Computational Complexity

Lecture 2 in which we talk about NP-completeness (reductions, reductions)

Stanguages in NP are of the form:

Languages in NP are of the form:
L= { x | ∃w, |w| < poly(|x|) s.t. (x,w) ∈ L' }, where L' is in P

Languages in NP are of the form:
L= { x | ∃w, |w| < poly(|x|) s.t. (x,w) ∈ L' }, where L' is in P

Today: Hardest problems in NP

At the heart of today's complexity theory

At the heart of today's complexity theory

 ■ L₁ ≤ L₂ if problem of deciding L₁ "reduces to that of deciding" L₂

At the heart of today's complexity theory

∞ L₁ ≤ L₂ if problem of deciding L₁ "reduces to that of deciding" L₂

o if can decide L₂, can decide L₁

Turing reduction:

Turing reduction:

Build a TM (oracle machine) M_{L1} , s.t. using the oracle O_{L2} which decides L_2 , $M_{L1}^O_{L2}$ decides L_1

Turing reduction:

Build a TM (oracle machine) M_{L1}, s.t. using the oracle O_{L2} which decides L₂, M_{L1}[^]O_{L2} decides L₁

 \oslash M_{L1} may query O_{L2} many times (with different inputs)

Turing reduction:

Build a TM (oracle machine) M_{L1}, s.t. using the oracle O_{L2} which decides L₂, M_{L1}[^]O_{L2} decides L₁

M_{L1} may query O_{L2} many times (with different inputs)
 Many-One:

Turing reduction:

Build a TM (oracle machine) M_{L1}, s.t. using the oracle O_{L2} which decides L₂, M_{L1}[^]O_{L2} decides L₁

 \oslash M_{L1} may query O_{L2} many times (with different inputs)

Many-One:

Turing reduction:

Build a TM (oracle machine) M_{L1}, s.t. using the oracle O_{L2} which decides L₂, M_{L1}[^]O_{L2} decides L₁

 \oslash M_{L1} may query O_{L2} many times (with different inputs)

Many-One:

Turing reduction:

Build a TM (oracle machine) M_{L1}, s.t. using the oracle O_{L2} which decides L₂, M_{L1}[^]O_{L2} decides L₁

 \oslash M_{L1} may query O_{L2} many times (with different inputs)

Many-One:

• M_{L1} maps its input x to an input f(x) for O_{L2}

Turing reduction:

Build a TM (oracle machine) M_{L1}, s.t. using the oracle O_{L2} which decides L₂, M_{L1}[^]O_{L2} decides L₁

 \oslash M_{L1} may query O_{L2} many times (with different inputs)

Many-One:

Turing reduction:

Build a TM (oracle machine) M_{L1} , s.t. using the oracle O_{L2} which decides L_2 , $M_{L1}^O_{L2}$ decides L_1

 \oslash M_{L1} may query O_{L2} many times (with different inputs)

Many-One:

ML1 can query O_{L2} only once, and must output what O_{L2} outputs

Turing reduction:

Build a TM (oracle machine) M_{L1}, s.t. using the oracle O_{L2} which decides L₂, M_{L1}[^]O_{L2} decides L₁

 \oslash M_{L1} may query O_{L2} many times (with different inputs)

Many-One:

ML1 can query O_{L2} only once, and must output what O_{L2} outputs

 \odot Many-one reduction, where M_{L1} runs in polynomial time

 \odot Many-one reduction, where M_{L1} runs in polynomial time

 \odot L₁ \leq_p L₂

 \oslash Many-one reduction, where M_{L1} runs in polynomial time

 \odot L₁ \leq_p L₂

L₂ is "computationally (almost) as hard or harder" compared to L₁

 \odot Many-one reduction, where M_{L1} runs in polynomial time

 \odot L₁ \leq_p L₂

- L₂ is "computationally (almost) as hard or harder" compared to L₁
 - "almost": reduction overheads (reduction time, size blow-up)

