Computational Complexity

Lecture 3 in which we come across Diagonalization and Time-hierarchies (But first some more of NP-completeness)

A language L₁ is NP-complete if L₁ is in NP and any NP language L can be reduced to L₁ (Karp reduction: polynomial time many-one reduction)

A language L₁ is NP-complete if L₁ is in NP and any NP language L can be reduced to L₁ (Karp reduction: polynomial time many-one reduction)

 \odot Trivial example: L₁ = TMSAT

A language L₁ is NP-complete if L₁ is in NP and any NP language L can be reduced to L₁ (Karp reduction: polynomial time many-one reduction)

 \odot Trivial example: L₁ = TMSAT

• First interesting example: $L_1 = CKT-SAT$

- A language L₁ is NP-complete if L₁ is in NP and any NP language L can be reduced to L₁ (Karp reduction: polynomial time many-one reduction)
 - \odot Trivial example: L₁ = TMSAT
 - First interesting example: $L_1 = CKT-SAT$
 - Convert x into a circuit C s.t. C is satisfiable iff x in L

- A language L₁ is NP-complete if L₁ is in NP and any NP language L can be reduced to L₁ (Karp reduction: polynomial time many-one reduction)
 - \odot Trivial example: L₁ = TMSAT
 - First interesting example: $L_1 = CKT-SAT$
 - Convert x into a circuit C s.t. C is satisfiable iff
 x in L
 - More examples, bootstrapping from CKT-SAT

- A language L₁ is NP-complete if L₁ is in NP and any NP language L can be reduced to L₁ (Karp reduction: polynomial time many-one reduction)
 - \odot Trivial example: L₁ = TMSAT
 - First interesting example: $L_1 = CKT-SAT$
 - Convert x into a circuit C s.t. C is satisfiable iff
 x in L
 - More examples, bootstrapping from CKT-SAT

If L ≤_p L₁ and L₁ ≤_p L₂, then L ≤_p L₂

 SAT: Are all given "clauses" simultaneously satisfiable? (Conjunctive Normal Form)

 SAT: Are all given "clauses" simultaneously satisfiable? (Conjunctive Normal Form)

Converting a circuit to a collection of clauses:

 SAT: Are all given "clauses" simultaneously satisfiable? (Conjunctive Normal Form)

Converting a circuit to a collection of clauses:

For each wire (connected component), add a variable

 SAT: Are all given "clauses" simultaneously satisfiable? (Conjunctive Normal Form)

Converting a circuit to a collection of clauses:

For each wire (connected component), add a variable

Add output variable as a clause. And for each gate, add a clause involving variables for wires connected to the gate:

 SAT: Are all given "clauses" simultaneously satisfiable? (Conjunctive Normal Form)

Converting a circuit to a collection of clauses:

For each wire (connected component), add a variable

Add output variable as a clause. And for each gate, add a clause involving variables for wires connected to the gate:

e.g. X → Z: (Z → X), (Z → Y), (¬Z → ¬X ∨ ¬Y).
 i.e., (¬Z ∨ X), (¬Z ∨ Y), (Z ∨ ¬X ∨ ¬Y).

 SAT: Are all given "clauses" simultaneously satisfiable? (Conjunctive Normal Form)

Converting a circuit to a collection of clauses:

For each wire (connected component), add a variable

Add output variable as a clause. And for each gate, add a clause involving variables for wires connected to the gate:

e.g. X → Z: (Z ⇒ X), (Z ⇒ Y), (¬Z ⇒ ¬X ∨ ¬Y).
 i.e., (¬Z ∨ X), (¬Z ∨ Y), (Z ∨ ¬X ∨ ¬Y).

and X → Z: (Z ⇒ X ∨ Y), (¬Z ⇒ ¬X), (¬Z ⇒ ¬Y).

Ø Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT ≤p 3SAT.

 Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT ≤_p 3SAT.

More directly:

 Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT ≤_p 3SAT.

More directly:

 Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT ≤_p 3SAT.

More directly:

Reduction needs 3SAT

 Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT ≤_p 3SAT.

More directly:

- Reduction needs 3SAT
 - 2SAT is in fact in P! [Exercise]

 Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT ≤_p 3SAT.

