Computational
Complexity

I-Toa (V) o -BC
In which we come across
Diagonalization and Time-hierarchies
(But first some more of NP-completeness)

NP-Complete Languages

NP-Complete Languages

@ A language L; is NP-complete if L; is in NP and any NP
language L can be reduced to L; (Karp reduction:
polynomial time many-one reduction)

NP-Complete Languages

@ A language L; is NP-complete if L; is in NP and any NP
language L can be reduced to L; (Karp reduction:
polynomial time many-one reduction)

@ Trivial example: L; = TMSAT

NP-Complete Languages

@ A language L; is NP-complete if L; is in NP and any NP
language L can be reduced to L; (Karp reduction:
polynomial time many-one reduction)

@ Trivial example: L; = TMSAT

@ First interesting example: L; = CKT-SAT

NP-Complete Languages

@ A language L; is NP-complete if L; is in NP and any NP
language L can be reduced to L; (Karp reduction:
polynomial time many-one reduction)

@ Trivial example: L; = TMSAT

@ First interesting example: L; = CKT-SAT

@ Convert X into a circuit C s.t. C is satisfiable iff
X in L

NP-Complete Languages

@ A language L; is NP-complete if L; is in NP and any NP
language L can be reduced to L; (Karp reduction:
polynomial time many-one reduction)

@ Trivial example: L; = TMSAT
@ First interesting example: L; = CKT-SAT

@ Convert X into a circuit C s.t. C is satisfiable iff
X in L

@ More examples, bootstrapping from CKT-SAT

NP-Complete Languages

@ A language L; is NP-complete if L; is in NP and any NP
language L can be reduced to L; (Karp reduction:
polynomial time many-one reduction)

@ Trivial example: L; = TMSAT
@ First interesting example: L; = CKT-SAT

@ Convert X into a circuit C s.t. C is satisfiable iff
X in L

@ More examples, bootstrapping from CKT-SAT

% IF L Sp L.1 Gnd I_1 Sp L2, then L Sp L2

CKT-SAT <, SAT

CKT-SAT <, SAT

@ SAT: Are all given "clauses” simultaneously satisfiable?
(Conjunctive Normal Form)

CKT-SAT <, SAT

@ SAT: Are all given "clauses” simultaneously satisfiable?
(Conjunctive Normal Form)

@ Converting a circuit to a collection of clauses:

CKT-SAT <, SAT

@ SAT: Are all given "clauses” simultaneously satisfiable?
(Conjunctive Normal Form)

@ Converting a circuit to a collection of clauses:

@ For each wire (connected component), add a variable

CKT-SAT <, SAT

@ SAT: Are all given "clauses” simultaneously satisfiable?
(Conjunctive Normal Form)

@ Converting a circuit to a collection of clauses:

@ For each wire (connected component), add a variable

@ Add output variable as a clause. And for each gate, add a
clause involving variables for wires connected to the gate:

CKT-SAT <, SAT

@ SAT: Are all given "clauses” simultaneously satisfiable?
(Conjunctive Normal Form)

@ Converting a circuit to a collection of clauses:
@ For each wire (connected component), add a variable

@ Add output variable as a clause. And for each gate, add a
clause involving variables for wires connected to the gate:

) e.g.?: N z: (z=X), (z=vY), (kz = ~x V ay).

i.e., (tzV %), (kz VYy) (zV-xVaay).

CKT-SAT <, SAT

@ SAT: Are all given "clauses” simultaneously satisfiable?
(Conjunctive Normal Form)

@ Converting a circuit to a collection of clauses:
@ For each wire (connected component), add a variable

@ Add output variable as a clause. And for each gate, add a
clause involving variables for wires connected to the gate:

) e.g.?: N z: (z=X), (z=vY), (kz = ~x V ay).

i.e., (tzV %), (kz VYy) (zV-xVaay).
) and;(,:b_z: (z=x V V), (1z=Ax), ([z=1Y).

SAT <, 3SAT

SAT <, 3SAT

@ Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT sp 3SAT.

SAT <, 3SAT

@ Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT sp 3SAT.

@ More directly:

SAT <, 3SAT

@ Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT sp 3SAT.

@ More directly:

o () — (x), (=X)
— (), (<. xVecvy)(dyvdyVe

SAT <, 3SAT

@ Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT sp 3SAT.

@ More directly:

o () — (x), (=X)
— (), (<. xVecvy)(dyvdyVe

® Reduction needs 3SAT

SAT <, 3SAT

@ Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT sp 3SAT.

@ More directly:

o () — (x), (=X)
— (), (<. xVecvy)(dyvdyVe

® Reduction needs 3SAT

@ 2SAT is in fact in P! [Exercise]

SAT <, 3SAT

@ Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT sp 3SAT.

