in NP8, To do: L not in PB
@ For each i, ensure M® in
2"! time gets L(1") wrong
(for some new n)

0 1 000110 11 In

L

B

ln

B s.t. P8+ NPB

Building B and L, s.t. L in NPB\pP®
& L={1"| 3w, |wl=n and weB}

@ L in NP8, To do: L not in PB
@ For each i, ensure M® in
2"! time gets L(1") wrong
(for some new n)

0 1 000110 11 In

L

@ Pick n s.1. B not yet set B
beyond 1", Run M; on 1"
for 2™! steps.

ln

B s.t. P8+ NPB

Building B and L, s.t. L in NPB\pP®
& L={1"| 3w, |wl=n and weB}

@ L in NP8, To do: L not in PB
@ For each i, ensure M® in
2"! time gets L(1") wrong
(for some new n)

0 1 000110 11 In

L

@ Pick n s.1. B not yet set B
beyond 1"!. Run M; on 1"
for 2™! steps.

ln

B s.t. P8+ NPB

Building B and L, s.t. L in NPB\pP®
& L={1"| 3w, |wl=n and weB}

@ L in NP8, To do: L not in PB
@ For each i, ensure M® in
2"! time gets L(1") wrong
(for some new n)

0 1 000110 11 In

L

@ Pick n s.1. B not yet set B
beyond 1"!. Run M; on 1"
for 2™! steps.

ln

B s.t. P2+ NPB

Building B and L, s.t. L in NPB\pP®

& L={1"| 3w, |wl=n and weB}

@ L in NP8, To do: L not in PB
@ For each i, ensure M® in
2"! time gets L(1") wrong
(for some new n)

@ Pick n s.1. B not yet set
beyond 1", Run M; on 1"
for 2! steps.

L

B

O 1 000110 1

ln

B s.t. P2+ NPB

Building B and L, s.t. L in NPB\pP®

& L={1"| 3w, |wl=n and weB}

@ L in NP8, To do: L not in PB
@ For each i, ensure M® in
2"! time gets L(1") wrong
(for some new n)

@ Pick n s.1. B not yet set
beyond 1", Run M; on 1"
for 2! steps.

L

B

O 1 000110 1

ln

1/

B s.t. P2+ NPB

Building B and L, s.t. L in NPB\pP®

& L={1"| 3w, |wl=n and weB}

@ L in NP8, To do: L not in PB
@ For each i, ensure M® in
2"! time gets L(1") wrong
(for some new n)

@ Pick n s.1. B not yet set
beyond 1", Run M; on 1"
for 2! steps.

L

B

O 1 000110 1

ln

1/

B s.t. P2+ NPB

Building B and L, s.t. L in NPB\pP®

& L={1"| 3w, |wl=n and weB}

@ L in NP8, To do: L not in PB
@ For each i, ensure M® in
2"! time gets L(1") wrong
(for some new n)

@ Pick n s.1. B not yet set
beyond 1", Run M; on 1"
for 2™! steps.

@ When M; queries B on
x > 1™, set B(X)=0

L

B

O 1 000110 1

ln

1/

B s.t. P8+ NPB

Building B and L, s.t. L in NPB\pP®
& L={1"| 3w, |wl=n and weB}

@ L in NP8, To do: L not in PB
@ For each i, ensure M® in
2"! time gets L(1") wrong
(for some new n)

0 1 000110 11 In

L

& Pick n s.t. B not yet set B A A
beyond 1", Run M; on 1"
for 2™! steps.

ln

@ When M; queries B on N
x > 11, set B(X)=0 - N TN [T

@ After M; finished set B up
to x=1" s.t. L(1") # MB(1")

Meta-Result of the Day

Meta-Result of the Day

@ P vs. NP cannot be resolved using a relativizing proof

Meta-Result of the Day

@ P vs. NP cannot be resolved using a relativizing proof

@ "Diagonalization proofs” relativize

Meta-Result of the Day

@ P vs. NP cannot be resolved using a relativizing proof

@ "Diagonalization proofs” relativize

@ Just need a way to enumerate/encode
machines, and to simulate one without much
overhead given its encoding

Meta-Result of the Day

@ P vs. NP cannot be resolved using a relativizing proof
@ "Diagonalization proofs” relativize

@ Just need a way to enumerate/encode
machines, and to simulate one without much
overhead given its encoding

