Computational
Complexity

Lecture 2
in which we talk about
NP-completeness
(reductions, reductions)

Recap

Recap

@ Languages in NP are of the form:

Recap

@ Languages in NP are of the form:

o L={ x| dw, |wl < poly(Ix]) s.t. (x,w) € L }, where

L' is in P

Recap

@ Languages in NP are of the form:

o L={ x| dw, |wl < poly(Ix]) s.t. (x,w) € L }, where

L' is in P

@ Today: Hardest problems in NP

Reductions

Reductions

o At the heart of today's complexity theory

Reductions

o At the heart of today's complexity theory

@ L; < L; if problem of deciding L; "reduces to that of
deciding" L2

Reductions

o At the heart of today's complexity theory

@ L; < L; if problem of deciding L; "reduces to that of
deciding" L2

@ if can decide L2, can decide L;

Turing and Many-One

Turing and Many-One

@ Turing reduction:

Turing and Many-One

@ Turing reduction:

@ Build a TM (oracle machine) M.y, s.t. using the oracle
OL2 which decides Lz, M1 O, decides L;

Turing and Many-One

@ Turing reduction:

@ Build a TM (oracle machine) M.y, s.t. using the oracle
OL2 which decides Lz, M1 O, decides L;

@ My may query Oz many times (with different inputs)

Turing and Many-One

@ Turing reduction:

@ Build a TM (oracle machine) M.y, s.t. using the oracle
OL2 which decides Lz, M1 O, decides L;

@ My may query Oz many times (with different inputs)

@ Many-One:

Turing and Many-One

@ Turing reduction:

@ Build a TM (oracle machine) M.y, s.t. using the oracle
OL2 which decides Lz, M1 O, decides L;

@ My may query Oz many times (with different inputs)

@ Many-One:

@ My can query O,z only once, and
must output what OL2 outputs

Turing and Many-One

@ Turing reduction:

@ Build a TM (oracle machine) M.y, s.t. using the oracle
OL2 which decides Lz, M1 O, decides L;

@ My may query Oz many times (with different inputs)
@ Many-One:

@ My can query O,z only once, and
must output what OL2 outputs

® My maps its input x to an input f(x) for O

Turing and Many-One

@ Turing reduction:

@ Build a TM (oracle machine) M.y, s.t. using the oracle
OL2 which decides Lz, M1 O, decides L;

@ My may query Oz many times (with different inputs)
@ Many-One:

@ My can query O,z only once, and
must output what OL2 outputs

® My maps its input x to an input f(x) for O

@ xelL = f(x) e L, and =

Turing and Many-One

@ Turing reduction:

@ Build a TM (oracle machine) M.y, s.t. using the oracle
OL2 which decides Lz, M1 O, decides L;

@ My may query Oz many times (with different inputs)

4) 4)

@ Many-One:
L
@ My can query Oy only once, and D

must output what Oz outputs | g N y

® My maps its input x to an input f(x) for O

@ xelL = f(x) e L, and =

Turing and Many-One

@ Turing reduction:

@ Build a TM (oracle machine) M.y, s.t. using the oracle
OL2 which decides Lz, M1 O, decides L;

@ My may query Oz many times (with different inputs)

4) 4)

@ Many-One:
L
@ My can query O,z only once, and I |

must output what Oz outputs | g N y

® My maps its input x to an input f(x) for O

@ xelL = f(x) e L, and =

Turing and Many-One

@ Turing reduction:

@ Build a TM (oracle machine) M.y, s.t. using the oracle
OL2 which decides Lz, M1 O, decides L;

@ My may query Oz many times (with different inputs)
r > ——

@ Many-One:
L
@ My can query O,z only once, and I |

must output what Oz outputs | g N y

® My maps its input x to an input f(x) for O

@ xelL = f(x) e L, and =

Polynomial-Time
Reduction

Polynomial-Time
Reduction

@ Many-one reduction, where M runs in polynomial fime

Polynomial-Time
Reduction

@ Many-one reduction, where M runs in polynomial fime

% L1 Sp L2

Polynomial-Time
Reduction

@ Many-one reduction, where M runs in polynomial fime

% L1 Sp L2

@ Lz is "computationally (almost) as hard or harder”
compared fo L;