More directly:

- Reduction needs 3SAT
 - 2SAT is in fact in P! [Exercise]

Reduction not parsimonious (can you make it? [Exercise])

CLIQUE: Does graph G
 have a clique of size m?

CLIQUE: Does graph G have a clique of size m?

 $(w \lor y)$

CLIQUE: Does graph G have a clique of size m?

 \odot Clauses \rightarrow Graph

(w ∨ y)

CLIQUE: Does graph G have a clique of size m?

 \odot Clauses \rightarrow Graph

CLIQUE: Does graph G have a clique of size m?

 \odot Clauses \rightarrow Graph

CLIQUE: Does graph G have a clique of size m?

 \odot Clauses \rightarrow Graph

*111 *100 *111 *100 *101 *001 *110 *001

CLIQUE: Does graph G have a clique of size m?

 \odot Clauses \rightarrow Graph

CLIQUE: Does graph G have a clique of size m?

 \odot Clauses \rightarrow Graph

1*1*

- CLIQUE: Does graph G have a clique of size m?
- \oslash Clauses \rightarrow Graph
 - vertices: each clause's satisfying assignments (for its variables)

0*1*

- CLIQUE: Does graph G have a clique of size m?
- \oslash Clauses \rightarrow Graph
 - vertices: each clause's satisfying assignments (for its variables)

CLIQUE: Does graph G have a clique of size m?

 \oslash Clauses \rightarrow Graph

 vertices: each clause's satisfying assignments (for its variables)

CLIQUE: Does graph G have a clique of size m?

 \oslash Clauses \rightarrow Graph

 vertices: each clause's satisfying assignments (for its variables)

10*0

*000

00*0

11*1

01*1

*100

*111

*110

O *101

1*1*

0*1*

CLIQUE: Does graph G have a clique of size m?

 \oslash Clauses \rightarrow Graph

 vertices: each clause's satisfying assignments (for its variables)

CLIQUE: Does graph G have a clique of size m?

 \oslash Clauses \rightarrow Graph

 vertices: each clause's satisfying assignments (for its variables)

- CLIQUE: Does graph G have a clique of size m?
- \odot Clauses \rightarrow Graph
 - vertices: each clause's satisfying assignments (for its variables)
 - edges between
 consistent assignments

- CLIQUE: Does graph G have a clique of size m?
- \odot Clauses \rightarrow Graph
 - vertices: each clause's satisfying assignments (for its variables)
 - edges between
 consistent assignments
 - m-clique iff all m
 clauses satisfiable

10*0

01*0

*000

*100

*111

*110

00*0

11*1

01*1

*101

1*1*

 $(w \lor x \lor \neg z)$

- CLIQUE: Does graph G have a clique of size m?
- \odot Clauses \rightarrow Graph
 - vertices: each clause's satisfying assignments (for its variables)
 - edges between
 consistent assignments
 - m-clique iff all m
 clauses satisfiable

10*0

01*0

*000

*100

*111

*110

00*0

11*1

01*1

*101

1*1*

 $(w \lor x \lor \neg z)$

- CLIQUE: Does graph G have a clique of size m?
- \oslash Clauses \rightarrow Graph
 - vertices: each clause's satisfying assignments (for its variables)
 - edges between
 consistent assignments
 - m-clique iff all m
 clauses satisfiable

⊘ CLIQUE ≤_p INDEP-SET

⊘ CLIQUE ≤_p INDEP-SET

G has an m-clique iff G^c has an m-independent-set

⊘ CLIQUE ≤_p INDEP-SET

G has an m-clique iff G^c has an m-independent-set
 INDEP-SET ≤_p VERTEX-COVER

⊘ CLIQUE ≤_p INDEP-SET

✓ G has an m-clique iff G^c has an m-independent-set
 ✓ INDEP-SET ≤_p VERTEX-COVER

G has an m-indep-set iff G has an (n-m)-vertex-cover

We say class X is "closed under polynomial reductions" if (L₁ ≤_p L₂ and L₂ in class X) implies L₁ in X