@ Do not further depend on internals of
computation

Meta-Result of the Day

@ P vs. NP cannot be resolved using a relativizing proof
@ "Diagonalization proofs” relativize

@ Just need a way to enumerate/encode
machines, and to simulate one without much
overhead given its encoding

@ Do not further depend on internals of
computation

@ e.g. of non-relativizing proof: that of Cook-Levin
theorem

Space Complexity

Space Complexity

Space Complexity

@ Natural complexity question

Space Complexity

@ Natural complexity question

@ How much memory is needed

Space Complexity

@ Natural complexity question

@ How much memory is needed

@ More pressing than time:

Space Complexity

@ Natural complexity question
@ How much memory is needed

@ More pressing than time:

@ Cant generate memory on the fly

Space Complexity

@ Natural complexity question
@ How much memory is needed
@ More pressing than time:

@ Cant generate memory on the fly

@ Or maybe less pressing:

Space Complexity

@ Natural complexity question
@ How much memory is needed
@ More pressing than time:
@ Cant generate memory on the fly
@ Or maybe less pressing:

@ Turns ouf, often a little memory can go a long
way (if we can spare the time)

DSPACE and NSPACE

DSPACE and NSPACE

@ Measure of working memory (work-tape) used by a TM/NTM:
input kept in a read-only tape

DSPACE and NSPACE

@ Measure of working memory (work-tape) used by a TM/NTM:
input kept in a read-only tape

® Model allows o(n) memory usage

DSPACE and NSPACE

@ Measure of working memory (work-tape) used by a TM/NTM:
input kept in a read-only tape

® Model allows o(n) memory usage

@ DSPACE(n) may already be inefficient in terms of time

DSPACE and NSPACE

@ Measure of working memory (work-tape) used by a TM/NTM:
input kept in a read-only tape

® Model allows o(n) memory usage

@ DSPACE(n) may already be inefficient in terms of time

@ We shall stick to Q(log n)

DSPACE and NSPACE

@ Measure of working memory (work-tape) used by a TM/NTM:
input kept in a read-only tape

® Model allows o(n) memory usage
@ DSPACE(n) may already be inefficient in terms of time

@ We shall stick to Q(log n)

@ Less than log is too little space to remember locations
iIn the input

DSPACE and NSPACE

@ Measure of working memory (work-tape) used by a TM/NTM:
input kept in a read-only tape

® Model allows o(n) memory usage
@ DSPACE(n) may already be inefficient in terms of time
@ We shall stick to Q(log n)

@ Less than log is too little space to remember locations
iIn the input

@ DSPACE/NSPACE more robust across models

DSPACE and NSPACE

@ Measure of working memory (work-tape) used by a TM/NTM:
input kept in a read-only tape

® Model allows o(n) memory usage
@ DSPACE(n) may already be inefficient in terms of time
@ We shall stick to Q(log n)

@ Less than log is too little space to remember locations
iIn the input

@ DSPACE/NSPACE more robust across models

@ Constant factor (+O(log n)) simulation overhead

L € NSPACE(S):
Two Equivalent views

L € NSPACE(S):
Two Equivalent views

® Non-deterministic M

L € NSPACE(S):
Two Equivalent views

® Non-deterministic M

@ input: X

L € NSPACE(S):
Two Equivalent views

® Non-deterministic M

@ input: X

® makes non-det choices

L € NSPACE(S):
Two Equivalent views

® Non-deterministic M
@ input: X
® makes non-det choices

® x € L iff some thread of

M accepts

L € NSPACE(S):
Two Equivalent views

® Non-deterministic M
@ input: X
® makes non-det choices

® x € L iff some thread of

M accepts

@ in at most S(Ix|) space

L € NSPACE(S):
Two Equivalent views

® Non-deterministic M ® Deterministic M’
@ input: X
® makes non-det choices

® x € L iff some thread of

M accepts

@ in at most S(Ix|) space

L € NSPACE(S):
Two Equivalent views

® Non-deterministic M @ Deterministic M’
@ input: X @ input: X and read-once w
® makes non-det choices

® x € L iff some thread of

M accepts

@ in at most S(Ix|) space

L € NSPACE(S):
Two Equivalent views

@ Non-deterministic M @& Deterministic M’
@ input: X @ input: X and read-once w
® makes non-det choices @ reads bits from w (certificate)

