
Computational
Complexity

Lecture 3
in which we come across

Diagonalization and Time-hierarchies
(But first some more of NP-completeness)

1

NP-Complete Languages

2

NP-Complete Languages

A language L1 is NP-complete if L1 is in NP and any NP
language L can be reduced to L1 (Karp reduction:
polynomial time many-one reduction)

2

NP-Complete Languages

A language L1 is NP-complete if L1 is in NP and any NP
language L can be reduced to L1 (Karp reduction:
polynomial time many-one reduction)

Trivial example: L1 = TMSAT

2

NP-Complete Languages

A language L1 is NP-complete if L1 is in NP and any NP
language L can be reduced to L1 (Karp reduction:
polynomial time many-one reduction)

Trivial example: L1 = TMSAT

First interesting example: L1 = CKT-SAT

2

NP-Complete Languages

A language L1 is NP-complete if L1 is in NP and any NP
language L can be reduced to L1 (Karp reduction:
polynomial time many-one reduction)

Trivial example: L1 = TMSAT

First interesting example: L1 = CKT-SAT

Convert x into a circuit C s.t. C is satisfiable iff
x in L

2

NP-Complete Languages

A language L1 is NP-complete if L1 is in NP and any NP
language L can be reduced to L1 (Karp reduction:
polynomial time many-one reduction)

Trivial example: L1 = TMSAT

First interesting example: L1 = CKT-SAT

Convert x into a circuit C s.t. C is satisfiable iff
x in L

More examples, bootstrapping from CKT-SAT

2

NP-Complete Languages

A language L1 is NP-complete if L1 is in NP and any NP
language L can be reduced to L1 (Karp reduction:
polynomial time many-one reduction)

Trivial example: L1 = TMSAT

First interesting example: L1 = CKT-SAT

Convert x into a circuit C s.t. C is satisfiable iff
x in L

More examples, bootstrapping from CKT-SAT

If L ≤p L1 and L1 ≤p L2, then L ≤p L2

2

CKT-SAT ≤p SAT

3

CKT-SAT ≤p SAT
SAT: Are all given “clauses” simultaneously satisfiable?
(Conjunctive Normal Form)

3

CKT-SAT ≤p SAT
SAT: Are all given “clauses” simultaneously satisfiable?
(Conjunctive Normal Form)

Converting a circuit to a collection of clauses:

3

CKT-SAT ≤p SAT
SAT: Are all given “clauses” simultaneously satisfiable?
(Conjunctive Normal Form)

Converting a circuit to a collection of clauses:

For each wire (connected component), add a variable

3

CKT-SAT ≤p SAT
SAT: Are all given “clauses” simultaneously satisfiable?
(Conjunctive Normal Form)

Converting a circuit to a collection of clauses:

For each wire (connected component), add a variable

Add output variable as a clause. And for each gate, add a
clause involving variables for wires connected to the gate:

3

CKT-SAT ≤p SAT
SAT: Are all given “clauses” simultaneously satisfiable?
(Conjunctive Normal Form)

Converting a circuit to a collection of clauses:

For each wire (connected component), add a variable

Add output variable as a clause. And for each gate, add a
clause involving variables for wires connected to the gate:

e.g. : (z⇒x), (z⇒y), (¬z ⇒ ¬x ∨ ¬y).
i.e., (¬z ∨ x), (¬z ∨ y), (z ∨ ¬x ∨ ¬y).

AND

x
y z

3

CKT-SAT ≤p SAT
SAT: Are all given “clauses” simultaneously satisfiable?
(Conjunctive Normal Form)

Converting a circuit to a collection of clauses:

For each wire (connected component), add a variable

Add output variable as a clause. And for each gate, add a
clause involving variables for wires connected to the gate:

e.g. : (z⇒x), (z⇒y), (¬z ⇒ ¬x ∨ ¬y).
i.e., (¬z ∨ x), (¬z ∨ y), (z ∨ ¬x ∨ ¬y).

and : (z⇒x ∨ y), (¬z⇒¬x), (¬z⇒¬y).

AND

x
y z

OR

x
y z

3

SAT ≤p 3SAT

4

SAT ≤p 3SAT
Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT ≤p 3SAT.

4

SAT ≤p 3SAT
Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT ≤p 3SAT.

More directly:

4

SAT ≤p 3SAT
Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT ≤p 3SAT.