We say class X is "closed under polynomial reductions" if (L₁ ≤_p L₂ and L₂ in class X) implies L₁ in X

e.g. P, NP are closed under polynomial reductions

We say class X is "closed under polynomial reductions" if (L₁ ≤_p L₂ and L₂ in class X) implies L₁ in X

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

We say class X is "closed under polynomial reductions" if (L₁ ≤_p L₂ and L₂ in class X) implies L₁ in X

e.g. P, NP are closed under polynomial reductions
So is co-NP (If X is closed, so is co-X. Why?)
If any NPC language is in P, then NP = P

NP

CONP

CON

We say class X is "closed under polynomial reductions" if (L₁ ≤_p L₂ and L₂ in class X) implies L₁ in X

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

If any NPC language is in P, then NP = P

 \odot If any NPC language is in co-NP, then NP = co-NP

CONP

CON

NP

NPC

We say class X is "closed under polynomial reductions" if (L₁ ≤_p L₂ and L₂ in class X) implies L₁ in X

e.g. P, NP are closed under polynomial reductions
So is co-NP (If X is closed, so is co-X. Why?)
If any NPC language is in P, then NP = P
If any NPC language is in co-NP, then NP = co-NP
Note: X ⊆ co-X ⇒ X = co-X (Why?)

NP

NPC

CONP

CONI

We say class X is "closed under polynomial reductions" if (L₁ ≤_p L₂ and L₂ in class X) implies L₁ in X

e.g. P, NP are closed under polynomial reductions
So is co-NP (If X is closed, so is co-X. Why?)
If any NPC language is in P, then NP = P
If any NPC language is in co-NP, then NP = co-NP
Note: X ⊆ co-X ⇒ X = co-X (Why?)

L is NP-complete iff L^c is co-NP-complete (Why?)

NP

NPC

CONP

CON

NP, P, co-NP and NPC We say class X is "closed under polynomial reductions" if $(L_1 \leq_p L_2 \text{ and } L_2 \text{ in class } X)$ implies L_1 in X e.g. P, NP are closed under polynomial reductions So is co-NP (If X is closed, so is co-X. Why?) NP \odot If any NPC language is in P, then NP = P NPC \odot If any NPC language is in co-NP, then NP = co-NP O Note: X ⊆ co-X ⇒ X = co-X (Why?)

L is NP-complete iff L^c is co-NP-complete (Why?)

co-NP complete = co-(NP-complete)

CONP

CONI

How to prove a set X strictly bigger than Y

How to prove a set X strictly bigger than Y

Show an element not in Y, but in X? For us, not in Y may often be difficult to prove for (familiar) elements

How to prove a set X strictly bigger than Y

Show an element not in Y, but in X? For us, not in Y may often be difficult to prove for (familiar) elements

Count? What if both infinite?!

How to prove a set X strictly bigger than Y

Show an element not in Y, but in X? For us, not in Y may often be difficult to prove for (familiar) elements

Count? What if both infinite?!

Comparing infinite sets: diagonalization!

Are real numbers (say in the range [0,1)) countable?

Are real numbers (say in the range [0,1)) countable?

 Suppose they were: consider enumerating them along with their binary representations in a table

- Are real numbers (say in the range [0,1)) countable?
 - Suppose they were: consider enumerating them along with their binary representations in a table

Ri									
R ₁ =	1	0	0	1	0	0	0	0	1
R ₂ =	0	0	1	0	1	0	0	1	1
R ₃ =	1	1	1	1	1	1	1	0	0
R ₄ =	1	1	0	1	0	1	0	1	1
R ₅ =	1	1	0	0	0	0	1	0	0
R ₆ =	0	0	0	0	0	0	1	1	0
R ₇ =	0	1	0	1	0	1	0	1	1

- Are real numbers (say in the range [0,1)) countable?
 - Suppose they were: consider enumerating them along with their binary representations in a table
 - Consider the real number corresponding to the "flipped diagonal"

$R_1 =$	1	0	0	1	0	0	0	0	1
R ₂ =	0	0	1	0	1	0	0	1	1
R ₃ =	1	1	1	1	1	1	1	0	0
R ₄ =	1	1	0	1	0	1	0	1	1
R ₅ =	1	1	0	0	0	0	1	0	0
R ₆ =	0	0	0	0	0	0	1	1	0
R ₇ =	0	1	0	1	0	1	0	1	1