® x € L iff some thread of

M accepts

@ in at most S(Ix|) space

L € NSPACE(S):
Two Equivalent views

@ Non-deterministic M @& Deterministic M’
@ input: X @ input: X and read-once w
® makes non-det choices @ reads bits from w (certificate)

@ X € L iff some thread of| @ x € L iff for some cert. w,

M accepts M’ accepts

@ in at most S(Ix|) space

L € NSPACE(S):
Two Equivalent views

@ Non-deterministic M @& Deterministic M’
@ input: X @ input: X and read-once w
® makes non-det choices @ reads bits from w (certificate)

@ X € L iff some thread of| @ x € L iff for some cert. w,

M accepts M’ accepts

@ in at most S(Ix|) space @ in at most S(Ix|) space

L € NSPACE(S):
Two Equivalent views

M "N

@ Non-deterministic M @& Deterministic M’
@ input: X @ input: X and read-once w
® makes non-det choices @ reads bits from w (certificate)

@ X € L iff some thread of| @ x € L iff for some cert. w,

M accepts M’ accepts

@ in at most S(Ix|) space @ in at most S(Ix|) space

L and NL

L and NL

@ L = DSPACE(O(log n))

L and NL

@ L = DSPACE(O(log n))

@ L = Ugp > 0 DSPACE(a.log n+b)

L and NL

@ L = DSPACE(O(log n))
@ L = Ugp > 0 DSPACE(a.log n+b)

@ NL = NSPACE(O(log n))

L and NL

@ L = DSPACE(O(log n))
@ L = Ugp > 0 DSPACE(a.log n+b)

@ NL = NSPACE(O(log n))

@ NL = Ugp » 0 NSPACE(a.log n+b)

L and NL

@ L = DSPACE(O(log n))

@ L = Ugyp s 0 DSPACE(a.log n+b)
@ NL = NSPACE(O(log n))

® NL = Ugp > 0 NSPACE(a.log n+b)

@ "L and NL are to space what P and NP are to time”

Space Hierarchy

Space Hierarchy

@ UTM space-overhead is only a constant factor

Space Hierarchy

@ UTM space-overhead is only a constant factor

@ Tight hierarchy: if T(n) = o(T"(n)) (no log slack) then
DSPACE(T(n)) &€ DSPACE(T'(n))

Space Hierarchy

@ UTM space-overhead is only a constant factor

@ Tight hierarchy: if T(n) = o(T"(n)) (no log slack) then
DSPACE(T(n)) &€ DSPACE(T'(n))

® Same for NSPACE

Space Hierarchy

@ UTM space-overhead is only a constant factor

@ Tight hierarchy: if T(n) = o(T"(n)) (no log slack) then
DSPACE(T(n)) &€ DSPACE(T'(n))

® Same for NSPACE

@ Again, tighter than for NTIME (where in fact,
we needed T(n+1) = o(T'(n))

Space Hierarchy

@ UTM space-overhead is only a constant factor

@ Tight hierarchy: if T(n) = o(T"(n)) (no log slack) then
DSPACE(T(n)) &€ DSPACE(T'(n))

® Same for NSPACE

@ Again, tighter than for NTIME (where in fact,
we needed T(n+1) = o(T'(n))

@ No “"delayed flip,” because, as we will see
later, NSPACE(O(S)) = co-NSPACE(O(S))!

SPACE and TIME

SPACE and TIME

@ In time T(n), can use at most T(n) space

SPACE and TIME

@ In time T(n), can use at most T(n) space

@ DTIME(T) € DSPACE(T)

SPACE and TIME

@ In time T(n), can use at most T(n) space

@ DTIME(T) € DSPACE(T)

@ In fact, NTIME(T) <€ DSPACE(O(T)) (simulate with all T-long

certificates)

SPACE and TIME

@ In time T(n), can use at most T(n) space

@ DTIME(T) € DSPACE(T)

@ In fact, NTIME(T) <€ DSPACE(O(T)) (simulate with all T-long

certificates)

@ With space S(n), only 296G configurations (for S(n) = Q(log n)).
So can take at most 209G time (else gets into an infinite loop)

SPACE and TIME

@ In time T(n), can use at most T(n) space

@ DTIME(T) € DSPACE(T)

