Computational
Complexity

Lecture 2
in which we talk about
NP-completeness
(reductions, reductions)
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@ Languages in NP are of the form:

o L={ x| dw, |wl < poly(Ix]) s.t. (x,w) € L }, where

L' is in P

@ Today: Hardest problems in NP
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o At the heart of today's complexity theory

@ L; < L; if problem of deciding L; "reduces to that of
deciding" L2

@ if can decide L2, can decide L;
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@ Turing reduction:

@ Build a TM (oracle machine) M.y, s.t. using the oracle
OL2 which decides Lz, M1 O, decides L;

@ My may query Oz many times (with different inputs)
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@ Many-One:
L
@ My can query O,z only once, and I |

must output what Oz outputs | g N y

® My maps its input x to an input f(x) for O

@ xelL = f(x) e L, and =
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Polynomial-Time
Reduction

@ Many-one reduction, where M runs in polynomial fime
% L1 Sp L2

@ Lz is "computationally (almost) as hard or harder”
compared fo L;

@ “almost”: reduction overheads (reduction time, size
blow-up)

@ L2 may be way harder
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Cook, Karp, Levin

@ Polynomial-time reduction

@ Cook: Turing reduction
@ Karp: Many-one reduction
@ We use this for <p

@ Between NP languages

@ Levin: Karp + witnesses easily
transformed back and forth

@ Parsimonious: Karp + number
of witnesses doesnt change




NP-completeness




NP-completeness

@ A language L is NP-Hard if for all L in NP, L <pL




NP-completeness

@ A language L is NP-Hard if for all L in NP, L <pL

@ A language L is NP-Complete if it is NP-Hard and is
in NP




NP-completeness

@ A language L is NP-Hard if for all L in NP, L <pL

@ A language L is NP-Complete if it is NP-Hard and is
in NP

@ To efficiently solve all problems in NP, you need
to efficiently solve L and nothing more
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@ TMSAT = { (M,z,1",1") | dw, lwlkn, s.t. TM represented by M

accepts (z,w) within time t }

o : TMVAL = { (M,z,1",1%,w) | [wl<n and M
accepts (z,w) within time t } is in P

o : Given a language L in NP defined as
L = { x | dw, lwl<n s.t. M accepts (x,w) } and My runs

within time t, (where n,t are poly(Ix]) ), let the Karp
reduction be

@ Any "natural” NPC language?
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Boolean Circuits

@ Boolean valued wires, AND, OR, NOT,
CONST gates, inputs, outpuft, directed
acyclic graph

@ Circuit evaluation CKT-VAL.:
given (cktinputs) find ckt's
boolean output value

@ Can be done very efficiently:
CKT-VAL is in P

® CKT-SAT: given ckf, is there a
“satisfying” input (output=1). In NP.
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CKT-SAT is NP-Complete

@ Reduce any NP language L to CKT-SAT

@ Let's start from the TM for verifying membership in
L, with time bound T

@ Build a circuit which on input w outputs what the
TM outputs on (x,w), within T steps

@ This circuit is an instance of CKT-SAT

@ Ensure reduction is poly-time
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@ Wires for configurations: a bundle
for each tape cell, encoding
(content,state), where state is
encoded in the cell with the head

Koy W
Y
@ Circuitry for evolution: each bundle

depends only on 3 previous bundles

@ (Part of) initial configuration, namely
w, to be plugged in as input

@ T configurations, T bundles each

@ Circuit size = O(T?) -
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TM to Circuit
(x,W)

@ Reducing any NP language L fo
CKT-SAT

@ TM for verifying membership
in L, time-bound T, and input X
— A circuit which on input w
outputs what the TM outputs
on (x,w) within T steps

Kl W
J——
[ ——

@ Poly-time reduction

@ CKT-SAT is NP-complete
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® SAT and 3SAT

@ SAT: Are all given “clauses” simultaneously
satisfiable? (Conjunctive Normal Form)

@ 3SAT: Each clause has at most 3 literals
@ CLIQUE, INDEP-SET, VERTEX-COVER
@ Hundreds (thousands?) more
@ Shown using already known ones:

@ IfLSpLiand LiSp Ly, then L S Lo
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@ Converting a circuit to a collection of clauses:
@ For each wire (connected component), add a variable

@ For each gate, add a clause involving variables for wires
connected to the gate:

@ e.g.;f: W z: (z=X), (z=VY), (1z = -x V ay).

i.e., (;z Vv x),(zVvy) (zVxVy).

@ and ;f:»_z: (z=x V V), ([z=4x), ([z=1Y).
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SAT <, 3SAT

@ Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT sp 3SAT.

@ More directly:

o ( ) — ( x), (=X )
— ( ), (<. xVecvy)(dyvdyVe

® Reduction needs 3SAT
@ 2SAT is in fact in P! [Exercise]

@ Reduction not parsimonious (can you make it? [Exercise])
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INDEP-SET and
VERTEX-COVER

o CLIQUE <p INDEP-SET
@ G has an m-clique iff G' has an m-independent-set

@ INDEP-SET sp VERTEX-COVER

@ G has an m-indep-set iff G has an (n-m)-vertex-cover
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NP, P, co-NP and NPC

@ We say class X is "closed under polynomial reductions”
if (Li<pLz2 and L: in class X) implies L; in X

@ e.g. P, NP are closed under polynomial reductions
@ So is co-NP (If X is closed, so is co-X. Why?)
@ If any NPC language is in P, then NP = P
@ If any NPC language is in co-NP, NP=co-NP

@ Note: if L in NPC, L€ is in co-NPC
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Today

@ Polynomial-time reductions
@ NP-completeness (using Karp reductions)

@ Trivially, TMSAT

@ Interestingly, CKT-SAT, SAT, 3SAT, CLIQUE,
INDEP-SET, VERTEX-COVER

@ If any NPC language in P, then P=NP
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Next Time

® Ladners Theorem: If NP # P, then non-P, non-NPC
languages

@ Time hierarchy theorems: More time, more power,
strictly!