Polynomial-Time
Reduction

@ Many-one reduction, where M runs in polynomial fime
% L1 Sp L2

@ Lz is "computationally (almost) as hard or harder”
compared fo L;

@ “almost”: reduction overheads (reduction time, size
blow-up)

Polynomial-Time
Reduction

@ Many-one reduction, where M runs in polynomial fime
% L1 Sp L2

@ Lz is "computationally (almost) as hard or harder”
compared fo L;

@ “almost”: reduction overheads (reduction time, size
blow-up)

@ L2 may be way harder

Cook, Karp, Levin

Cook, Karp, Levin

@ Polynomial-time reduction

Cook, Karp, Levin

@ Polynomial-time reduction

@ Cook: Turing reduction

Cook, Karp, Levin

@ Polynomial-time reduction

@ Cook: Turing reduction
@ Karp: Many-one reduction

Cook, Karp, Levin

@ Polynomial-time reduction

@ Cook: Turing reduction
@ Karp: Many-one reduction
@ We use this for <p

Cook, Karp, Levin

@ Polynomial-time reduction

@ Cook: Turing reduction
@ Karp: Many-one reduction
@ We use this for <p

@ Between NP languages

Cook, Karp, Levin

@ Polynomial-time reduction

@ Cook: Turing reduction
@ Karp: Many-one reduction
@ We use this for <p

@ Between NP languages

@ Levin: Karp + witnesses easily
transformed back and forth

Cook, Karp, Levin

@ Polynomial-time reduction

@ Cook: Turing reduction
@ Karp: Many-one reduction
@ We use this for <p

@ Between NP languages

@ Levin: Karp + witnesses easily
transformed back and forth

@ Parsimonious: Karp + number
of witnesses doesnt change

NP-completeness

NP-completeness

@ A language L is NP-Hard if for all L in NP, L <pL

NP-completeness

@ A language L is NP-Hard if for all L in NP, L <pL

@ A language L is NP-Complete if it is NP-Hard and is
in NP

NP-completeness

@ A language L is NP-Hard if for all L in NP, L <pL

@ A language L is NP-Complete if it is NP-Hard and is
in NP

@ To efficiently solve all problems in NP, you need
to efficiently solve L and nothing more

A simple NPC language

A simple NPC language

@ TMSAT = { (M,z,1",1") | dw, lwlkn, s.t. TM represented by M

accepts (z,w) within time t }

A simple NPC language

@ TMSAT = { (M,z,1",1") | dw, lwlkn, s.t. TM represented by M

accepts (z,w) within time t }

o : TMVAL = { (M,z,1",1%,w) | [wl<n and M
accepts (z,w) within time t } is in P

A simple NPC language

@ TMSAT = { (M,z,1",1") | dw, lwlkn, s.t. TM represented by M

accepts (z,w) within time t }

o : TMVAL = { (M,z,1",1%,w) | [wl<n and M
accepts (z,w) within time t } is in P

o : Given a language L in NP defined as
L = { x | dw, lwl<n s.t. M accepts (x,w) } and My runs

within time t, (where n,t are poly(Ix])), let the Karp
reduction be

A simple NPC language

@ TMSAT = { (M,z,1",1") | dw, lwlkn, s.t. TM represented by M

accepts (z,w) within time t }

o : TMVAL = { (M,z,1",1%,w) | [wl<n and M
accepts (z,w) within time t } is in P

o : Given a language L in NP defined as
L = { x | dw, lwl<n s.t. M accepts (x,w) } and My runs

within time t, (where n,t are poly(Ix])), let the Karp
reduction be

@ Any "natural” NPC language?

