
Computational 
Complexity

Lecture 4
in which Diagonalization takes on itself,         

and we enter Space Complexity
(But first Ladner’s Theorem)
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Can show an NP language which is neither in P, 
nor NP complete (unless P = NP)
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H(|x|) will be computable in poly(|x|) time. SATH in NP.

If SATH in P and H(|x|) bounded by const. then SAT in P!

|pad| < |x|i* implies SAT ≤p SATH

If SATH is NPC (⇒ SATH not in P) and H(|x|) goes to infinity, 

then SAT in P!

Suppose f(x) = (x’,pad), |(x’,pad)| ≤ c|x|c. If |x’|>|x|/2, 
then |pad| = |x’|H(|x’|) > c|x|c (for long enough x). So |x’| is 
at most |x|/2. Repeat to solve SAT

To define H s.t. H(n) bounded by const. iff SATH in P
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Meta-Questions

“Real” Questions

SAT in DTIME(n2)?

Is my problem          
NP-complete?

Results non-specialists 
would care about

“Meta” Questions

What can we do with an 
oracle for SAT?

Will this proof technique 
work?

Tools & Techniques, 
intermediate results

Under-the-hood stuff
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P vs. NP with oracles

How does P vs. NP fare relative to different oracles?

Does their relation (equality or not) relativize?

No! Different in different worlds!

There exist languages A, B such that  PA = 
NPA, but PB ≠ NPB!
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If A is EXP-complete (w.r.t ≤Cook or  ≤P), PA = NPA = EXP

A EXP-hard ⇒ EXP ⊆ PA ⊆ NPA

A in EXP ⇒ NPA ⊆ EXPA = EXP (note: NP ⊆ EXP, by 

trying all possible witnesses)

A simple EXP-complete language:

EXPTM = { (M,x,1n) | TM represented by M accepts x 
within time 2n }
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Pick n s.t. B not yet set 
beyond 1n-1. Run Mi on 1n 
for 2n-1 steps.

When Mi queries B on      
x > 1n-1, set B(X)=0

After Mi finished set B up 
to x=1n s.t. L(1n) ≠ MiB(1n)
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P vs. NP cannot be resolved using a relativizing proof

“Diagonalization proofs” relativize

Just need a way to enumerate/encode 
machines, and to simulate one without much 
overhead given its encoding

Do not further depend on internals of 
computation

e.g. of non-relativizing proof: that of Cook-Levin 
theorem
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Natural complexity question

How much memory is needed

More pressing than time:

Can’t generate memory on the fly

Or maybe less pressing:

Turns out, often a little memory can go a long 
way (if we can spare the time)
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input kept in a read-only tape

Model allows o(n) memory usage

DSPACE(n) may already be inefficient in terms of time

We shall stick to Ω(log n)

Less than log is too little space to remember locations 
in the input

DSPACE/NSPACE more robust across models

Constant factor (+O(log n)) simulation overhead
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input: x

makes non-det choices

x ∈ L iff some thread of 

M accepts

in at most S(|x|) space

Deterministic M’

input: x and read-once w

reads bits from w (certificate)

x ∈ L iff for some cert. w,  

M’ accepts 

in at most S(|x|) space

Equivalent
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L = ∪a,b > 0 DSPACE(a.log n+b)

NL = NSPACE(O(log n))

NL = ∪a,b > 0 NSPACE(a.log n+b)

“L and NL are to space what P and NP are to time”
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Tight hierarchy: if T(n) = o(T’(n)) (no log slack) then 
DSPACE(T(n)) ⊊ DSPACE(T’(n)) 

Same for NSPACE 

Again, tighter than for NTIME (where in fact, 
we needed T(n+1) = o(T’(n) )

No “delayed flip,” because, as we will see 
later, NSPACE(O(S)) = co-NSPACE(O(S))!
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Configuration graph as a DAG is of size 2O(S)

Write down all configurations and   
edges

Can do it less explicitly if space   
were a concern (but it’s not, here)

Run (in poly time) any reachability 
algorithm (say, breadth-first search)    
to see if there is a (directed) path   
from start config. to an accept config.

poly(2O(S)) = 2O(S)

 h=2(O(S))
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SPACE and TIME

DTIME(F)

DSPACE(F)

NSPACE(F)

DTIME(2O(F))

NTIME(F)

NTIME(2O(F))

F=Ω(n) F=Ω(log n)
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