 \oslash Many-one reduction, where M_{L1} runs in polynomial time

 \odot L₁ \leq_p L₂

- L₂ is "computationally (almost) as hard or harder" compared to L₁
 - "almost": reduction overheads (reduction time, size blow-up)

Polynomial-time reduction

Polynomial-time reductionCook: Turing reduction

Polynomial-time reduction
 Cook: Turing reduction
 Karp: Many-one reduction

Polynomial-time reduction
 Oook: Turing reduction
 Karp: Many-one reduction
 We use this for ≤p

Polynomial-time reduction
 Oook: Turing reduction
 Karp: Many-one reduction
 We use this for ≤p

Between NP languages

Polynomial-time reduction
 Oook: Turing reduction
 Karp: Many-one reduction
 We use this for ≤p

 Between NP languages
 Levin: Karp + witnesses easily transformed back and forth

Polynomial-time reduction
 Oook: Turing reduction
 Karp: Many-one reduction
 We use this for ≤p

Between NP languages

Levin: Karp + witnesses easily transformed back and forth

Parsimonious: Karp + number of witnesses doesn't change

NP-completeness

NP-completeness

A language L is NP-Hard if for all L' in NP, L' ≤_p L
NP-completeness

- A language L is NP-Complete if it is NP-Hard and is in NP

NP-completeness

- A language L is NP-Complete if it is NP-Hard and is in NP
 - To efficiently solve all problems in NP, you need to efficiently solve L and nothing more

TMSAT = { (M,z,1ⁿ,1⁺) | ∃w, |w|<n, s.t. TM represented by M accepts (z,w) within time t }</p>

- TMSAT = { (M,z,1ⁿ,1⁺) | ∃w, |w|<n, s.t. TM represented by M accepts (z,w) within time t }</p>
 - TMSAT is in NP: TMVAL = { (M,z,1ⁿ,1⁺,w) | |w|<n and M accepts (z,w) within time t } is in P</p>

- TMSAT = { (M,z,1ⁿ,1⁺) | ∃w, |w|<n, s.t. TM represented by M accepts (z,w) within time t }</p>
 - TMSAT is in NP: TMVAL = { (M,z,1ⁿ,1⁺,w) | |w|<n and M accepts (z,w) within time t } is in P</p>
 - TMSAT is NP-hard: Given a language L in NP defined as $L = \{ x \mid \exists w, |w| < n \text{ s.t. } M_{L'} \text{ accepts } (x,w) \}$ and $M_{L'}$ runs within time t, (where n,t are poly(|x|)), let the Karp reduction be $f(x) = (M_{L'}, x, 1^n, 1^t)$

- TMSAT = { (M,z,1ⁿ,1⁺) | ∃w, |w|<n, s.t. TM represented by M accepts (z,w) within time t }</p>
 - TMSAT is in NP: TMVAL = { (M,z,1ⁿ,1⁺,w) | |w|<n and M accepts (z,w) within time t } is in P</p>
 - TMSAT is NP-hard: Given a language L in NP defined as L = { x | ∃w, |w|<n s.t. M_L' accepts (x,w) } and M_L' runs within time t, (where n,t are poly(|x|)), let the Karp reduction be $f(x) = (M_{L'}, x, 1^n, 1^+)$
- Any "natural" NPC language?

Boolean valued wires, AND, OR, NOT, CONST gates, inputs, output, directed acyclic graph

- Boolean valued wires, AND, OR, NOT, CONST gates, inputs, output, directed acyclic graph
 - Circuit evaluation CKT-VAL: given (ckt,inputs) find ckt's boolean output value

- Boolean valued wires, AND, OR, NOT, CONST gates, inputs, output, directed acyclic graph
 - Circuit evaluation CKT-VAL: given (ckt,inputs) find ckt's boolean output value
 - Can be done very efficiently:
 CKT-VAL is in P

- Boolean valued wires, AND, OR, NOT, CONST gates, inputs, output, directed acyclic graph
 - Circuit evaluation CKT-VAL: given (ckt,inputs) find ckt's boolean output value
 - Can be done very efficiently:
 CKT-VAL is in P
- CKT-SAT: given ckt, is there a "satisfying" input (output=1). In NP.