Boolean Circuits

Boolean Circuits

@ Boolean valued wires, AND, OR, NOT,
CONST gates, inputs, outpuft, directed
acyclic graph

Boolean Circuits

@ Boolean valued wires, AND, OR, NOT,
CONST gates, inputs, outpuft, directed
acyclic graph

@ Circuit evaluation CKT-VAL.:
given (cktinputs) find ckt's
boolean output value

Boolean Circuits

@ Boolean valued wires, AND, OR, NOT,
CONST gates, inputs, outpuft, directed
acyclic graph

@ Circuit evaluation CKT-VAL.:
given (cktinputs) find ckt's
boolean output value

@ Can be done very efficiently:
CKT-VAL is in P

Boolean Circuits

@ Boolean valued wires, AND, OR, NOT,
CONST gates, inputs, outpuft, directed
acyclic graph

@ Circuit evaluation CKT-VAL.:
given (cktinputs) find ckt's
boolean output value

@ Can be done very efficiently:
CKT-VAL is in P

® CKT-SAT: given ckf, is there a
“satisfying” input (output=1). In NP.

CKT-SAT is NP-Complete

CKT-SAT is NP-Complete

@ Reduce any NP language L to CKT-SAT

CKT-SAT is NP-Complete

@ Reduce any NP language L to CKT-SAT

@ Let's start from the TM for verifying membership in
L, with time bound T

CKT-SAT is NP-Complete

@ Reduce any NP language L to CKT-SAT

@ Let's start from the TM for verifying membership in
L, with time bound T

@ Build a circuit which on input w outputs what the
TM outputs on (x,w), within T steps

CKT-SAT is NP-Complete

@ Reduce any NP language L to CKT-SAT

@ Let's start from the TM for verifying membership in
L, with time bound T

@ Build a circuit which on input w outputs what the
TM outputs on (x,w), within T steps

@ This circuit is an instance of CKT-SAT

CKT-SAT is NP-Complete

@ Reduce any NP language L to CKT-SAT

@ Let's start from the TM for verifying membership in
L, with time bound T

@ Build a circuit which on input w outputs what the
TM outputs on (x,w), within T steps

@ This circuit is an instance of CKT-SAT

@ Ensure reduction is poly-time

TM to ClrcumL

TM to Circuit

@ Wires for configurations: a bundle
for each tape cell, encoding
(content,state), where state is
encoded in the cell with the head

TM to Circuit
(x,W)

@ Wires for configurations: a bundle
for each tape cell, encoding
(content,state), where state is
encoded in the cell with the head

TM to Circuit
(x,W)

@ Wires for configurations: a bundle
for each tape cell, encoding
(content,state), where state is
encoded in the cell with the head

@ Circuitry for evolution: each bundle
depends only on 3 previous bundles

TM to Circuit
(x,W)

@ Wires for configurations: a bundle
for each tape cell, encoding
(content,state), where state is
encoded in the cell with the head

@ Circuitry for evolution: each bundle
depends only on 3 previous bundles

@ (Part of) initial configuration, namely
w, to be plugged in as input

TM to Circuit
(x,W)

@ Wires for configurations: a bundle
for each tape cell, encoding
(content,state), where state is
encoded in the cell with the head

Koy
Y
@ Circuitry for evolution: each bundle

depends only on 3 previous bundles

@ (Part of) initial configuration, namely
w, to be plugged in as input

TM to Circuit
(x,W)

@ Wires for configurations: a bundle
for each tape cell, encoding
(content,state), where state is
encoded in the cell with the head

Koy W
Y
@ Circuitry for evolution: each bundle

depends only on 3 previous bundles

@ (Part of) initial configuration, namely
w, to be plugged in as input

TM to Circuit
(x,W)

@ Wires for configurations: a bundle
for each tape cell, encoding
(content,state), where state is
encoded in the cell with the head

Koy W
Y
@ Circuitry for evolution: each bundle

depends only on 3 previous bundles

@ (Part of) initial configuration, namely
w, to be plugged in as input

@ T configurations, T bundles each

TM to Circuit
(x,W)