- Are real numbers (say in the range [0,1)) countable?
 - Suppose they were: consider enumerating them along with their binary representations in a table
 - Consider the real number corresponding to the "flipped diagonal"

Ri									
R ₁ =	1	0	0	1	0	0	0	0	1
R ₂ =	0	0	1	0	1	0	0	1	1
R ₃ =	1	1	1	1	1	1	1	0	0
R ₄ =	1	1	0	1	0	1	0	1	1
R ₅ =	1	1	0	0	0	0	1	0	0
R ₆ =	0	0	0	0	0	0	1	1	0
R ₇ =	0	1	0	1	0	1	0	1	1

- Are real numbers (say in the range [0,1)) countable?
 - Suppose they were: consider enumerating them along with their binary representations in a table
 - Consider the real number corresponding to the "flipped diagonal"
 - Doesn't appear in this table!

Ri									
R ₁ =	1	0	0	1	0	0	0	0	1
R ₂ =	0	0	1	0	1	0	0	1	1
R ₃ =	1	1	1	1	1	1	1	0	0
R ₄ =	1	1	0	1	0	1	0	1	1
R ₅ =	1	1	0	0	0	0	1	0	0
R ₆ =	0	0	0	0	0	0	1	1	0
R ₇ =	0	1	0	1	0	1	0	1	1

- Are real numbers (say in the range [0,1)) countable?
 - Suppose they were: consider enumerating them along with their binary representations in a table
 - Consider the real number corresponding to the "flipped diagonal"
 - Doesn't appear in this table!

Ri									
R ₁ =	1	0	0	1	0	0	0	0	1
R ₂ =	0	0	1	0	1	0	0	1	1
R ₃ =	1	1	1	1	1	1	1	0	0
R ₄ =	1	1	0	1	0	1	0	1	1
R ₅ =	1	1	0	0	0	0	1	0	0
R ₆ =	0	0	0	0	0	0	1	1	0
R ₇ =	0	1	0	1	0	1	0	1	1

L _{M1} =	1	0	0	1	0	0	0	0	1
L _{M2} =	0	0	1	0	1	0	0	1	1
L _{M3} =	1	1	1	1	1	1	1	0	0
L _{M4} =	1	1	0	1	0	1	0	1	1
L _{M5} =	1	1	0	0	0	0	1	0	0
L _{M6} =	0	0	0	0	0	0	1	1	0
L _{M7} =	0	1	0	1	0	1	0	1	1

 Languages, like real numbers, can be represented as infinite bit-vectors

L _{M1} =	1	0	0	1	0	0	0	0	1
L _{M2} =	0	0	1	0	1	0	0	1	1
L _{M3} =	1	1	1	1	1	1	1	0	0
L _{M4} =	1	1	0	1	0	1	0	1	1
L _{M5} =	1	1	0	0	0	0	1	0	0
L _{M6} =	0	0	0	0	0	0	1	1	0
L _{M7} =	0	1	0	1	0	1	0	1	1

 Languages, like real numbers, can be represented as infinite bit-vectors

TMs can be enumerated!

L _{M1} =	1	0	0	1	0	0	0	0	1
L _{M2} =	0	0	1	0	1	0	0	1	1
L _{M3} =	1	1	1	1	1	1	1	0	0
L _{M4} =	1	1	0	1	0	1	0	1	1
L _{M5} =	1	1	0	0	0	0	1	0	0
L _{M6} =	0	0	0	0	0	0	1	1	0
L _{M7} =	0	1	0	1	0	1	0	1	1

 Languages, like real numbers, can be represented as infinite bit-vectors

TMs can be enumerated!

Table of languages recognized by the TMs

L _{M1} =	1	0	0	1	0	0	0	0	1
L _{M2} =	0	0	1	0	1	0	0	1	1
L _{M3} =	1	1	1	1	1	1	1	0	0
L _{M4} =	1	1	0	1	0	1	0	1	1
L _{M5} =	1	1	0	0	0	0	1	0	0
L _{M6} =	0	0	0	0	0	0	1	1	0
L _{M7} =	0	1	0	1	0	1	0	1	1
Undecidable Languages

 Languages, like real numbers, can be represented as infinite bit-vectors

TMs can be enumerated!

