
Computational 
Complexity

Lecture 3
in which we come across

Diagonalization and Time-hierarchies
(But first some more of NP-completeness)
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NP-Complete Languages

A language L1 is NP-complete if L1 is in NP and any NP 
language L can be reduced to L1 (Karp reduction: 
polynomial time many-one reduction)

Trivial example: L1 = TMSAT

First interesting example: L1 = CKT-SAT

Convert x into a circuit C s.t. C is satisfiable iff 
x in L

More examples, bootstrapping from CKT-SAT

If L ≤p L1 and L1 ≤p L2, then L ≤p L2
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(Conjunctive Normal Form)

Converting a circuit to a collection of clauses:

For each wire (connected component), add a variable

Add output variable as a clause. And for each gate, add a 
clause involving variables for wires connected to the gate:

e.g.             : (z⇒x), (z⇒y), (¬z ⇒ ¬x ∨ ¬y).         
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SAT ≤p 3SAT
Previous reduction was to 3SAT, so 3SAT is NP-complete. 
And SAT is in NP. So SAT ≤p 3SAT.

More directly:

(a ∨ b ∨ c ∨ d ∨ e) → (a ∨ b ∨ x), (¬x ∨ c ∨ d ∨ e)                
→ (a ∨ b ∨ x), (¬x ∨ c ∨ y), (¬y ∨ d ∨ e)

Reduction needs 3SAT 

2SAT is in fact in P! [Exercise]

Reduction not parsimonious (can you make it? [Exercise])
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INDEP-SET and   
VERTEX-COVER

CLIQUE ≤p INDEP-SET

G has an m-clique iff Gc has an m-independent-set

INDEP-SET ≤p VERTEX-COVER

G has an m-indep-set iff G has an (n-m)-vertex-cover
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If any NPC language is in co-NP, then NP = co-NP
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Separating Classes

How to prove a set X strictly bigger than Y

Show an element not in Y, but in X? For us, not in 
Y may often be difficult to prove for (familiar) 
elements

Count? What if both infinite?!

Comparing infinite sets: diagonalization!
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1 1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0

0 1 0 1 0 1 0 1 1

This ta
ble ca

n’t hav
e 

all lan
guage

s
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Diagonalization to 
Separate Classes

Diagonalization can separate the class of decidable 
languages (from the class of all languages)

Plan: Use similar techniques to separate 
complexity classes
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DTIME(T) = class of languages that can be decided in O(T(n)) 
time, by such a TM

Theorem: DTIME(nc) ⊊ DTIME(nc+1) for all c ≥ 1

More generally DTIME(T) ⊊ DTIME(T’) if T, T’ “nice” (and ≥ n) 

and T(n)log(T(n)) = o(T’(n))

Consequences, for e.g., P ⊊ EXP

P ⊆ DTIME(2n) ⊊ DTIME(22n) ⊆ EXP
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Mi be an enumeration of TMs, each TM appearing infinitely often
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L’ in DTIME(T’)

On input i, run UTM|T’ (Mi,i), modified to 
invert output 

L’ not in DTIME(T)

If M accepts L’ in time T, then for 
sufficiently large i s.t. Mi=M, UTM can 
finish simulating Mi(i). Then table(i,i)=L’(i)!

Mi be an enumeration of TMs, each TM appearing infinitely often

Consider table(i,j) = UTM|T’ (Mi,j), where T log T = o(T’)
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Finer hierarchy

NTIME(T) ⊊ NTIME(T’) if  T(n)=o(T’(n)), and  T, T’ nice

Because a more sophisticated Universal NTM has less 
overhead

Diagonalization is more complicated

Issue: NTIME(T’) enough to simulate NTIME(T), but not 
to simulate co-NTIME(T)!

In fa
ct,    

        

T(n+1
) = o(

T’(n))

14
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Time Hierarchy

Within DTIME and NTIME fine gradation

In particular P ⊊ EXP, NP ⊊ NEXP

Tells nothing across DTIME and NTIME

P and NP?

Just diagonalization won’t help (next lecture)

16



Today

DTIME Hierarchy

DTIME(T) ⊊ DTIME(T’) if T log T = o(T’)

NTIME Hierarchy

NTIME(T) ⊊ NTIME(T’) if T = o(T’)

Using diagonalization

17



Next Lecture

Another application of diagonalization

Ladner’s Theorem: If P≠NP, NP language which is 
neither in P nor NP-complete

Limits of Diagonalization

Starting Space Complexity

18


