Computational
Complexity

I-Toa (V) o -BC
In which we come across
Diagonalization and Time-hierarchies
(But first some more of NP-completeness)
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NP-Complete Languages

@ A language L; is NP-complete if L; is in NP and any NP
language L can be reduced to L; (Karp reduction:
polynomial time many-one reduction)

@ Trivial example: L; = TMSAT
@ First interesting example: L; = CKT-SAT

@ Convert X into a circuit C s.t. C is satisfiable iff
X in L

@ More examples, bootstrapping from CKT-SAT

% IF L Sp L.1 Gnd I_1 Sp L2, then L Sp L2
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CKT-SAT <, SAT

@ SAT: Are all given "clauses” simultaneously satisfiable?
(Conjunctive Normal Form)

@ Converting a circuit to a collection of clauses:
@ For each wire (connected component), add a variable

@ Add output variable as a clause. And for each gate, add a
clause involving variables for wires connected to the gate:

) e.g.?: N z: (z=X), (z=vY), (kz = ~x V ay).

i.e., (tzV %), (kz VYy) (zV-xVaay).
) and;(,:b_z: (z=x V V), (1z=Ax), ([z=1Y).
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SAT <, 3SAT

@ Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT sp 3SAT.

@ More directly:

o ( ) — ( x), (=X )
— ( ), (<. xVecvy)(dyvdyVe

® Reduction needs 3SAT
@ 2SAT is in fact in P! [Exercise]

@ Reduction not parsimonious (can you make it? [Exercise])
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INDEP-SET and
VERTEX-COVER

@ CLIQUE <, INDEP-SET
@ G has an m-clique iff G has an m-independent-set

@ INDEP-SET sp VERTEX-COVER

@ G has an m-indep-set iff G has an (n-m)-vertex-cover
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NP, P, co-NP and NPC

@ We say class X is “closed under polynomial reductions”
if (Li<pL2 and Lz in class X) implies L; in X

@ e.g. P, NP are closed under polynomial reductions

@ So is co-NP (If X is closed, so is co-X. Why?)
@ If any NPC language is in P, then NP = P
@ If any NPC language is in co-NP, then NP =

@ Note: X € co-X = X = co-X (Why?)

@ L is NP-complete iff L¢ is co-NP-complete (Why?)

® co-NP complete = co-(NP-complete)
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Separating Classes

@ How tfo prove a set X strictly bigger thanY

@ Show an element not inY, but in X? For us, not in
Y may often be difficult to prove for (familiar)
elements

@ Count? What if both infinite?!

@ Comparing infinite sets: diagonalization!
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Diagonalization to
Separate Classes

@ Diagonalization can separate the class of decidable
languages (from the class of all languages)

@ Plan: Use similar techniques to separate
complexity classes
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@ Fix a TM model (one-tape, binary alphabet)

@ DTIME(T) = class of languages that can be decided in O(T(n))
time, by such a TM

@ Theorem: DTIME(n®) € DTIME(n®*!) for all c > 1

@ More generally DTIME(T) € DTIME(T) if T, T “nice” (and > n)
and T(n)log(T(n)) = o(T"(n))

@ Consequences, for e.g., P € EXP
@ P € DTIME(2") & DTIME(2%") € EXP
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@ M; be an enumeration of TMs, each TM appearing infinitely often

@ Consider table(i,j) = UTMl (M;,j), where T log T = o(T’)

T" large and nice

o Let L' = inverted diagonal. (' enough to aio:

simulation .
o L in DTIME(T') \
WA

@ On input i, run UTMI (M;,i), modified to
invert output

O

@ L not in DTIME(T)

@ If M accepts L in time T, then for
sufficiently large i s.t. Mi=M, UTM can

finish simulating Mi(i). Then table(i,i)=L'(i)! Think DTIME(T) |
C rows ‘

13
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o "Delayed flip” on a “rapidly
thickening diagonal”

o f(i+l)=exp(f(i))

@ Let L be the “diagonal”
language

o L(j)=L(j+1)

@ except if j=f(i), then
L'(j) =1 - L(F(i-1)+1)

—a L not in NTIME(T), but
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is in NTIME(T")
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@ Within DTIME and NTIME fine gradation

@ In particular P & EXP, NP & NEXP

@ Tells nothing across DTIME and NTIME

@ P and NP?

@ Just diagonalization won't help (next lecture)




Today

® DTIME Hierarchy

@ DTIME(T) & DTIME(T)) if T log T = o(T")

@ NTIME Hierarchy

@ NTIME(T) € NTIME(T') if T = o(T")

@ Using diagonalization




Next Lecture

@ Another application of diagonalization

@ Ladners Theorem: If P#NP, NP language which is
neither in P nor NP-complete

@ Limits of Diagonalization

@ Starting Space Complexity