More directly:

(a ∨ b ∨ c ∨ d ∨ e) → (a ∨ b ∨ x), (¬x ∨ c ∨ d ∨ e)
→ (a ∨ b ∨ x), (¬x ∨ c ∨ y), (¬y ∨ d ∨ e)

4

SAT ≤p 3SAT
Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT ≤p 3SAT.

More directly:

(a ∨ b ∨ c ∨ d ∨ e) → (a ∨ b ∨ x), (¬x ∨ c ∨ d ∨ e)
→ (a ∨ b ∨ x), (¬x ∨ c ∨ y), (¬y ∨ d ∨ e)

Reduction needs 3SAT

4

SAT ≤p 3SAT
Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT ≤p 3SAT.

More directly:

(a ∨ b ∨ c ∨ d ∨ e) → (a ∨ b ∨ x), (¬x ∨ c ∨ d ∨ e)
→ (a ∨ b ∨ x), (¬x ∨ c ∨ y), (¬y ∨ d ∨ e)

Reduction needs 3SAT

2SAT is in fact in P! [Exercise]

4

SAT ≤p 3SAT
Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT ≤p 3SAT.

More directly:

(a ∨ b ∨ c ∨ d ∨ e) → (a ∨ b ∨ x), (¬x ∨ c ∨ d ∨ e)
→ (a ∨ b ∨ x), (¬x ∨ c ∨ y), (¬y ∨ d ∨ e)

Reduction needs 3SAT

2SAT is in fact in P! [Exercise]

Reduction not parsimonious (can you make it? [Exercise])

4

3SAT ≤p CLIQUE

5

3SAT ≤p CLIQUE
CLIQUE: Does graph G
have a clique of size m?

5

3SAT ≤p CLIQUE
CLIQUE: Does graph G
have a clique of size m?

(x ∨ ¬y ∨ ¬z)

(w ∨ x ∨ ¬z)

(w ∨ y)

5

3SAT ≤p CLIQUE
CLIQUE: Does graph G
have a clique of size m?

Clauses → Graph

(x ∨ ¬y ∨ ¬z)

(w ∨ x ∨ ¬z)

(w ∨ y)

5

3SAT ≤p CLIQUE
CLIQUE: Does graph G
have a clique of size m?

Clauses → Graph

(x ∨ ¬y ∨ ¬z)

(w ∨ x ∨ ¬z)

0*1*
1*1*

1*0*

(w ∨ y)

5

3SAT ≤p CLIQUE
CLIQUE: Does graph G
have a clique of size m?

Clauses → Graph

(x ∨ ¬y ∨ ¬z)

(w ∨ x ∨ ¬z)

0*1*
1*1*

1*0*

(w ∨ y)

5

3SAT ≤p CLIQUE
CLIQUE: Does graph G
have a clique of size m?

Clauses → Graph

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)

0*1*
1*1*

1*0*

(w ∨ y)

5

3SAT ≤p CLIQUE
CLIQUE: Does graph G
have a clique of size m?

Clauses → Graph

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)

0*1*
1*1*

1*0*

(w ∨ y)

5

3SAT ≤p CLIQUE
CLIQUE: Does graph G
have a clique of size m?

Clauses → Graph

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

5

3SAT ≤p CLIQUE
CLIQUE: Does graph G
have a clique of size m?

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

5

3SAT ≤p CLIQUE
CLIQUE: Does graph G
have a clique of size m?

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

5

3SAT ≤p CLIQUE
CLIQUE: Does graph G
have a clique of size m?

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

5

3SAT ≤p CLIQUE
CLIQUE: Does graph G
have a clique of size m?

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

5

3SAT ≤p CLIQUE
CLIQUE: Does graph G
have a clique of size m?

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

5

3SAT ≤p CLIQUE
CLIQUE: Does graph G
have a clique of size m?

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

5

3SAT ≤p CLIQUE
CLIQUE: Does graph G
have a clique of size m?

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

edges between
consistent assignments

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

5

3SAT ≤p CLIQUE
CLIQUE: Does graph G
have a clique of size m?

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

edges between
consistent assignments

m-clique iff all m
clauses satisfiable

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

5

3SAT ≤p CLIQUE
CLIQUE: Does graph G
have a clique of size m?

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

edges between
consistent assignments

m-clique iff all m
clauses satisfiable

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

5

3SAT ≤p CLIQUE
CLIQUE: Does graph G
have a clique of size m?