Reduce any NP language L to CKT-SAT

Reduce any NP language L to CKT-SAT

Let's start from the TM for verifying membership in
 L, with time bound T

Reduce any NP language L to CKT-SAT

Let's start from the TM for verifying membership in
 L, with time bound T

 Build a circuit which on input w outputs what the TM outputs on (x,w), within T steps

Reduce any NP language L to CKT-SAT

- Let's start from the TM for verifying membership in
 L, with time bound T
- Build a circuit which on input w outputs what the TM outputs on (x,w), within T steps
- This circuit is an instance of CKT-SAT

Reduce any NP language L to CKT-SAT

- Let's start from the TM for verifying membership in
 L, with time bound T
- Build a circuit which on input w outputs what the TM outputs on (x,w), within T steps
- This circuit is an instance of CKT-SAT
- Sensure reduction is poly-time

TM to Circuit (x,w)

(x,w)

 Wires for configurations: a bundle for each tape cell, encoding (content,state), where state is encoded in the cell with the head

(x,w)

 Wires for configurations: a bundle for each tape cell, encoding (content,state), where state is encoded in the cell with the head

- Wires for configurations: a bundle for each tape cell, encoding (content,state), where state is encoded in the cell with the head
- Circuitry for evolution: each bundle depends only on 3 previous bundles

- Wires for configurations: a bundle for each tape cell, encoding (content,state), where state is encoded in the cell with the head
- Circuitry for evolution: each bundle depends only on 3 previous bundles
- (Part of) initial configuration, namely
 w, to be plugged in as input

- Wires for configurations: a bundle for each tape cell, encoding (content,state), where state is encoded in the cell with the head
- Circuitry for evolution: each bundle depends only on 3 previous bundles
- (Part of) initial configuration, namely
 w, to be plugged in as input

 X,q_0

- Wires for configurations: a bundle for each tape cell, encoding (content,state), where state is encoded in the cell with the head
- Circuitry for evolution: each bundle depends only on 3 previous bundles
- (Part of) initial configuration, namely
 w, to be plugged in as input

X,q₀

- Wires for configurations: a bundle for each tape cell, encoding (content,state), where state is encoded in the cell with the head
- Circuitry for evolution: each bundle depends only on 3 previous bundles
- (Part of) initial configuration, namely
 w, to be plugged in as input
- T configurations, T bundles each

X,q₀

- Wires for configurations: a bundle for each tape cell, encoding (content,state), where state is encoded in the cell with the head
- Circuitry for evolution: each bundle depends only on 3 previous bundles
- (Part of) initial configuration, namely
 w, to be plugged in as input
- T configurations, T bundles each
- Our Circuit size = $O(T^2)$

X,q₀

Ш

x,q₀ **w**

Reducing any NP language L to CKT-SAT **X,q**₀ **W**

Reducing any NP language L to CKT-SAT

 TM for verifying membership in L, time-bound T, and input x
 → A circuit which on input w outputs what the TM outputs on (x,w) within T steps **X**,**q**₀

(x,w)

W

Reducing any NP language L to CKT-SAT

 TM for verifying membership in L, time-bound T, and input x
 → A circuit which on input w outputs what the TM outputs on (x,w) within T steps

Poly-time reduction

x,**q**₀ **w**

Reducing any NP language L to CKT-SAT

 TM for verifying membership in L, time-bound T, and input x
 → A circuit which on input w outputs what the TM outputs on (x,w) within T steps