@ In fact, NTIME(T) <€ DSPACE(O(T)) (simulate with all T-long

certificates)

@ With space S(n), only 296G configurations (for S(n) = Q(log n)).
So can take at most 209G time (else gets into an infinite loop)

& DSPACE(S) € DTIME(200)

SPACE and TIME

@ In time T(n), can use at most T(n) space
@ DTIME(T) € DSPACE(T)
@ In fact, NTIME(T) <€ DSPACE(O(T)) (simulate with all T-long
certificates)

@ With space S(n), only 296G configurations (for S(n) = Q(log n)).
So can take at most 209G time (else gets into an infinite loop)

& DSPACE(S) € DTIME(200)

@ In fact, NSPACE(S) € DTIME(2°0)

NSPACE(S) S DTIME(20°)

NSPACE(S) S DTIME(20°)

NSPACE(S) S DTIME(ZO(S))

@ Configuration graph as a DAG is of size 2 oG

é

NSPACE(S) S DTIME(ZO(S))

@ Configuration graph as a DAG is of size 20(5)

® Write down all configurations and
edges

\

\

NSPACE(S) S DTIME(ZO(S))

@ Configuration graph as a DAG is of size 20(5)

® Write down all configurations and
edges

@ Can do it less explicitly if space
were a concern (but it's not, here)

h= 2(o<s»

\
\

6«%

NSPACE(S) S DTIME(20°)

@ Configuration graph as a DAG is of size ZAO(S) E

\

® Write down all configurations and
edges

@ Can do it less explicitly if space
were a concern (but it's not, here)

\

h= 2(o<s»

@ Run (in poly time) any reachability
algorithm (say, breadth-first search)
to see if there is a (directed) path
from start config. fo an accept conﬁg

éé

NSPACE(S)

@ Configuration graph as a DAG is of size ZAO(S)

® Write down all configurations and
edges

@ Can do it less explicitly if space
were a concern (but it's not, here)

@ Run (in poly time) any reachability
algorithm (say, breadth-first search)
to see if there is a (directed) path
from start config. fo an accept conﬁg

@ poly(2°0)) = 206

h= 2(o<s»

DTIME(2°0))

@\

\

b b¢

SPACE and TIME

SPACE and TIME

SPACE and TIME

SPACE and TIME

SPACE and TIME

SPACE and TIME

SPACE and TIME

SPACE and TIME

SPACE and TIME

SPACE and TIME

SPACE and TIME

NTIME(2°F)

F=Q(n)

Space, Today

Space, Today

@ DSPACE, NSPACE

Space, Today

@ DSPACE, NSPACE

@ Tight hierarchy.

Space, Today

@ DSPACE, NSPACE

@ Tight hierarchy.

® Connections with DTIME/NTIME

Space, Today

@ DSPACE, NSPACE
@ Tight hierarchy.

® Connections with DTIME/NTIME

@ Next class

Space, Today

@ DSPACE, NSPACE
@ Tight hierarchy.
@ Connections with DTIME/NTIME

@ Next class

@ Savitch’s theorem: NSPACE(S) € DSPACE(S?)

Space, Today

@ DSPACE, NSPACE
@ Tight hierarchy.
@ Connections with DTIME/NTIME

@ Next class

@ Savitch’s theorem: NSPACE(S) € DSPACE(S?)
@ Hence PSPACE = NPSPACE

Space, Today

@ DSPACE, NSPACE

@ Tight hierarchy.

@ Connections with DTIME/NTIME
@ Next class

@ Savitch’s theorem: NSPACE(S) € DSPACE(S?)

@ Hence PSPACE = NPSPACE
@ PSPACE-completeness and NL-completeness

Space, Today

@ DSPACE, NSPACE

@ Tight hierarchy.

@ Connections with DTIME/NTIME
@ Next class

@ Savitch’s theorem: NSPACE(S) € DSPACE(S?)

@ Hence PSPACE = NPSPACE
@ PSPACE-completeness and NL-completeness
@ NSPACE = co-NSPACE

Space, Today

@ DSPACE, NSPACE
@ Tight hierarchy.
@ Connections with DTIME/NTIME

@ Next class

@ Savitch’s theorem: NSPACE(S) € DSPACE(S?)

@ Hence PSPACE = NPSPACE
@ PSPACE-completeness and NL-completeness
@ NSPACE = co-NSPACE