- Table of languages recognized by the TMs
- L = "diagonal language"

L _{M1} =	1	0	0	1	0	0	0	0	1
L _{M2} =	0	0	1	0	1	0	0	1	1
L _{M3} =	1	1	1	1	1	1	1	0	0
L _{M4} =	1	1	0	1	0	1	0	1	1
L _{M5} =	1	1	0	0	0	0	1	0	0
L _{M6} =	0	0	0	0	0	0	1	1	0
L _{M7} =	0	1	0	1	0	1	0	1	1

Undecidable Languages

 Languages, like real numbers, can be represented as infinite bit-vectors

TMs can be enumerated!

- Table of languages recognized by the TMs
- L = "diagonal language"
 - L^c does not appear as a row in this table. Hence not recognizable!

L _{M1} =	1	0	0	1	0	0	0	0	1
L _{M2} =	0	0	1	0	1	0	0	1	1
L _{M3} =	1	1	1	1	1	1	1	0	0
L _{M4} =	1	1	0	1	0	1	0	1	1
L _{M5} =	1	1	0	0	0	0	1	0	0
L _{M6} =	0	0	0	0	0	0	1	1	0
L _{M7} =	0	1	0	1	0	1	0	1	1

Undecidable Languages

 Languages, like real numbers, can be represented as infinite bit-vectors

TMs can be enumerated!

- Table of languages recognized by the TMs
- L = "diagonal language"
 - L^c does not appear as a row in this table. Hence not recognizable!

L _{M1} =	1	0	0	1	0	0	0	0	1
L _{M2} =	0	0	1	0	1	0	0	1	1
L _{M3} =	1	1	1	1	1	1	1	0	0
L _{M4} =	1	1	0	1	0	1	0	1	1
L _{M5} =	1	1	0	0	0	0	1	0	0
L _{M6} =	0	0	0	0	0	0	1	1	0
L _{M7} =	0	1	0	1	0	1	0	1	1

Diagonalization to Separate Classes

Diagonalization can separate the class of decidable languages (from the class of all languages)

Plan: Use similar techniques to separate complexity classes

Fix a TM model (one-tape, binary alphabet)

Fix a TM model (one-tape, binary alphabet)

DTIME(T) = class of languages that can be decided in O(T(n)) time, by such a TM

Fix a TM model (one-tape, binary alphabet)

DTIME(T) = class of languages that can be decided in O(T(n)) time, by such a TM

Theorem: DTIME(n^c) ⊊ DTIME(n^{c+1}) for all c ≥ 1

Fix a TM model (one-tape, binary alphabet)

DTIME(T) = class of languages that can be decided in O(T(n)) time, by such a TM

Theorem: DTIME(n^c) ⊊ DTIME(n^{c+1}) for all $c \ge 1$

More generally DTIME(T) \subseteq DTIME(T') if T, T' `nice" (and \geq n) and T(n)log(T(n)) = o(T'(n))

Fix a TM model (one-tape, binary alphabet)

DTIME(T) = class of languages that can be decided in O(T(n)) time, by such a TM

Theorem: DTIME(n^c) ⊊ DTIME(n^{c+1}) for all $c \ge 1$

More generally DTIME(T) ⊊ DTIME(T') if T, T' "nice" (and ≥ n)
 and T(n)log(T(n)) = o(T'(n))

Consequences, for e.g., $P \subsetneq EXP$

Fix a TM model (one-tape, binary alphabet)

DTIME(T) = class of languages that can be decided in O(T(n)) time, by such a TM

Theorem: DTIME(n^c) ⊊ DTIME(n^{c+1}) for all $c \ge 1$

More generally DTIME(T) \subseteq DTIME(T') if T, T' "nice" (and \geq n) and T(n)log(T(n)) = o(T'(n))