@ Wires for configurations: a bundle
for each tape cell, encoding
(content,state), where state is
encoded in the cell with the head

Koy W
Y
@ Circuitry for evolution: each bundle

depends only on 3 previous bundles

@ (Part of) initial configuration, namely
w, to be plugged in as input

@ T configurations, T bundles each

@ Circuit size = O(T?) -

TM to Circuit
WW

(x,.w)

TM to Circuit

(x,.w)

@ Reducing any NP language L fo

Koy W
CKT-SAT T
[——

TM to Circuit
(x,W)

@ Reducing any NP language L fo
CKT-SAT

@ TM for verifying membership
in L, time-bound T, and input X
— A circuit which on input w
outputs what the TM outputs
on (x,w) within T steps

Kl W
J——
[——

TM to Circuit
(x,W)

@ Reducing any NP language L fo
CKT-SAT

@ TM for verifying membership
in L, time-bound T, and input X
— A circuit which on input w
outputs what the TM outputs
on (x,w) within T steps

Kl W
J——
[——

@ Poly-time reduction

TM to Circuit
(x,W)

@ Reducing any NP language L fo
CKT-SAT

@ TM for verifying membership
in L, time-bound T, and input X
— A circuit which on input w
outputs what the TM outputs
on (x,w) within T steps

Kl W
J——
[——

@ Poly-time reduction

@ CKT-SAT is NP-complete

Other NP-complete
problems

Other NP-complete
problems

® SAT and 3SAT

Other NP-complete
problems

® SAT and 3SAT

@ SAT: Are all given “clauses” simultaneously
satisfiable? (Conjunctive Normal Form)

Other NP-complete
problems

® SAT and 3SAT

@ SAT: Are all given “clauses” simultaneously
satisfiable? (Conjunctive Normal Form)

@ 3SAT: Each clause has at most 3 literals

Other NP-complete
problems

® SAT and 3SAT

@ SAT: Are all given “clauses” simultaneously
satisfiable? (Conjunctive Normal Form)

@ 3SAT: Each clause has at most 3 literals

@ CLIQUE, INDEP-SET, VERTEX-COVER

Other NP-complete
problems

® SAT and 3SAT

@ SAT: Are all given “clauses” simultaneously
satisfiable? (Conjunctive Normal Form)

@ 3SAT: Each clause has at most 3 literals

@ CLIQUE, INDEP-SET, VERTEX-COVER

@ Hundreds (thousands?) more

Other NP-complete
problems

® SAT and 3SAT

@ SAT: Are all given “clauses” simultaneously
satisfiable? (Conjunctive Normal Form)

@ 3SAT: Each clause has at most 3 literals
® CLIQUE, INDEP-SET, VERTEX-COVER

@ Hundreds (thousands?) more

@ Shown using already known ones:

Other NP-complete
problems

® SAT and 3SAT

@ SAT: Are all given “clauses” simultaneously
satisfiable? (Conjunctive Normal Form)

@ 3SAT: Each clause has at most 3 literals
@ CLIQUE, INDEP-SET, VERTEX-COVER
@ Hundreds (thousands?) more
@ Shown using already known ones:

@ IfLSpLiand LiSp Ly, then L S Lo

CKT-SAT <, SAT

CKT-SAT <, SAT

@ Converting a circuit to a collection of clauses:

CKT-SAT <, SAT

@ Converting a circuit to a collection of clauses:

@ For each wire (connected component), add a variable

CKT-SAT <, SAT

@ Converting a circuit to a collection of clauses:

@ For each wire (connected component), add a variable

@ For each gate, add a clause involving variables for wires
connected to the gate:

CKT-SAT <, SAT

@ Converting a circuit to a collection of clauses:
@ For each wire (connected component), add a variable

@ For each gate, add a clause involving variables for wires
connected to the gate:

@ e.g.;f: W z: (z=X), (z=VY), (1z = -x V ay).

i.e., (;z Vv x),(zVvy) (zVxVy).