- Poly-time reduction
- OKT-SAT is NP-complete

x,**q**₀ **w**

SAT and 3SAT
 ■

SAT and 3SAT

SAT: Are all given "clauses" simultaneously satisfiable? (Conjunctive Normal Form)

SAT and 3SAT

SAT: Are all given "clauses" simultaneously satisfiable? (Conjunctive Normal Form)

SAT: Each clause has at most 3 literals
SAT and 3SAT

SAT: Are all given "clauses" simultaneously satisfiable? (Conjunctive Normal Form)

SAT: Each clause has at most 3 literals

SAT and 3SAT

SAT: Are all given "clauses" simultaneously satisfiable? (Conjunctive Normal Form)

SAT: Each clause has at most 3 literals

Hundreds (thousands?) more

SAT and 3SAT

 SAT: Are all given "clauses" simultaneously satisfiable? (Conjunctive Normal Form)

SAT: Each clause has at most 3 literals

- Hundreds (thousands?) more
- Shown using already known ones:

SAT and 3SAT

 SAT: Are all given "clauses" simultaneously satisfiable? (Conjunctive Normal Form)

SAT: Each clause has at most 3 literals

- Hundreds (thousands?) more
- Shown using already known ones:

If L ≤_p L₁ and L₁ ≤_p L₂, then L ≤_p L₂

Converting a circuit to a collection of clauses:

Converting a circuit to a collection of clauses:

For each wire (connected component), add a variable

Converting a circuit to a collection of clauses:

For each wire (connected component), add a variable

For each gate, add a clause involving variables for wires connected to the gate:

- Converting a circuit to a collection of clauses:
 - For each wire (connected component), add a variable
 - For each gate, add a clause involving variables for wires connected to the gate:

S e.g. X AND - Z: (Z
$$\Rightarrow$$
 X), (Z \Rightarrow Y), (\neg Z \Rightarrow \neg X \lor \neg Y).
i.e., (\neg Z \lor X), (\neg Z \lor Y), (Z \lor \neg X \lor Y).

- Converting a circuit to a collection of clauses:
 - For each wire (connected component), add a variable
 - For each gate, add a clause involving variables for wires connected to the gate:

 Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT ≤_p 3SAT.

 Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT ≤_p 3SAT.

More directly:

 Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT ≤_p 3SAT.

More directly:

 Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT ≤_p 3SAT.

More directly:

Reduction needs 3SAT

 Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT ≤_p 3SAT.

More directly:

- Reduction needs 3SAT
 - 2SAT is in fact in P! [Exercise]

 Previous reduction was to 3SAT, so 3SAT is NP-complete. And SAT is in NP. So SAT ≤_p 3SAT.

More directly:

- Reduction needs 3SAT
 - 2SAT is in fact in P! [Exercise]

Reduction not parsimonious (can you make it? [Exercise])

 \oslash Clauses \rightarrow Graph

 $(w \lor y)$

 \odot Clauses \rightarrow Graph

 vertices: each clause's satisfying assignments (for its variables)

 \odot Clauses \rightarrow Graph

 vertices: each clause's satisfying assignments (for its variables)

 \odot Clauses \rightarrow Graph

 vertices: each clause's satisfying assignments (for its variables)

 \odot Clauses \rightarrow Graph

 vertices: each clause's satisfying assignments (for its variables)

 \oslash Clauses \rightarrow Graph

 vertices: each clause's satisfying assignments (for its variables)

 $(w \vee y)$

1*1*

0*1*

 $(w \lor x \lor \neg z)$

 \oslash Clauses \rightarrow Graph

 vertices: each clause's satisfying assignments (for its variables)

1*1*

 $(w \lor x \lor \neg z)$

 \oslash Clauses \rightarrow Graph

 vertices: each clause's satisfying assignments (for its variables)

 $(w \vee y)$

 $(w \lor x \lor \neg z)$

1*1*

 \oslash Clauses \rightarrow Graph

 vertices: each clause's satisfying assignments (for its variables)

edges between
 consistent assignments

11*1

01*1

10*0

01*0

 \oslash Clauses \rightarrow Graph

 vertices: each clause's satisfying assignments (for its variables)