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

edges between
consistent assignments

m-clique iff all m
clauses satisfiable

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

1*1*
*110
11*0

1110sat assignment

3-Clique

5

INDEP-SET and
VERTEX-COVER

6

INDEP-SET and
VERTEX-COVER

CLIQUE ≤p INDEP-SET

6

INDEP-SET and
VERTEX-COVER

CLIQUE ≤p INDEP-SET

G has an m-clique iff Gc has an m-independent-set

6

INDEP-SET and
VERTEX-COVER

CLIQUE ≤p INDEP-SET

G has an m-clique iff Gc has an m-independent-set

INDEP-SET ≤p VERTEX-COVER

6

INDEP-SET and
VERTEX-COVER

CLIQUE ≤p INDEP-SET

G has an m-clique iff Gc has an m-independent-set

INDEP-SET ≤p VERTEX-COVER

G has an m-indep-set iff G has an (n-m)-vertex-cover

6

NP, P, co-NP and NPC

P

NP coNP

NPC coNPC

7

NP, P, co-NP and NPC
We say class X is “closed under polynomial reductions”
if (L1 ≤p L2 and L2 in class X) implies L1 in X

P

NP coNP

NPC coNPC

7

NP, P, co-NP and NPC
We say class X is “closed under polynomial reductions”
if (L1 ≤p L2 and L2 in class X) implies L1 in X

e.g. P, NP are closed under polynomial reductions

P

NP coNP

NPC coNPC

7

NP, P, co-NP and NPC
We say class X is “closed under polynomial reductions”
if (L1 ≤p L2 and L2 in class X) implies L1 in X

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

P

NP coNP

NPC coNPC

7

NP, P, co-NP and NPC
We say class X is “closed under polynomial reductions”
if (L1 ≤p L2 and L2 in class X) implies L1 in X

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

If any NPC language is in P, then NP = P

P

NP coNP

NPC coNPC

7

NP, P, co-NP and NPC
We say class X is “closed under polynomial reductions”
if (L1 ≤p L2 and L2 in class X) implies L1 in X

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

If any NPC language is in P, then NP = P

If any NPC language is in co-NP, then NP = co-NP
P

NP coNP

NPC coNPC

7

NP, P, co-NP and NPC
We say class X is “closed under polynomial reductions”
if (L1 ≤p L2 and L2 in class X) implies L1 in X

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

If any NPC language is in P, then NP = P

If any NPC language is in co-NP, then NP = co-NP

Note: X ⊆ co-X ⇒ X = co-X (Why?)
P

NP coNP

NPC coNPC

7

NP, P, co-NP and NPC
We say class X is “closed under polynomial reductions”
if (L1 ≤p L2 and L2 in class X) implies L1 in X

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

If any NPC language is in P, then NP = P

If any NPC language is in co-NP, then NP = co-NP

Note: X ⊆ co-X ⇒ X = co-X (Why?)

L is NP-complete iff Lc is co-NP-complete (Why?)

P

NP coNP

NPC coNPC

7

NP, P, co-NP and NPC
We say class X is “closed under polynomial reductions”
if (L1 ≤p L2 and L2 in class X) implies L1 in X

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

If any NPC language is in P, then NP = P

If any NPC language is in co-NP, then NP = co-NP

Note: X ⊆ co-X ⇒ X = co-X (Why?)

L is NP-complete iff Lc is co-NP-complete (Why?)

co-NP complete = co-(NP-complete)

P

NP coNP

NPC coNPC

7

Separating Classes

8

Separating Classes

How to prove a set X strictly bigger than Y

8

Separating Classes

How to prove a set X strictly bigger than Y

Show an element not in Y, but in X? For us, not in
Y may often be difficult to prove for (familiar)
elements

8

Separating Classes

How to prove a set X strictly bigger than Y

Show an element not in Y, but in X? For us, not in
Y may often be difficult to prove for (familiar)
elements

Count? What if both infinite?!

8

Separating Classes

How to prove a set X strictly bigger than Y

Show an element not in Y, but in X? For us, not in
Y may often be difficult to prove for (familiar)
elements

Count? What if both infinite?!

Comparing infinite sets: diagonalization!

8

Cantor’s Diagonal Slash

9

Cantor’s Diagonal Slash
Are real numbers (say in the
range [0,1)) countable?

9

Cantor’s Diagonal Slash
Are real numbers (say in the
range [0,1)) countable?

Suppose they were:
consider enumerating them
along with their binary
representations in a table

9

Cantor’s Diagonal Slash
Are real numbers (say in the
range [0,1)) countable?