@ More directly:

o () — (x), (=X)
— (), (<. xVecvy)(dyvdyVe

® Reduction needs 3SAT
@ 2SAT is in fact in P! [Exercise]

@ Reduction not parsimonious (can you make it? [Exercise])

3SAT <, CLIQUE

3SAT <, CLIQUE

® CLIQUE: Does graph G
have a clique of size m?

3SAT <, CLIQUE

® CLIQUE: Does graph G
have a clique of size m?

3SAT <, CLIQUE

® CLIQUE: Does graph G
have a clique of size m?

@ Clauses — Graph

3SAT <, CLIQUE

® CLIQUE: Does graph G
have a clique of size m?

@ Clauses — Graph

1*0
%1 %
0*1* 1 1 O

3SAT <, CLIQUE

® CLIQUE: Does graph G
have a clique of size m?

@ Clauses — Graph

0.“
Sty 3
0 @
H 0*1* :

3SAT <, CLIQUE

O

o CLIQUE: Does graph G o ™ O
have a clique of size m? O ®
*101 *010
*110 *o01
@ Clauses — Graph ® O

0.“
el kY
o @)
5 0*1*

3SAT <, CLIQUE

® CLIQUE: Does graph G
have a clique of size m?

@ Clauses — Graph

O *gc?o O
*111 *100
o o}
L %01 *010
2 *110 *001 J

&
¥ R4
% L4
“ 4
*
* \d
0‘ ”
% 4
M *
’ *
A *
% *
i~ *
.. e
* .
ay e
ftaangaannnt

0““ ..‘0
Rk "._
1 @
0% i

3SAT <, CLIQUE

® CLIQUE: Does graph G
have a clique of size m?

@ Clauses — Graph

O *gc?o O
i o *100 - 3
. O O
*1o1 201051
. *110 *001 ’

OO

““‘O .,
e s
0 @
5 0*1*

“nn
G By
.t b
. ~
. 3
- 3
. *
o .
o 03
Q S5
O \J
o %
o 2
& .
S .
N .
D
L
»

11%1 10%0%

e. O

OI*O

10*10
11*OO

3SAT <, CLIQUE

® CLIQUE: Does graph G
have a clique of size m?

@ Clauses — Graph

@ vertices: each clause’s
satisfying assignments
(for its variables)

O *gc?o O
i o *100 - 3
. O O
*1o1 201051
B *110 *001 ’

OO

““‘O ",
St o s
0 @
H 0*1* :

(L
“__.-- -.....
. o,
.* “
. .
S .
. *
¢‘ *
S *
0 S5
o 2
¥ 00*0
N *
& .
N .
N .
0
L
n

11%1 10%0%

e. O

OI*O

10*10
11*OO

3SAT <, CLIQUE

® CLIQUE: Does graph G
have a clique of size m?

@ Clauses — Graph

@ vertices: each clause’s
satisfying assignments
(for its variables)

:': 1*0*
ek

O *gc?o O
i *100 - 3
. O O
*1o1 201051
B *110 *001 ’

OO

..........
() L
R .

gt -

(L
“__.-- -.....
. o,
.* “
. .
S .
. *
¢‘ *
S *
0 S
o 2
¥ 00*0
N *
& .
N .
N .
0
L
n

11%1 10%0%

e. O

Ol*O

10*10
11*00

3SAT <, CLIQUE

® CLIQUE: Does graph G
have a clique of size m?

@ Clauses — Graph

@ vertices: each clause’s
satisfying assignments
(for its variables)

:': 1*0*
ek

FPPTLLLLLEToR
.* ta,
* L3
. 3
S 3
* %
o <7
o 03
* ¢4
O J
’ *000
. (S
" .
3 .
.
.
-
: -

*111 *100

o "y

L *101 *0lOsY:
E *110 *001)

J
Q
O ’
Q
*
Q
*
*
*
.
o
.
.
.
mnnt®

..........
() L
R .

1*1* @

(L
“__.-- -.....
. o,
.* “
. .
S .
. *
¢‘ *
S *
0 S5
o 2
¥ 00*0
N *
& .
N .
N .
0
L
n

11%1 10%0%

001*1 O:

01*0 ;

.
.
.
y
g
2 % o
g
? g
< *
3 *
% &
*
'0. * %
. +*
.
L35 .
‘e, Lus®
"Tsaaumuns®

3SAT <, CLIQUE

® CLIQUE: Does graph G
have a clique of size m?