CKT-SAT <, SAT

@ Converting a circuit to a collection of clauses:
@ For each wire (connected component), add a variable

@ For each gate, add a clause involving variables for wires
connected to the gate:

@ e.g.;f: W z: (z=X), (z=VY), (1z = -x V ay).

i.e., (;z Vv x),(zVvy) (zVxVy).

@ and ;f:»_z: (z=x V V), ([z=4x), ([z=1Y).

SAT <, 3SAT

SAT <, 3SAT

@ Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT sp 3SAT.

SAT <, 3SAT

@ Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT sp 3SAT.

@ More directly:

SAT <, 3SAT

@ Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT sp 3SAT.

@ More directly:

o () — (x), (=X)
— (), (<. xVecvy)(dyvdyVe

SAT <, 3SAT

@ Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT sp 3SAT.

@ More directly:

o () — (x), (=X)
— (), (<. xVecvy)(dyvdyVe

® Reduction needs 3SAT

SAT <, 3SAT

@ Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT sp 3SAT.

@ More directly:

o () — (x), (=X)
— (), (<. xVecvy)(dyvdyVe

® Reduction needs 3SAT

@ 2SAT is in fact in P! [Exercise]

SAT <, 3SAT

@ Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT sp 3SAT.

@ More directly:

o () — (x), (=X)
— (), (<. xVecvy)(dyvdyVe

® Reduction needs 3SAT
@ 2SAT is in fact in P! [Exercise]

@ Reduction not parsimonious (can you make it? [Exercise])

3SAT <, CLIQUE

3SAT <, CLIQUE

@ Clauses — Graph

3SAT <, CLIQUE

@ Clauses — Graph

3SAT <, CLIQUE

@ Clauses — Graph

@ vertices: each clause’s
satisfying assignments
(for its variables)

3SAT <, CLIQUE

@ Clauses — Graph

@ vertices: each clause’s
satisfying assignments

(for its variables) @
o @

3SAT <, CLIQUE

@ Clauses — Graph

@ vertices: each clause’s
satisfying assignments
(for its variables)

2 *Q 5
0 @
H 0*1* :

3SAT <, CLIQUE

@ Clauses — Graph

@ vertices: each clause’s
satisfying assignments
(for its variables)

o > o
*111 *100

O O

*101 *010
*110 *001

® O

““‘O .,
e s
0 @
5 0*1*

3SAT <, CLIQUE

@ Clauses — Graph

@ vertices: each clause’s
satisfying assignments
(for its variables)

O *gc?o O
i o *100 - 3
@ g
2101 201051
: *110 *001 ’

.
. 7
$ 0
2 g
% *
S -
< *
., o
- A2
. *
4 A
. .
.
., .
'l .
... “‘
"tamamunn®

““‘O .,
e s
0 @
5 0*1*

3SAT <, CLIQUE

@ Clauses — Graph

@ vertices: each clause’s
satisfying assignments
(for its variables)

O *gc?o O
i o *100 - 3
@ g
*1o1 201051
. *110 *001 ’

OO

““‘O .,
e s
0 @
5 0*1*

“nn
G By
.* .,
e L2
. 3
- 3
. *
o ®,
o 03
Q S5
O \J
s 00*0
Q P
Q
.
0
5 .
D
»
»

11%1 10%0%

e. O

OI*O

10*10
11*OO

3SAT <, CLIQUE

@ Clauses — Graph

@ vertices: each clause’s
satisfying assignments
(for its variables)

@ edges between
consistent assignments

O *gc?o O
i o *100 - 3
@ g
*1o1 201051
. *110 *001 ’

OO

““‘O .,
e s
0 @
5 0*1*

“nn
G By
.* .,
e L2
. 3
- 3
. *
o ®,
o 03
Q S5
O \J
s 00*0
Q P
Q
.
0
5 .
D
»
»

11%1 10%0%

. 0

o1*o i/

10*10
11*OO

3SAT <, CLIQUE

@ Clauses — Graph

@ vertices: each clause’s
satisfying assignments
(for its variables)