Consequences, for e.g., $P \subsetneq EXP$

Mi be an enumeration of TMs, each TM appearing infinitely often

Mi be an enumeration of TMs, each TM appearing infinitely often

• Consider table(i,j) = $UTM|_{T'}$ (M_i,j), where T log T = o(T')

Mi be an enumeration of TMs, each TM appearing infinitely often

Consider table(i,j) = UTM|_{T'} (M_i,j), where T log T = o(T')

T' large and nice enough to allow simulation

Mi be an enumeration of TMs, each TM appearing infinitely often

Consider table(i,j) = UTM|_{T'} (M_i,j), where T log T = o(T')

T' large and nice enough to allow simulation

Mi be an enumeration of TMs, each TM appearing infinitely often

Consider table(i,j) = UTM|_{T'} (M_i,j), where T log T = o(T')

T' large and nice enough to allow simulation

Mi

 \mathbf{C}

Think DTIME(T)

 \subseteq rows

 \mathbf{O}

0

Mi be an enumeration of TMs, each TM appearing infinitely often

• Consider table(i,j) = $UTM|_{T'}$ (M_i,j), where T log T = o(T')

Let L' = inverted diagonal.

T' large and nice enough to allow simulation

Mi be an enumeration of TMs, each TM appearing infinitely often

• Consider table(i,j) = $UTM|_{T'}$ (M_i,j), where T log T = o(T')

Let L' = inverted diagonal.
L' in DTIME(T')

T' large and nice enough to allow simulation

Mi be an enumeration of TMs, each TM appearing infinitely often

• Consider table(i,j) = $UTM|_{T'}$ (M_i,j), where T log T = o(T')

Let L' = inverted diagonal.
L' in DTIME(T')

T' large and nice enough to allow simulation

 On input i, run UTM|_T (M_i,i), modified to invert output

Mi be an enumeration of TMs, each TM appearing infinitely often

• Consider table(i,j) = $UTM|_{T'}$ (M_i,j), where T log T = o(T')

Let L' = inverted diagonal.
L' in DTIME(T')

T' large and nice enough to allow simulation

 On input i, run UTM|_T (M_i,i), modified to invert output

Mi be an enumeration of TMs, each TM appearing infinitely often

• Consider table(i,j) = $UTM|_{T'}$ (M_i,j), where T log T = o(T')

Let L' = inverted diagonal.
L' in DTIME(T')

T' large and nice enough to allow simulation

M:

Think DTIME(T)

rows

 \mathbf{O}

 \mathbf{O}

On input i, run UTM|_T (M_i,i), modified to invert output

If M accepts L' in time T, then for sufficiently large i s.t. M_i=M, UTM can finish simulating M_i(i). Then table(i,i)=L'(i)!

Finer hierarchy

Finer hierarchy

So NTIME(T) ⊊ NTIME(T') if T(n)=o(T'(n)), and T, T' nice

Finer hierarchy

- Solution NTIME(T) ⊊ NTIME(T') if T(n)=o(T'(n)), and T, T' nice
- Because a more sophisticated Universal NTM has less overhead

Finer hierarchy

Solution NTIME(T) ⊊ NTIME(T') if T(n)=o(T'(n)), and T, T' nice

Because a more sophisticated Universal NTM has less overhead

Diagonalization is more complicated

Finer hierarchy

- Solution NTIME(T) ⊊ NTIME(T') if T(n)=o(T'(n)), and T, T' nice
- Because a more sophisticated Universal NTM has less overhead

Diagonalization is more complicated

Issue: NTIME(T') enough to simulate NTIME(T), but not to simulate co-NTIME(T)!

Finer hierarchy

Solution NTIME(T) ⊊ NTIME(T') if T(n)=o(T'(n)), and T, T' nice

Because a more sophisticated Universal NTM has less overhead

Diagonalization is more complicated

Issue: NTIME(T') enough to simulate NTIME(T), but not to simulate co-NTIME(T)!