@ Clauses — Graph

@ vertices: each clause’s
satisfying assignments
(for its variables)

"nm
PETTLL RN
.* .,

* LN

.
S 3
* %
o <7
S 03
* ¢4
O J
~' *000
Q %
Q
.
D
.
.
-
: -
-

f *111 *100
S *101 *010 |
; *110 *001 i

. g
.
.
*
-
* O @ o
. K
. *
4 A
s .
.
., .
. .
", .s®
"tamamunn®

3SAT <, CLIQUE

® CLIQUE: Does graph G
have a clique of size m?

@ Clauses — Graph

@ vertices: each clause’s
satisfying assignments
(for its variables)

FPPTLLLLLEToR
.* ta,
* L3
. 3
S 3
* %
o <7
S 03
* ¢4
O J
~' *000
. (S
" .
3 .
.
.
-
: -
-

i *111 *100 :
2101 *010 |
- *001]

*110

3SAT <, CLIQUE

:““‘”w" *O ".,0000”“
o CLIQUE: Does graph G

et s *100 %
have a clique of size m?* 01":
% *101 *010 | ¢

*110 *oo1
@ Clauses — Graph

0
&
. ’
@ g
o
0
.
.
.
.
o
.
.
.t
ann®

@ vertices: each clause’s

satisfying assignments
(for its variables)

3SAT <, CLIQUE

:““‘”w" *O ".,0000”“
o CLIQUE: Does graph G

et s *100 %
have a clique of size m?* 01":
% *101 *010 | ¢

*110 *001

0
&
. ’
@ g
o
0
.
.
.
.
o
.
.
.t
ann®

@ Clauses — Graph

@ vertices: each clause’s
satisfying assignments
(for its variables)

@ edges between
consistent assignments

3SAT <, CLIQUE

:““‘”w" *O ".,0000”“
o CLIQUE: Does graph G

et s *100 %
have a clique of size m?* 01":
% *101 *010 | ¢

*110 *001

0
&
. ’
@ g
o
0
.
.
.
.
o
.
.
.t
ann®

@ Clauses — Graph

@ vertices: each clause’s
satisfying assignments
(for its variables)

@ edges between
consistent assignments

@ m-clique iff all m
clauses satisfiable

3SAT <, CLIQUE

:““‘”w" *O ".,0000”“
o CLIQUE: Does graph G

et s *100 %
have a clique of size m?* 01":
% *101 *010 | ¢

*110 *001

0
&
. ’
@ g
o
0
.
.
.
.
o
.
.
.t
ann®

@ Clauses — Graph

@ vertices: each clause’s
satisfying assignments
(for its variables)

@ edges between
consistent assignments

@ m-clique iff all m
clauses satisfiable

3SAT <, CLIQUE

“““¢¢t"‘ ".00#0.."‘
*000 @-
o CLIQUE: Does graph G @
. . 111 100 %
have a clique of size m?
W *10] “pioey

*110 *001

@ Clauses — Graph

@ vertices: each clause’s
satisfying assignments
(for its variables)

@ edges between
consistent assignments

3-Clique 1*1*

@ m-clique iff all m *110
" %

clauses satisfiable ok

sat assignment 1110

INDEP-SET and
VERTEX-COVER

INDEP-SET and
VERTEX-COVER

& CLIQUE <p INDEP-SET

INDEP-SET and
VERTEX-COVER

& CLIQUE <p INDEP-SET

@ G has an m-clique iff G has an m-independent-set

INDEP-SET and
VERTEX-COVER

& CLIQUE <p INDEP-SET

@ G has an m-clique iff G has an m-independent-set

@ INDEP-SET sp VERTEX-COVER

INDEP-SET and
VERTEX-COVER

@ CLIQUE <, INDEP-SET
@ G has an m-clique iff G has an m-independent-set

@ INDEP-SET sp VERTEX-COVER

@ G has an m-indep-set iff G has an (n-m)-vertex-cover

NP, P, co-NP and NPC

NP, P, co-NP and NPC

@ We say class X is “closed under polynomial reductions”
if (Li<pL2 and Lz in class X) implies L; in X

NP, P, co-NP and NPC

@ We say class X is “closed under polynomial reductions”
if (Li<pL2 and Lz in class X) implies L; in X

@ e.g. P, NP are closed under polynomial reductions

NP, P, co-NP and NPC

@ We say class X is “closed under polynomial reductions”
if (Li<pL2 and Lz in class X) implies L; in X

@ e.g. P, NP are closed under polynomial reductions

@ So is co-NP (If X is closed, so is co-X. Why?)

NP, P, co-NP and NPC

@ We say class X is “closed under polynomial reductions”
if (Li<pL2 and Lz in class X) implies L; in X

@ e.g. P, NP are closed under polynomial reductions

@ So is co-NP (If X is closed, so is co-X. Why?)