@ edges between
consistent assignments

:': 1*0*
§- 0*1*

O *gc?o O
T g *100 - 3
@ g
*1o1 201051
. *110 *001 ’

OO

..........
() L
R .

gt -

“nn
G By
.* .,
e L2
. 3
- 3
. *
o ®,
o 03
Q S5
O \J
s 00*0
Q P
Q
.
0
5 .
D
»
»

11%1 10%0%

E C)01*1 O
10*10
11*OO

o1*o i/

3SAT <, CLIQUE

@ Clauses — Graph

@ vertices: each clause’s
satisfying assignments
(for its variables)

@ edges between
consistent assignments

:': 1*0*
§- 0*1*

“nn
FPTTLL raa,,
.* .,
* LN
.
- 3
* %
o <2
o 03
0 ¢4
O <
s *000
Q %
Q
.
D

.

.
-
: -

*111 *100

o "y

L *101 *0lOsY:
E *110 *001)

J
Q
O ’
Q
*
Q
*
*
*
.
o
.
.
.
mnnt®

..........
() L
R .

1*1* @ %

“nn
G By
.* .,
e L2
. 3
- 3
. *
o ®,
o 03
Q S5
O \J
s 00*0
Q P
Q
.
0
5 .
D
»
»

11%1 10%0%

001*1 ol

01*0

.
.
.
\J
A
2 % .
Q
? *
< *
3 Q
. °
*
'0. * %
. **
L .
] R
ta, Y
"Tsaaumuns®

3SAT <, CLIQUE

@ Clauses — Graph

@ vertices: each clause’s
satisfying assignments
(for its variables)

@ edges between
consistent assignments

“nn
FPTTLL raa,,
.* .,

* LN

.
- 3
* %
o <2
S 03
0 ¢4
O <
s *000
Q %
Q
.
D
.
.
-
: -
-

et *100 %
3 *101 *010 | #
; *110 *001 A

. -
.
.
g
*
‘. O @ ”
. K
. *
v, =
. .
.
., .
o .
... “‘
"sampannn®

3SAT <, CLIQUE

@ Clauses — Graph

@ vertices: each clause’s
satisfying assignments
(for its variables)

@ edges between
consistent assignments

“nn
FPTTLL raa,,
.* .,

* LN

.
- 3
* %
o <2
S 03
0 ¢4
O <
s *000
Q %
Q
.
D
.
.
-
: -
-

Fi g *100 %
3 *101 *010 | #
- *001]

*110

3SAT <, CLIQUE

@ Clauses — Graph

@ vertices: each clause’s

satisfying assignments
(for its variables)

@ edges between
consistent assignments

s
FPTTLL raa,,
.* .,
* LN
.
- 3
* %
o <2
S 03
0 ¢4
O <
s *000
Q %
Q
.
D

.
.
-

: -

Fi g *100 %
*101 *010 2

*110 *001

J
Q
. ’
@ Q
*
Q
*
*
*
.
o
.
.
.
mnnt®

3SAT <, CLIQUE

“nn
FPTTLL raa,,
.* .,
* LN
.
- 3
* %
o <2
S 03
0 ¢4
O <
s *000
Q %
Q
.
D
.

.
-

: -
-

et *100 %
@ Clauses — Graph @
L *101 010 | }

*110 *001 $
@ vertices: each clause’s
satisfying assignments

(for its variables)

@ edges between
consistent assignments

@ m-clique iff all m
clauses satisfiable

3SAT <, CLIQUE

“nn
FPTTLL raa,,
.* .,
* LN
.
- 3
* %
o <2
S 03
0 ¢4
O <
s *000
Q %
Q
.
D
.