 \oslash Clauses \rightarrow Graph

 vertices: each clause's satisfying assignments (for its variables)

 \oslash Clauses \rightarrow Graph

 vertices: each clause's satisfying assignments (for its variables)

 \oslash Clauses \rightarrow Graph

 vertices: each clause's satisfying assignments (for its variables)

 \oslash Clauses \rightarrow Graph

 vertices: each clause's satisfying assignments (for its variables)

edges between
 consistent assignments

 m-clique iff all m clauses satisfiable 10*0

01*0

*000

*100

*111

*110

00*0

11*1

01*1

O *101

1*1*

 \oslash Clauses \rightarrow Graph

 vertices: each clause's satisfying assignments (for its variables)

edges between
 consistent assignments

 m-clique iff all m clauses satisfiable 10*0

01*0

*000

*100

*111

*110

00*0

11*1

01*1

O *101

1*1*

0*1*

 \odot Clauses \rightarrow Graph

 vertices: each clause's satisfying assignments (for its variables)

edges between
 consistent assignments

m-clique iff all m
 clauses satisfiable

sat assignment 1110

INDEP-SET and VERTEX-COVER
⊘ CLIQUE ≤_p INDEP-SET

⊘ CLIQUE ≤_p INDEP-SET

G has an m-clique iff G' has an m-independent-set

⊘ CLIQUE ≤_p INDEP-SET

G has an m-clique iff G' has an m-independent-set
 INDEP-SET ≤_p VERTEX-COVER

⊘ CLIQUE ≤_p INDEP-SET

✓ G has an m-clique iff G' has an m-independent-set
 ✓ INDEP-SET ≤p VERTEX-COVER

G has an m-indep-set iff G has an (n-m)-vertex-cover

We say class X is "closed under polynomial reductions" if (L₁ ≤_p L₂ and L₂ in class X) implies L₁ in X

We say class X is "closed under polynomial reductions" if (L₁ ≤_p L₂ and L₂ in class X) implies L₁ in X

e.g. P, NP are closed under polynomial reductions

We say class X is "closed under polynomial reductions" if (L₁ ≤_p L₂ and L₂ in class X) implies L₁ in X

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

NP

CONP

CON

We say class X is "closed under polynomial reductions" if (L₁ ≤_p L₂ and L₂ in class X) implies L₁ in X

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

If any NPC language is in P, then NP = P

NP

NP

CONP

CON

We say class X is "closed under polynomial reductions" if (L₁ ≤_p L₂ and L₂ in class X) implies L₁ in X

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

If any NPC language is in P, then NP = P

If any NPC language is in co-NP, NP=co-NP

NP

NP

CONP

CON

 ✓ We say class X is "closed under polynomial reductions" if (L₁ ≤_p L₂ and L₂ in class X) implies L₁ in X

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

If any NPC language is in P, then NP = P

If any NPC language is in co-NP, NP=co-NP

Ø Note: if L in NPC, L^c is in co−NPC

NP

NP

CONP

CONI

Ø Polynomial-time reductions

- Polynomial-time reductions
- NP-completeness (using Karp reductions)

Polynomial-time reductions
 NP-completeness (using Karp reductions)
 Trivially, TMSAT

- Polynomial-time reductions
 NP-completeness (using Karp reductions)
 Trivially, TMSAT
 - Interestingly, CKT-SAT, SAT, 3SAT, CLIQUE, INDEP-SET, VERTEX-COVER

- Polynomial-time reductions
- NP-completeness (using Karp reductions)
 - Trivially, TMSAT
 - Interestingly, CKT-SAT, SAT, 3SAT, CLIQUE, INDEP-SET, VERTEX-COVER

Next Time

Next Time

Next Time

- Time hierarchy theorems: More time, more power, strictly!