@ If any NPC language is in P, then NP = P

NP, P, co-NP and NPC

@ We say class X is “closed under polynomial reductions”
if (Li<pL2 and Lz in class X) implies L; in X

@ e.g. P, NP are closed under polynomial reductions

@ So is co-NP (If X is closed, so is co-X. Why?)
@ If any NPC language is in P, then NP = P

@ If any NPC language is in co-NP, then NP =

NP, P, co-NP and NPC

@ We say class X is “closed under polynomial reductions”
if (Li<pL2 and Lz in class X) implies L; in X

@ e.g. P, NP are closed under polynomial reductions

@ So is co-NP (If X is closed, so is co-X. Why?)
@ If any NPC language is in P, then NP = P
@ If any NPC language is in co-NP, then NP =

@ Note: X € co-X = X = co-X (Why?)

NP, P, co-NP and NPC

@ We say class X is “closed under polynomial reductions”
if (Li<pL2 and Lz in class X) implies L; in X

@ e.g. P, NP are closed under polynomial reductions

@ So is co-NP (If X is closed, so is co-X. Why?)
@ If any NPC language is in P, then NP = P
@ If any NPC language is in co-NP, then NP =

@ Note: X € co-X = X = co-X (Why?)

@ L is NP-complete iff L¢ is co-NP-complete (Why?)

NP, P, co-NP and NPC

@ We say class X is “closed under polynomial reductions”
if (Li<pL2 and Lz in class X) implies L; in X

@ e.g. P, NP are closed under polynomial reductions

@ So is co-NP (If X is closed, so is co-X. Why?)
@ If any NPC language is in P, then NP = P
@ If any NPC language is in co-NP, then NP =

@ Note: X € co-X = X = co-X (Why?)

@ L is NP-complete iff L¢ is co-NP-complete (Why?)

® co-NP complete = co-(NP-complete)

Separating Classes

Separating Classes

@ How tfo prove a set X strictly bigger thanY

Separating Classes

@ How tfo prove a set X strictly bigger thanY

@ Show an element not inY, but in X? For us, not in
Y may often be difficult to prove for (familiar)
elements

Separating Classes

@ How tfo prove a set X strictly bigger thanY

@ Show an element not inY, but in X? For us, not in
Y may often be difficult to prove for (familiar)
elements

@ Count? What if both infinite?!

Separating Classes

@ How tfo prove a set X strictly bigger thanY

@ Show an element not inY, but in X? For us, not in
Y may often be difficult to prove for (familiar)
elements

@ Count? What if both infinite?!

@ Comparing infinite sets: diagonalization!

Cantors Diagonal Slash

Cantors Diagonal Slash

@ Are real numbers (say in the
range [0,1)) countable?

Cantors Diagonal Slash

@ Are real numbers (say in the
range [0,1)) countable?

@ Suppose they were:
consider enumerating them
along with their binary
representations in a table

Cantors Diagonal Slash

@ Are real numbers (say in the
range [0,1)) countable? R

Ri= EISEOF0 FE0 | 01010 1

@ Suppose they were:
consider enumerating them
along with their binary

R:= [FONSESRIER0 |'1 1040 ([1|1

representations in a table RrRs= (1|1 |1|1]|1[1]1|O]O
R.= FEISIRERRIEROY 1 10| 1|1
Rs= EIETHOTOFO10]1[0]|0
Re= |0]101@1010|0|1]|1]0
Rr= [FONSINEORIsE0sshis0 | 1 | 1