Suppose they were:
consider enumerating them
along with their binary
representations in a table

Ri

R1 =

R2 =

R3 =

R4 =

R5 =

R6 =

R7 =

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1
9

Cantor’s Diagonal Slash
Are real numbers (say in the
range [0,1)) countable?

Suppose they were:
consider enumerating them
along with their binary
representations in a table

Consider the real number
corresponding to the
“flipped diagonal”

Ri

R1 =

R2 =

R3 =

R4 =

R5 =

R6 =

R7 =

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1
9

Cantor’s Diagonal Slash
Are real numbers (say in the
range [0,1)) countable?

Suppose they were:
consider enumerating them
along with their binary
representations in a table

Consider the real number
corresponding to the
“flipped diagonal”

Ri

R1 =

R2 =

R3 =

R4 =

R5 =

R6 =

R7 =

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1
9

Cantor’s Diagonal Slash
Are real numbers (say in the
range [0,1)) countable?

Suppose they were:
consider enumerating them
along with their binary
representations in a table

Consider the real number
corresponding to the
“flipped diagonal”

Doesn’t appear in this
table!

Ri

R1 =

R2 =

R3 =

R4 =

R5 =

R6 =

R7 =

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1
9

Cantor’s Diagonal Slash
Are real numbers (say in the
range [0,1)) countable?

Suppose they were:
consider enumerating them
along with their binary
representations in a table

Consider the real number
corresponding to the
“flipped diagonal”

Doesn’t appear in this
table!

Ri

R1 =

R2 =

R3 =

R4 =

R5 =

R6 =

R7 =

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1

This t
able

can’t

have
all re

als

9

Undecidable Languages

LM1 =

LM2 =

LM3 =

LM4 =

LM5 =

LM6 =

LM7 =

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1
10

Undecidable Languages
Languages, like real
numbers, can be represented
as infinite bit-vectors LM1 =

LM2 =

LM3 =

LM4 =

LM5 =

LM6 =

LM7 =

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1
10

Undecidable Languages
Languages, like real
numbers, can be represented
as infinite bit-vectors

TMs can be enumerated!

LM1 =

LM2 =

LM3 =

LM4 =

LM5 =

LM6 =

LM7 =

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1
10

Undecidable Languages
Languages, like real
numbers, can be represented
as infinite bit-vectors

TMs can be enumerated!

Table of languages
recognized by the TMs

LM1 =

LM2 =

LM3 =

LM4 =

LM5 =

LM6 =

LM7 =

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1
10

Undecidable Languages
Languages, like real
numbers, can be represented
as infinite bit-vectors

TMs can be enumerated!

Table of languages
recognized by the TMs

L = ”diagonal language”

LM1 =

LM2 =

LM3 =

LM4 =

LM5 =

LM6 =

LM7 =

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1
10

Undecidable Languages
Languages, like real
numbers, can be represented
as infinite bit-vectors

TMs can be enumerated!

Table of languages
recognized by the TMs

L = ”diagonal language”

Lc does not appear as a
row in this table. Hence
not recognizable!

LM1 =

LM2 =

LM3 =

LM4 =

LM5 =

LM6 =

LM7 =

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1
10

Undecidable Languages
Languages, like real
numbers, can be represented
as infinite bit-vectors

TMs can be enumerated!

Table of languages
recognized by the TMs

L = ”diagonal language”

Lc does not appear as a
row in this table. Hence
not recognizable!

LM1 =

LM2 =

LM3 =

LM4 =

LM5 =

LM6 =

LM7 =

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1

This ta
ble ca

n’t hav
e

all lan
guage

s

10

Diagonalization to
Separate Classes

Diagonalization can separate the class of decidable
languages (from the class of all languages)

Plan: Use similar techniques to separate
complexity classes

11

DTIME Hierarchy

12

DTIME Hierarchy
Fix a TM model (one-tape, binary alphabet)

12

DTIME Hierarchy
Fix a TM model (one-tape, binary alphabet)

DTIME(T) = class of languages that can be decided in O(T(n))
time, by such a TM

12

DTIME Hierarchy
Fix a TM model (one-tape, binary alphabet)

DTIME(T) = class of languages that can be decided in O(T(n))
time, by such a TM

Theorem: DTIME(nc) ⊊ DTIME(nc+1) for all c ≥ 1

12

DTIME Hierarchy
Fix a TM model (one-tape, binary alphabet)