.
-

: -
-

et *100 %
@ Clauses — Graph @
L *101 010 | }

*110 *001

@ vertices: each clause’s
satisfying assignments

(for its variables)

@ edges between
consistent assignments

@ m-clique iff all m
clauses satisfiable

3SAT <, CLIQUE

FPPTLLLLLEToR
. L]
. LY
* LN
.
- 3
* %
o) S
* \ 03
0 ¢4
O <
o %
7) Ve
. \ .
.
D
.
.
-
5 -
-

3 *111 *100 __
@ Clauses — Graph .
2 *101 010 | ;

; *110 *001 :

@ vertices: each clause’s
satisfying assignments
(for its variables)

@ edges between
consistent assignments

@ m-clique iff all m
! 3-Clique 1*1*
clauses satisfiable 110
11*0

sat assignment 1110

INDEP-SET and
VERTEX-COVER

INDEP-SET and
VERTEX-COVER

& CLIQUE <p INDEP-SET

INDEP-SET and
VERTEX-COVER

& CLIQUE <p INDEP-SET

@ G has an m-clique iff G' has an m-independent-set

INDEP-SET and
VERTEX-COVER

& CLIQUE <p INDEP-SET

@ G has an m-clique iff G' has an m-independent-set

@ INDEP-SET sp VERTEX-COVER

INDEP-SET and
VERTEX-COVER

o CLIQUE <p INDEP-SET
@ G has an m-clique iff G' has an m-independent-set

@ INDEP-SET sp VERTEX-COVER

@ G has an m-indep-set iff G has an (n-m)-vertex-cover

NP, P, co-NP and NPC

NP, P, co-NP and NPC

@ We say class X is "closed under polynomial reductions”
if (Li<pLz2 and L: in class X) implies L; in X

NP, P, co-NP and NPC

@ We say class X is "closed under polynomial reductions”
if (Li<pLz2 and L: in class X) implies L; in X

@ e.g. P, NP are closed under polynomial reductions

NP, P, co-NP and NPC

@ We say class X is "closed under polynomial reductions”
if (Li<pLz2 and L: in class X) implies L; in X

@ e.g. P, NP are closed under polynomial reductions

@ So is co-NP (If X is closed, so is co-X. Why?)

NP, P, co-NP and NPC

@ We say class X is "closed under polynomial reductions”
if (Li<pLz2 and L: in class X) implies L; in X

@ e.g. P, NP are closed under polynomial reductions
@ So is co-NP (If X is closed, so is co-X. Why?)

@ If any NPC language is in P, then NP = P

NP, P, co-NP and NPC

@ We say class X is "closed under polynomial reductions”
if (Li<pLz2 and L: in class X) implies L; in X

@ e.g. P, NP are closed under polynomial reductions
@ So is co-NP (If X is closed, so is co-X. Why?)
@ If any NPC language is in P, then NP = P

@ If any NPC language is in co-NP, NP=co-NP

NP, P, co-NP and NPC

@ We say class X is "closed under polynomial reductions”
if (Li<pLz2 and L: in class X) implies L; in X

@ e.g. P, NP are closed under polynomial reductions
@ So is co-NP (If X is closed, so is co-X. Why?)
@ If any NPC language is in P, then NP = P
@ If any NPC language is in co-NP, NP=co-NP

@ Note: if L in NPC, L€ is in co-NPC

Today

Today

@ Polynomial-time reductions

Today

@ Polynomial-time reductions

@ NP-completeness (using Karp reductions)

Today

@ Polynomial-time reductions

@ NP-completeness (using Karp reductions)

@ Trivially, TMSAT

Today

@ Polynomial-time reductions
@ NP-completeness (using Karp reductions)

@ Trivially, TMSAT

@ Interestingly, CKT-SAT, SAT, 3SAT, CLIQUE,
INDEP-SET, VERTEX-COVER

Today

@ Polynomial-time reductions
@ NP-completeness (using Karp reductions)

@ Trivially, TMSAT

@ Interestingly, CKT-SAT, SAT, 3SAT, CLIQUE,
INDEP-SET, VERTEX-COVER

@ If any NPC language in P, then P=NP

Next Time

Next Time

® Ladners Theorem: If NP # P, then non-P, non-NPC
languages

Next Time

® Ladners Theorem: If NP # P, then non-P, non-NPC
languages

@ Time hierarchy theorems: More time, more power,
strictly!