Cantors Diagonal Slash

@ Are real numbers (say in the
range [0,1)) countable? R

Ri= EISEOF0 FE0 | 01010 1

@ Suppose they were:
consider enumerating them
along with their binary

R:= [FONSESRIER0 |'1 1040 ([1|1

representations in a table RrRs= (1|1 |1|1]|1[1]1|O]O

@ Consider the real number R.= [1[1]0]|1[O0O|1]0O]1{|1
corresponding to the

“flipped diagonal” Rs= EEELHOTOFO10]1[(0|0

Re= FONOHELOFOLO0 1]1]|0

R7= [PONSISIECOHSISEOswh4s0 | 1 | 1

Cantor's Diagonal Slash

@ Are real numbers (say in the
range [0,1)) countable? R

Ri= | 1 "GO RS O 1071 0| 1

@ Suppose they were:
consider enumerating them
along with their binary

R:= [ECAl O 'SR P 1IN Oq0 [1 | 1

representations in a table RrRs= (1|11 |1]|1|[1]1|O]O

@ Consider the real number R.= [1[1]O0]|1[(O|1]0O]|1]|1
corresponding to the

“flipped diagonal” Rs= EEELTHOTONO [O]11]0]|0

Re= PO OGO TORO |1 |1]0

R7= [PORSINEOHN TSSO @ | 1 | 1

Cantor's Diagonal Slash

@ Are real numbers (say in the
range [0,1)) countable? R

Ri= | 1 "GO RS O 1071 0| 1

@ Suppose they were:
consider enumerating them
along with their binary

R:= [ECAl O 'SR P 1IN Oq0 [1 | 1

representations in a table RrRs= (1|11 |1]|1|[1]1|O]O

® Consider the real number Ri= [1]1|10|1[O0O]1]|0|1]]1
corresponding to the

“flipped diagonal” Rs= KEFTEO TONRO "O11]10]0

@ Doesnt appear in this Re= [EOHETREEEEEANG [0 | 1 | O

table! Rr= O NEOEFO LNl 1 | 1

@ Are real numbers (say in the
range [0,1)) countable? R

Ri= | 1 "GO RS O 1071 0| 1

@ Suppose they were:
consider enumerating them
along with their binary

R:= [ECAl O 'SR P 1IN Oq0 [1 | 1

representations in a table RrRs= (1|11 |1]|1|[1]1|O]O

® Consider the real number Ri= [1]1|10|1[O0O]1]|0|1]]1
corresponding to the

“flipped diagonal” Rs= KEFTEO TONRO "O11]10]0

@ Doesnt appear in this Re= [EOHETREEEEEANG [0 | 1 | O

table! Rr= O NEOEFO LNl 1 | 1

Undecidable Languages

N

L= | 1 ["GEEOSEESON 01 010 [1

lme= [BOR] O (L0111 040 |11

Lms = Pl 1 (Sl [Pl O 0

Lws = [EESESEEERIL O 11011 |1
Lvs = EIEFTH O TONO [O11]10]0
lme= 1O[O0]O0[O0]JO0O[O|1]1]0
Lw = POSEINEC T O N | 1 | 1

Undecidable Languages

@ Languages, like real
numbers, can be represented
as infinite bit-vectors 1lololilolololo]1

Lmi =

lme= [BOR] O (L0111 040 |11

Lms = Pl 1 (Sl [Pl O 0

Lws = [EESESEEERIL O 11011 |1
Lvs = EIEFTH O TONO [O11]10]0
lme= 1O[O0]O0[O0]JO0O[O|1]1]0
Lw = POSEINEC T O N | 1 | 1

Undecidable Languages

@ Languages, like real
numbers, can be represented
as infinite bit-vectors 1lololilolololo]1

Lmi =

® TMs can be enumerated!

lme= [BOR] O (L0111 040 |11

Lms = Pl 1 (Sl [Pl O 0

Lws = [EESESEEERIL O 11011 |1
Lvs = EIEFTH O TONO [O11]10]0
lme= 1O[O0]O0[O0]JO0O[O|1]1]0
Lw = POSEINEC T O N | 1 | 1

Undecidable Languages

@ Languages, like real
numbers, can be represented

as infinite bit-vectors L= | 1 Felbo ittt ol ool 1

@ TMs can be enumerated! Lvo= [SGAL O GRS I OF0 | 1| 1

@ Table of languages Lws = [CESISIR] 1 [CEEE [0 | 0] O
recognized by the TMs

Lms = Rl O 1101111

Lms = FI1T L0 1ONRO O1110]0

lve= [O]O]O0]O[O|O|1]1(O

Lvr = POSESISERCHST 0= - Na | 1 | 1

Undecidable Languages

@ Languages, like real
numbers, can be represented

as infinite bit-vectors = |1 Fetolitolololol
@ TMs can be enumerated! lve= |O|O[1|[Of1]0|0O]|1]]1
@ Table of languages Lws = [CESISIR] 1 [CEEE [0 | 0] O
recognized by the TMs
Lms = BNl O 11701111
@ L = “diagonal language”
Lms = EF IO TON 011100
lve= |O[O]O|O|O|O[1]1[O
Lwr = [FONEISEOSSIEO= .| 1 | 1

Undecidable Languages

@ Languages, like real
numbers, can be represented

as infinite bit-vectors = |1 Fetolitolololol
@ TMs can be enumerated! lve= |O|O[1|[Of1]0|0O]|1]]1
@ Table of languages Lws = [CESISIR] 1 [CEEE [0 | 0] O

recognized by the TMs
Lms = el MO8 1 0111

@ L = “diagonal language”
Lms = EFTHOTONRD (O0]11010

@ L does not appear as a
row in this table. Hence = |00 (010010111110
' |

not recognizable! L= O R Eo ol 1% 1 | 1

@ Languages, like real
numbers, can be represented

as infinite bit-vectors = |1 Fetolitolololol
@ TMs can be enumerated! lve= |O|O[1|[Of1]0|0O]|1]]1
@ Table of languages Lws = [CESISIR] 1 [CEEE [0 | 0] O

recognized by the TMs
Lms = el MO8 1 0111

@ L = “diagonal language”
Lms = EFTHOTONRD (O0]11010

@ L does not appear as a
row in this table. Hence = |00 (010010111110
' |

not recognizable! L= O R Eo ol 1% 1 | 1

Diagonalization to
Separate Classes

@ Diagonalization can separate the class of decidable
languages (from the class of all languages)