DTIME(T) = class of languages that can be decided in O(T(n))
time, by such a TM

Theorem: DTIME(nc) ⊊ DTIME(nc+1) for all c ≥ 1

More generally DTIME(T) ⊊ DTIME(T’) if T, T’ “nice” (and ≥ n)

and T(n)log(T(n)) = o(T’(n))

12

DTIME Hierarchy
Fix a TM model (one-tape, binary alphabet)

DTIME(T) = class of languages that can be decided in O(T(n))
time, by such a TM

Theorem: DTIME(nc) ⊊ DTIME(nc+1) for all c ≥ 1

More generally DTIME(T) ⊊ DTIME(T’) if T, T’ “nice” (and ≥ n)

and T(n)log(T(n)) = o(T’(n))

Consequences, for e.g., P ⊊ EXP

12

DTIME Hierarchy
Fix a TM model (one-tape, binary alphabet)

DTIME(T) = class of languages that can be decided in O(T(n))
time, by such a TM

Theorem: DTIME(nc) ⊊ DTIME(nc+1) for all c ≥ 1

More generally DTIME(T) ⊊ DTIME(T’) if T, T’ “nice” (and ≥ n)

and T(n)log(T(n)) = o(T’(n))

Consequences, for e.g., P ⊊ EXP

P ⊆ DTIME(2n) ⊊ DTIME(22n) ⊆ EXP

12

DTIME Hierarchy: Proof

13

Mi be an enumeration of TMs, each TM appearing infinitely often

DTIME Hierarchy: Proof

13

Mi be an enumeration of TMs, each TM appearing infinitely often

Consider table(i,j) = UTM|T’ (Mi,j), where T log T = o(T’)

DTIME Hierarchy: Proof

Mi

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1

j

13

Mi be an enumeration of TMs, each TM appearing infinitely often

Consider table(i,j) = UTM|T’ (Mi,j), where T log T = o(T’)

DTIME Hierarchy: Proof

Mi

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1

j

T’ large and nice
enough to allow

simulation

13

Mi be an enumeration of TMs, each TM appearing infinitely often

Consider table(i,j) = UTM|T’ (Mi,j), where T log T = o(T’)

DTIME Hierarchy: Proof

Mi

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1

j

Think DTIME(T)
⊆ rows

T’ large and nice
enough to allow

simulation

13

Mi be an enumeration of TMs, each TM appearing infinitely often

Consider table(i,j) = UTM|T’ (Mi,j), where T log T = o(T’)

DTIME Hierarchy: Proof

Mi

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1

j

Think DTIME(T)
⊆ rows

T’ large and nice
enough to allow

simulation

13

Mi be an enumeration of TMs, each TM appearing infinitely often

Consider table(i,j) = UTM|T’ (Mi,j), where T log T = o(T’)

Let L’ = inverted diagonal.

DTIME Hierarchy: Proof

Mi

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1

j

Think DTIME(T)
⊆ rows

T’ large and nice
enough to allow

simulation

13

L’ in DTIME(T’)

Mi be an enumeration of TMs, each TM appearing infinitely often

Consider table(i,j) = UTM|T’ (Mi,j), where T log T = o(T’)

Let L’ = inverted diagonal.

DTIME Hierarchy: Proof

Mi

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1

j

Think DTIME(T)
⊆ rows

T’ large and nice
enough to allow

simulation

13

L’ in DTIME(T’)

On input i, run UTM|T’ (Mi,i), modified to
invert output

Mi be an enumeration of TMs, each TM appearing infinitely often

Consider table(i,j) = UTM|T’ (Mi,j), where T log T = o(T’)

Let L’ = inverted diagonal.

DTIME Hierarchy: Proof

Mi

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1

j

Think DTIME(T)
⊆ rows

T’ large and nice
enough to allow

simulation

13

L’ in DTIME(T’)

On input i, run UTM|T’ (Mi,i), modified to
invert output

L’ not in DTIME(T)

Mi be an enumeration of TMs, each TM appearing infinitely often

Consider table(i,j) = UTM|T’ (Mi,j), where T log T = o(T’)

Let L’ = inverted diagonal.

DTIME Hierarchy: Proof

Mi

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1

j

Think DTIME(T)
⊆ rows

T’ large and nice
enough to allow

simulation

13

L’ in DTIME(T’)

On input i, run UTM|T’ (Mi,i), modified to
invert output

L’ not in DTIME(T)

If M accepts L’ in time T, then for
sufficiently large i s.t. Mi=M, UTM can
finish simulating Mi(i). Then table(i,i)=L’(i)!