Delayed flip" on a "rapidly thickening diagonal"

Delayed flip" on a "rapidly thickening diagonal"

Delayed flip" on a "rapidly thickening diagonal"

Delayed flip" on a "rapidly thickening diagonal"

f(i+1)=exp(f(i))

Delayed flip" on a "rapidly thickening diagonal"

f(i+1)=exp(f(i))

- Delayed flip" on a "rapidly thickening diagonal"
 - f(i+1) = exp(f(i))
 - Let L be the "diagonal" language

- Delayed flip" on a "rapidly thickening diagonal"
 - f(i+1) = exp(f(i))
 - Let L be the "diagonal" language

- Delayed flip" on a "rapidly thickening diagonal"
 - f(i+1) = exp(f(i))
 - Let L be the "diagonal" language

- Delayed flip" on a "rapidly thickening diagonal"
 - f(i+1) = exp(f(i))
 - Let L be the "diagonal" language

- Delayed flip" on a "rapidly thickening diagonal"
 - f(i+1) = exp(f(i))
 - Let L be the "diagonal" language

- Delayed flip" on a "rapidly thickening diagonal"
 - f(i+1)=exp(f(i))
 - Let L be the "diagonal" language
 - - @ except if j=f(i), then L'(j) = 1 - L(f(i-1)+1)

- Delayed flip" on a "rapidly thickening diagonal"
 - f(i+1)=exp(f(i))
 - Let L be the "diagonal" language
 - - @ except if j=f(i), then L'(j) = 1 - L(f(i-1)+1)

- Delayed flip" on a "rapidly thickening diagonal"
 - f(i+1)=exp(f(i))
 - Let L be the "diagonal" language
 - - @ except if j=f(i), then L'(j) = 1 - L(f(i-1)+1)
 - L' not in NTIME(T), but
 is in NTIME(T')

Delayed flip" on a "rapidly thickening diagonal" f(i+1) = exp(f(i))Let L be the "diagonal" language f(1) f(3) f(4) f(5) f(2) @ except if j=f(i), then L'(j) = 1 - L(f(i-1)+1)Flip, Diagonal L' not in NTIME(T), but 0 is in NTIME(T') Think NTIME(T) \subseteq rows

Delayed flip" on a "rapidly thickening diagonal" f(i+1) = exp(f(i))Let L be the "diagonal" language f(1) f(3) f(4) f(5) f(2) @ except if j=f(i), then L'(j) = 1 - L(f(i-1)+1)Flip, Diagonal L' not in NTIME(T), but 0 is in NTIME(T') Think NTIME(T) \subseteq rows

Delayed flip" on a "rapidly thickening diagonal" f(i+1) = exp(f(i))Let L be the "diagonal" language f(1) f(3) f(5) f(2) f(4) @ except if j=f(i), then L'(j) = 1 - L(f(i-1)+1)Flip, Diagonal L' not in NTIME(T), but 0 is in NTIME(T') Think NTIME(T) \subseteq rows

Delayed flip" on a "rapidly thickening diagonal" f(i+1) = exp(f(i))Let L be the "diagonal" language f(1) f(3) f(5) f(2) f(4) @ except if j=f(i), then L'(j) = 1 - L(f(i-1)+1)Flip, Diagonal L' not in NTIME(T), but Delay, Rapid thickening 'is in NTIME(T') Think NTIME(T) \subseteq rows

Within DTIME and NTIME fine gradation

Within DTIME and NTIME fine gradation
In particular P \subsetneq EXP, NP \subsetneq NEXP

Within DTIME and NTIME fine gradation
In particular P ⊊ EXP, NP ⊊ NEXP
Tells nothing across DTIME and NTIME

Within DTIME and NTIME fine gradation
In particular P ⊊ EXP, NP ⊊ NEXP
Tells nothing across DTIME and NTIME
P and NP?

Within DTIME and NTIME fine gradation
In particular P ⊊ EXP, NP ⊊ NEXP
Tells nothing across DTIME and NTIME
P and NP?

Just diagonalization won't help (next lecture)

OTIME Hierarchy
DTIME(T) ⊊ DTIME(T') if T log T = o(T')
NTIME Hierarchy
NTIME(T) ⊊ NTIME(T') if T = o(T')

Osing diagonalization

Next Lecture

Another application of diagonalization

- Ladner's Theorem: If P≠NP, NP language which is neither in P nor NP-complete
- Limits of Diagonalization
- Starting Space Complexity