@ Plan: Use similar techniques to separate
complexity classes

DTIME Hierarchy

DTIME Hierarchy

@ Fix a TM model (one-tape, binary alphabet)

DTIME Hierarchy

@ Fix a TM model (one-tape, binary alphabet)

@ DTIME(T) = class of languages that can be decided in O(T(n))
time, by such a TM

DTIME Hierarchy

@ Fix a TM model (one-tape, binary alphabet)

@ DTIME(T) = class of languages that can be decided in O(T(n))
time, by such a TM

@ Theorem: DTIME(n®) € DTIME(n®*!) for all c > 1

DTIME Hierarchy

@ Fix a TM model (one-tape, binary alphabet)

@ DTIME(T) = class of languages that can be decided in O(T(n))
time, by such a TM

@ Theorem: DTIME(n®) € DTIME(n®*!) for all c > 1

@ More generally DTIME(T) € DTIME(T) if T, T “nice” (and > n)
and T(n)log(T(n)) = o(T"(n))

DTIME Hierarchy

@ Fix a TM model (one-tape, binary alphabet)

@ DTIME(T) = class of languages that can be decided in O(T(n))
time, by such a TM

@ Theorem: DTIME(n®) € DTIME(n®*!) for all c > 1

@ More generally DTIME(T) € DTIME(T) if T, T “nice” (and > n)
and T(n)log(T(n)) = o(T"(n))

@ Consequences, for e.g., P € EXP

DTIME Hierarchy

@ Fix a TM model (one-tape, binary alphabet)

@ DTIME(T) = class of languages that can be decided in O(T(n))
time, by such a TM

@ Theorem: DTIME(n®) € DTIME(n®*!) for all c > 1

@ More generally DTIME(T) € DTIME(T) if T, T “nice” (and > n)
and T(n)log(T(n)) = o(T"(n))

@ Consequences, for e.g., P € EXP
@ P € DTIME(2") & DTIME(2%") € EXP

DTIME Hierarchy: Proof

DTIME Hierarchy: Proof

® M be an enumeration of TMs, each TM appearing infinitely often

DTIME Hierarchy: Proof

@ M; be an enumeration of TMs, each TM appearing infinitely often

@ Consider table(i,j) = UTMl (M;,j), where T log T = o(T’)

X

DTIME Hierarchy: Proof

@ M; be an enumeration of TMs, each TM appearing infinitely often

@ Consider table(i,j) = UTMl (M;,j), where T log T = o(T’)

T’ large and nice
enough to allow

simulation .
\
M;

DTIME Hierarchy: Proof

@ M; be an enumeration of TMs, each TM appearing infinitely often

@ Consider table(i,j) = UTMl (M;,j), where T log T = o(T’)

i large and nice
enough to allow

simulation .
\
M;

0, 0,
Think DTIME(T) |
C rows ‘

DTIME Hierarchy: Proof

@ M; be an enumeration of TMs, each TM appearing infinitely often

@ Consider table(i,j) = UTMl (M;,j), where T log T = o(T’)

T large and nice
enough to allow

Simulation .
\
M;

 Think DTIME(T) |
C rows ‘

13

DTIME Hierarchy: Proof

@ M; be an enumeration of TMs, each TM appearing infinitely often

@ Consider table(i,j) = UTMl (M;,j), where T log T = o(T’)

i large and nice
enough to allow

Simulation .
\
M;

@ Let L = inverted diagonal.