Mi be an enumeration of TMs, each TM appearing infinitely often

Consider table(i,j) = UTM|T’ (Mi,j), where T log T = o(T’)

Let L’ = inverted diagonal.

DTIME Hierarchy: Proof

Mi

1 0 0 1 0 0 0 0 1

0 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 0 0

1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1

j

Think DTIME(T)
⊆ rows

T’ large and nice
enough to allow

simulation

13

NTIME Hierarchy

14

NTIME Hierarchy

Finer hierarchy

14

NTIME Hierarchy

Finer hierarchy

NTIME(T) ⊊ NTIME(T’) if T(n)=o(T’(n)), and T, T’ nice

14

NTIME Hierarchy

Finer hierarchy

NTIME(T) ⊊ NTIME(T’) if T(n)=o(T’(n)), and T, T’ nice

Because a more sophisticated Universal NTM has less
overhead

14

NTIME Hierarchy

Finer hierarchy

NTIME(T) ⊊ NTIME(T’) if T(n)=o(T’(n)), and T, T’ nice

Because a more sophisticated Universal NTM has less
overhead

Diagonalization is more complicated

14

NTIME Hierarchy

Finer hierarchy

NTIME(T) ⊊ NTIME(T’) if T(n)=o(T’(n)), and T, T’ nice

Because a more sophisticated Universal NTM has less
overhead

Diagonalization is more complicated

Issue: NTIME(T’) enough to simulate NTIME(T), but not
to simulate co-NTIME(T)!

14

NTIME Hierarchy

Finer hierarchy

NTIME(T) ⊊ NTIME(T’) if T(n)=o(T’(n)), and T, T’ nice

Because a more sophisticated Universal NTM has less
overhead

Diagonalization is more complicated

Issue: NTIME(T’) enough to simulate NTIME(T), but not
to simulate co-NTIME(T)!

In fa
ct,

T(n+1
) = o(

T’(n))

14

NTIME Hierarchy

15

NTIME Hierarchy
“Delayed flip” on a “rapidly
thickening diagonal”

15

NTIME Hierarchy
“Delayed flip” on a “rapidly
thickening diagonal”

Think NTIME(T) ⊆ rows
15

NTIME Hierarchy
“Delayed flip” on a “rapidly
thickening diagonal”

Think NTIME(T) ⊆ rows
15

NTIME Hierarchy
“Delayed flip” on a “rapidly
thickening diagonal”

f(i+1)=exp(f(i))

Think NTIME(T) ⊆ rows
15

NTIME Hierarchy
“Delayed flip” on a “rapidly
thickening diagonal”

f(i+1)=exp(f(i))

f(1) f(2) f(3) f(4) f(5)

Think NTIME(T) ⊆ rows
15

NTIME Hierarchy
“Delayed flip” on a “rapidly
thickening diagonal”

f(i+1)=exp(f(i))

Let L be the “diagonal”
language

f(1) f(2) f(3) f(4) f(5)

Think NTIME(T) ⊆ rows
15

NTIME Hierarchy
“Delayed flip” on a “rapidly
thickening diagonal”

f(i+1)=exp(f(i))

Let L be the “diagonal”
language

f(1) f(2) f(3) f(4) f(5)

L

Think NTIME(T) ⊆ rows
15

NTIME Hierarchy
“Delayed flip” on a “rapidly
thickening diagonal”

f(i+1)=exp(f(i))

Let L be the “diagonal”
language

f(1) f(2) f(3) f(4) f(5)

L

L’

Think NTIME(T) ⊆ rows
15

NTIME Hierarchy
“Delayed flip” on a “rapidly
thickening diagonal”

f(i+1)=exp(f(i))

Let L be the “diagonal”
language

L’(j)=L(j+1)
f(1) f(2) f(3) f(4) f(5)

L

L’

Think NTIME(T) ⊆ rows
15

NTIME Hierarchy
“Delayed flip” on a “rapidly
thickening diagonal”

f(i+1)=exp(f(i))

Let L be the “diagonal”
language

L’(j)=L(j+1)
f(1) f(2) f(3) f(4) f(5)

L

L’

Think NTIME(T) ⊆ rows
15

NTIME Hierarchy
“Delayed flip” on a “rapidly
thickening diagonal”

f(i+1)=exp(f(i))