 Think DTIME(T) |
C rows ‘

13

DTIME Hierarchy: Proof

@ M; be an enumeration of TMs, each TM appearing infinitely often

@ Consider table(i,j) = UTMl (M;,j), where T log T = o(T’)

T" large and nice

o Let L' = inverted diagonal. (' enough to aio:

Simulation .
o L in DTIME(T') \
WA

()

' Think DTIME(T) |
C rows ‘

[(T e R
13

DTIME Hierarchy: Proof

@ M; be an enumeration of TMs, each TM appearing infinitely often

@ Consider table(i,j) = UTMl (M;,j), where T log T = o(T’)

T" large and nice

o Let L' = inverted diagonal. (' enough to aio:

Simulation .
o L in DTIME(T') \
WA

@ On input i, run UTMI (M;,i), modified to
invert output

()

' Think DTIME(T) |
C rows ‘

[(T e R
13

D

DTIME Hierarchy: Proof

M; be an enumeration of TMs, each TM appearing infinitely often

Consider table(i,j) = UTMlr (M;,j), where T log T = o(T")

T" large and nice

Let L' = inverted diagonal. enough to allow

Simulation
L' in DTIME(T)

@ On input i, run UTMI (M;,i), modified to
invert output

L’ not in DTIME(T)

Y

()

0]

' Think DTIME(T) |

S rows

[(T e R
13

DTIME Hierarchy: Proof

@ M; be an enumeration of TMs, each TM appearing infinitely often

@ Consider table(i,j) = UTMl (M;,j), where T log T = o(T’)

T" large and nice

o Let L' = inverted diagonal. (' enough to aio:

simulation .
o L in DTIME(T') \
WA

@ On input i, run UTMI (M;,i), modified to
invert output

O

@ L not in DTIME(T)

@ If M accepts L in time T, then for
sufficiently large i s.t. Mi=M, UTM can

finish simulating Mi(i). Then table(i,i)=L'(i)! Think DTIME(T) |
C rows ‘

13

NTIME Hierarchy

NTIME Hierarchy

@ Finer hierarchy

NTIME Hierarchy

@ Finer hierarchy

@ NTIME(T) € NTIME(T') if T(n)=o(T'(n)), and T, T’ nice

NTIME Hierarchy

@ Finer hierarchy

@ NTIME(T) € NTIME(T') if T(n)=o(T'(n)), and T, T’ nice

@ Because a more sophisticated Universal NTM has less
overhead

NTIME Hierarchy

@ Finer hierarchy

@ NTIME(T) € NTIME(T') if T(n)=o(T'(n)), and T, T’ nice

@ Because a more sophisticated Universal NTM has less
overhead

@ Diagonalization is more complicated

NTIME Hierarchy

@ Finer hierarchy

@ NTIME(T) € NTIME(T') if T(n)=o(T'(n)), and T, T’ nice

@ Because a more sophisticated Universal NTM has less
overhead

@ Diagonalization is more complicated

@ Issue: NTIME(T') enough to simulate NTIME(T), but not
to simulate co-NTIME(T)!

NTIME Hierarchy

@ Finer hierarchy

@ NTIME(T) € NTIME(T') if T(n)=o(T'(n)), and T, T’ nice

@ Because a more sophisticated Universal NTM has less
overhead

@ Diagonalization is more complicated

@ Issue: NTIME(T') enough to simulate NTIME(T), but not
to simulate co-NTIME(T)!

NTIME Hierarchy

NTIME Hierarchy

o “Delayed flip” on a “rapidly
thickening diagonal”

NTIME Hierarchy

o "Delayed flip” on a “rapidly
thickening diagonal”

Think NTIME(T) S rows

15

NTIME Hierarchy

o "Delayed flip” on a “rapidly
thickening diagonal”

o
‘E_—

Think NTIME(T) € rows

15

NTIME Hierarchy

o "Delayed flip” on a “rapidly
thickening diagonal”

o f(i+1)=exp(f(i))

o
‘E_—

Think NTIME(T) € rows

15

NTIME Hierarchy

o "Delayed flip” on a “rapidly
thickening diagonal”

o f(i+l)=exp(f(i))

IF] F(2) f(3) F(4) f(5)

i

Think NTIME(T) € rows

15

NTIME Hierarchy

o "Delayed flip” on a “rapidly
thickening diagonal”

o f(i+l)=exp(f(i))

@ Let L be the “diagonal”

lanquaqe
guag O] F2) f(3) F(4) f(5)

SRS

Think NTIME(T) € rows

15

NTIME Hierarchy

o "Delayed flip” on a “rapidly
thickening diagonal”

o f(i+1)=exp(f(i))

@ Let L be the “diagonal”
language

LLI T T 1] | |

NTIME Hierarchy

o "Delayed flip” on a “rapidly
thickening diagonal”

o f(i+1)=exp(f(i)) MR 5 | | |

@ Let L be the “diagonal”
language

LLI T T 1] | |

NTIME Hierarchy

o "Delayed flip” on a “rapidly
thickening diagonal”

o f(i+1)=exp(f(i)) L [I | |
@ Let L be the ‘diagonal (111 |) [

language
F(] F2) f(3 F(4 F(5

o L(j)=L(j+1)

NTIME Hierarchy

o "Delayed flip” on a “rapidly
thickening diagonal”

o f(i+1)=exp(f(i)) MES | NANNE
@ Let L be the "diagonal” L1 11 | [\\\\\\\\ |
language

o L(j)=L(j+1)

NTIME Hierarchy

o "Delayed flip” on a “rapidly
thickening diagonal”

o f(i+1)=exp(f(i)) ME = | |

@ Let L be the ‘diagonal (111 |)

lanquaqe
guag O] F2) f(3) F(4) f(5)

o L(j)=L(j+1)

o except if j=f(i), then 'i ﬁ
L(j) = 1 - L(F(i-1)+1) '

NTIME Hierarchy

o "Delayed flip” on a “rapidly
thickening diagonal”

o f(i+1)=exp(f(i)) ME | B k\k\ A
@ Let L be the "diagonal” L1 11 | [\\ \ \\ V]

language
O F2) f(3) F(4) f(5)

o L(j)=L(j+1)

o except if j=f(i), then 'i ﬁ
L(j) = 1 - L(F(i-1)+1) '

NTIME Hierarchy

o "Delayed flip” on a “rapidly
thickening diagonal”

o f(i+1)=exp(f(i)) ME | B k\k\ A
@ Let L be the "diagonal” L1 11 | [\\ \ \\ V]

language
O F2) f(3) F(4) f(5)

o L(j)=L(j+1)

o except if j=f(i), then 'i ﬁ
L(j) = 1 - L(F(i-1)+1) '

@ L not in NTIME(T), but
is in NTIME(T")

Think NTIME(T) € rows

NTIME Hierarchy

o "Delayed flip” on a “rapidly
thickening diagonal”

o f(i+1)=exp(f(i)) ME = | Ix k\k\ v
@ Let L be the "diagonal” L1 11 | [\\ \ \\\\ |

language
O F2) f(3) F(4) f(5)

o L(j)=L(j+1)

@ except if j=f(i), then J '
L'(j) =1 - L(F(i-1)+1) '
@ L not in NTIME(T), but -

is in NTIME(T")

Think NTIME(T) € rows

NTIME Hierarchy

o "Delayed flip” on a “rapidly
thickening diagonal”

o f(i+1)=exp(f(i)) ME = | Ix k\k\ v
@ Let L be the "diagonal” L1 11 | [\\ \ \\\\ |

language
O F2) f(3) F(4) f(5)

o L'(j)=L(j+1) ‘; :

@ except if j=f(i), then J '
L'(j) =1 - L(F(i-1)+1)

@ L not in NTIME(T), but -

is in NTIME(T")

Think NTIME(T) € rows

NTIME Hierarchy

o "Delayed flip” on a “rapidly
thickening diagonal”

o f(i+l)=exp(f(i)) ME = |

@ Let L be the “diagonal”
language

o L'(j)=L(j+1) ‘; :

@ except if j=f(i), then J '
L'(j) =1 - L(F(i-1)+1)

@ L not in NTIME(T), but -

is in NTIME(T")

LLI T T 1]

Think NTIME(T) € rows

NTIME Hierarchy

o "Delayed flip” on a “rapidly
thickening diagonal”

o f(i+l)=exp(f(i))

@ Let L be the “diagonal”
language

o L(j)=L(j+1)

@ except if j=f(i), then
L'(j) =1 - L(F(i-1)+1)

—a L not in NTIME(T), but
Q\. O

is in NTIME(T")

L

Think NTIME(T) € rows

Time Hierarchy

Time Hierarchy

@ Within DTIME and NTIME fine gradation

Time Hierarchy

@ Within DTIME and NTIME fine gradation

@ In particular P & EXP, NP & NEXP

Time Hierarchy

@ Within DTIME and NTIME fine gradation

@ In particular P & EXP, NP & NEXP

@ Tells nothing across DTIME and NTIME

Time Hierarchy

@ Within DTIME and NTIME fine gradation

@ In particular P & EXP, NP & NEXP

@ Tells nothing across DTIME and NTIME

@ P and NP?

Time Hierarchy

@ Within DTIME and NTIME fine gradation

@ In particular P & EXP, NP & NEXP

@ Tells nothing across DTIME and NTIME

@ P and NP?

@ Just diagonalization won't help (next lecture)

Today

® DTIME Hierarchy

@ DTIME(T) & DTIME(T)) if T log T = o(T")

@ NTIME Hierarchy

@ NTIME(T) € NTIME(T') if T = o(T")

@ Using diagonalization

Next Lecture

@ Another application of diagonalization

@ Ladners Theorem: If P#NP, NP language which is
neither in P nor NP-complete

@ Limits of Diagonalization

@ Starting Space Complexity