Let L be the “diagonal”
language

L’(j)=L(j+1)

except if j=f(i), then
L’(j) = 1 - L(f(i-1)+1)

f(1) f(2) f(3) f(4) f(5)

L

L’

Think NTIME(T) ⊆ rows
15

NTIME Hierarchy
“Delayed flip” on a “rapidly
thickening diagonal”

f(i+1)=exp(f(i))

Let L be the “diagonal”
language

L’(j)=L(j+1)

except if j=f(i), then
L’(j) = 1 - L(f(i-1)+1)

f(1) f(2) f(3) f(4) f(5)

L

L’

Think NTIME(T) ⊆ rows
15

NTIME Hierarchy
“Delayed flip” on a “rapidly
thickening diagonal”

f(i+1)=exp(f(i))

Let L be the “diagonal”
language

L’(j)=L(j+1)

except if j=f(i), then
L’(j) = 1 - L(f(i-1)+1)

L’ not in NTIME(T), but
is in NTIME(T’)

f(1) f(2) f(3) f(4) f(5)

L

L’

Think NTIME(T) ⊆ rows
15

NTIME Hierarchy
“Delayed flip” on a “rapidly
thickening diagonal”

f(i+1)=exp(f(i))

Let L be the “diagonal”
language

L’(j)=L(j+1)

except if j=f(i), then
L’(j) = 1 - L(f(i-1)+1)

L’ not in NTIME(T), but
is in NTIME(T’)

f(1) f(2) f(3) f(4) f(5)

L

L’

Think NTIME(T) ⊆ rows

Flip, Diagonal

15

NTIME Hierarchy
“Delayed flip” on a “rapidly
thickening diagonal”

f(i+1)=exp(f(i))

Let L be the “diagonal”
language

L’(j)=L(j+1)

except if j=f(i), then
L’(j) = 1 - L(f(i-1)+1)

L’ not in NTIME(T), but
is in NTIME(T’)

f(1) f(2) f(3) f(4) f(5)

L

L’

Think NTIME(T) ⊆ rows

Flip, Diagonal

15

NTIME Hierarchy
“Delayed flip” on a “rapidly
thickening diagonal”

f(i+1)=exp(f(i))

Let L be the “diagonal”
language

L’(j)=L(j+1)

except if j=f(i), then
L’(j) = 1 - L(f(i-1)+1)

L’ not in NTIME(T), but
is in NTIME(T’)

f(1) f(2) f(3) f(4) f(5)

L

L’

Think NTIME(T) ⊆ rows

Flip, Diagonal

15

Dela
y, R

apid

thic
ken

ing

NTIME Hierarchy
“Delayed flip” on a “rapidly
thickening diagonal”

f(i+1)=exp(f(i))

Let L be the “diagonal”
language

L’(j)=L(j+1)

except if j=f(i), then
L’(j) = 1 - L(f(i-1)+1)

L’ not in NTIME(T), but
is in NTIME(T’)

f(1) f(2) f(3) f(4) f(5)

L

L’

Think NTIME(T) ⊆ rows

Flip, Diagonal

15

Time Hierarchy

16

Time Hierarchy

Within DTIME and NTIME fine gradation

16

Time Hierarchy

Within DTIME and NTIME fine gradation

In particular P ⊊ EXP, NP ⊊ NEXP

16

Time Hierarchy

Within DTIME and NTIME fine gradation

In particular P ⊊ EXP, NP ⊊ NEXP

Tells nothing across DTIME and NTIME

16

Time Hierarchy

Within DTIME and NTIME fine gradation

In particular P ⊊ EXP, NP ⊊ NEXP

Tells nothing across DTIME and NTIME

P and NP?

16

Time Hierarchy

Within DTIME and NTIME fine gradation

In particular P ⊊ EXP, NP ⊊ NEXP

Tells nothing across DTIME and NTIME

P and NP?

Just diagonalization won’t help (next lecture)

16

Today

DTIME Hierarchy

DTIME(T) ⊊ DTIME(T’) if T log T = o(T’)

NTIME Hierarchy

NTIME(T) ⊊ NTIME(T’) if T = o(T’)

Using diagonalization

17

Next Lecture

Another application of diagonalization

Ladner’s Theorem: If P≠NP, NP language which is
neither in P nor NP-complete

Limits of Diagonalization

Starting Space Complexity

18

