
Computational
Complexity

Lecture 2
in which we talk about

NP-completeness
(reductions, reductions)

1

Recap

2

Recap

Languages in NP are of the form:

2

Recap

Languages in NP are of the form:

L= { x | ∃w, |w| < poly(|x|) s.t. (x,w) ∈ L’ }, where

L’ is in P

2

Recap

Languages in NP are of the form:

L= { x | ∃w, |w| < poly(|x|) s.t. (x,w) ∈ L’ }, where

L’ is in P

Today: Hardest problems in NP

2

Reductions

3

Reductions

At the heart of today’s complexity theory

3

Reductions

At the heart of today’s complexity theory

L1 ≤ L2 if problem of deciding L1 “reduces to that of
deciding” L2

3

Reductions

At the heart of today’s complexity theory

L1 ≤ L2 if problem of deciding L1 “reduces to that of
deciding” L2

if can decide L2, can decide L1

3

Turing and Many-One

4

Turing reduction:

Turing and Many-One

4

Turing reduction:

Build a TM (oracle machine) ML1, s.t. using the oracle
OL2 which decides L2, ML1^OL2 decides L1

Turing and Many-One

4

Turing reduction:

Build a TM (oracle machine) ML1, s.t. using the oracle
OL2 which decides L2, ML1^OL2 decides L1

ML1 may query OL2 many times (with different inputs)

Turing and Many-One

4

Turing reduction:

Build a TM (oracle machine) ML1, s.t. using the oracle
OL2 which decides L2, ML1^OL2 decides L1

ML1 may query OL2 many times (with different inputs)

Many-One:

Turing and Many-One

4

Turing reduction:

Build a TM (oracle machine) ML1, s.t. using the oracle
OL2 which decides L2, ML1^OL2 decides L1

ML1 may query OL2 many times (with different inputs)

Many-One:

ML1 can query OL2 only once, and
must output what OL2 outputs

Turing and Many-One

4

Turing reduction:

Build a TM (oracle machine) ML1, s.t. using the oracle
OL2 which decides L2, ML1^OL2 decides L1

ML1 may query OL2 many times (with different inputs)

Many-One:

ML1 can query OL2 only once, and
must output what OL2 outputs

ML1 maps its input x to an input f(x) for OL2

Turing and Many-One

4

Turing reduction:

Build a TM (oracle machine) ML1, s.t. using the oracle
OL2 which decides L2, ML1^OL2 decides L1

ML1 may query OL2 many times (with different inputs)

Many-One:

ML1 can query OL2 only once, and
must output what OL2 outputs

ML1 maps its input x to an input f(x) for OL2

x ∈ L1 ⇒ f(x) ∈ L2 and x ∉ L1 ⇒ f(x) ∉ L2

Turing and Many-One

4

Turing reduction:

Build a TM (oracle machine) ML1, s.t. using the oracle
OL2 which decides L2, ML1^OL2 decides L1

ML1 may query OL2 many times (with different inputs)

Many-One:

ML1 can query OL2 only once, and
must output what OL2 outputs

ML1 maps its input x to an input f(x) for OL2

x ∈ L1 ⇒ f(x) ∈ L2 and x ∉ L1 ⇒ f(x) ∉ L2

L1

L2

Turing and Many-One

4

Turing reduction:

Build a TM (oracle machine) ML1, s.t. using the oracle
OL2 which decides L2, ML1^OL2 decides L1

ML1 may query OL2 many times (with different inputs)

Many-One:

ML1 can query OL2 only once, and
must output what OL2 outputs

ML1 maps its input x to an input f(x) for OL2

x ∈ L1 ⇒ f(x) ∈ L2 and x ∉ L1 ⇒ f(x) ∉ L2

L1

L2

Turing and Many-One

4

Turing reduction:

Build a TM (oracle machine) ML1, s.t. using the oracle
OL2 which decides L2, ML1^OL2 decides L1

ML1 may query OL2 many times (with different inputs)

Many-One:

ML1 can query OL2 only once, and
must output what OL2 outputs

ML1 maps its input x to an input f(x) for OL2

x ∈ L1 ⇒ f(x) ∈ L2 and x ∉ L1 ⇒ f(x) ∉ L2

L1

L2

Turing and Many-One

4

Polynomial-Time
Reduction

5

Polynomial-Time
Reduction

Many-one reduction, where ML1 runs in polynomial time

5

Polynomial-Time
Reduction

Many-one reduction, where ML1 runs in polynomial time

L1 ≤p L2

5

Polynomial-Time
Reduction

Many-one reduction, where ML1 runs in polynomial time

L1 ≤p L2

L2 is “computationally (almost) as hard or harder”
compared to L1

5

Polynomial-Time
Reduction

Many-one reduction, where ML1 runs in polynomial time

L1 ≤p L2

L2 is “computationally (almost) as hard or harder”
compared to L1

“almost”: reduction overheads (reduction time, size
blow-up)

5

Polynomial-Time
Reduction

Many-one reduction, where ML1 runs in polynomial time

L1 ≤p L2

L2 is “computationally (almost) as hard or harder”
compared to L1

“almost”: reduction overheads (reduction time, size
blow-up)

L2 may be way harder

5

Cook, Karp, Levin

6

Cook, Karp, Levin

Polynomial-time reduction

6

Cook, Karp, Levin

Polynomial-time reduction

Cook: Turing reduction

6

Cook, Karp, Levin

Polynomial-time reduction

Cook: Turing reduction
Karp: Many-one reduction

6

Cook, Karp, Levin

Polynomial-time reduction

Cook: Turing reduction
Karp: Many-one reduction

We use this for ≤p

6

Cook, Karp, Levin

Polynomial-time reduction

Cook: Turing reduction
Karp: Many-one reduction

We use this for ≤p

Between NP languages

6

Cook, Karp, Levin

Polynomial-time reduction

Cook: Turing reduction
Karp: Many-one reduction

We use this for ≤p

Between NP languages

Levin: Karp + witnesses easily
transformed back and forth

6

Cook, Karp, Levin

Polynomial-time reduction

Cook: Turing reduction
Karp: Many-one reduction

We use this for ≤p

Between NP languages

Levin: Karp + witnesses easily
transformed back and forth
Parsimonious: Karp + number
of witnesses doesn’t change

6

NP-completeness

7

NP-completeness

A language L is NP-Hard if for all L’ in NP, L’ ≤p L

7

NP-completeness

A language L is NP-Hard if for all L’ in NP, L’ ≤p L

A language L is NP-Complete if it is NP-Hard and is
in NP

7

NP-completeness

A language L is NP-Hard if for all L’ in NP, L’ ≤p L

A language L is NP-Complete if it is NP-Hard and is
in NP

To efficiently solve all problems in NP, you need
to efficiently solve L and nothing more

7

A simple NPC language

8

A simple NPC language
TMSAT = { (M,z,1n,1t) | ∃w, |w|<n, s.t. TM represented by M

accepts (z,w) within time t }

8

A simple NPC language
TMSAT = { (M,z,1n,1t) | ∃w, |w|<n, s.t. TM represented by M

accepts (z,w) within time t }

TMSAT is in NP: TMVAL = { (M,z,1n,1t,w) | |w|<n and M
accepts (z,w) within time t } is in P

8

A simple NPC language
TMSAT = { (M,z,1n,1t) | ∃w, |w|<n, s.t. TM represented by M

accepts (z,w) within time t }

TMSAT is in NP: TMVAL = { (M,z,1n,1t,w) | |w|<n and M
accepts (z,w) within time t } is in P

TMSAT is NP-hard: Given a language L in NP defined as
L = { x | ∃w, |w|<n s.t. ML’ accepts (x,w) } and ML’ runs

within time t, (where n,t are poly(|x|)), let the Karp
reduction be f(x) = (ML’,x,1n,1t)

8

A simple NPC language
TMSAT = { (M,z,1n,1t) | ∃w, |w|<n, s.t. TM represented by M

accepts (z,w) within time t }

TMSAT is in NP: TMVAL = { (M,z,1n,1t,w) | |w|<n and M
accepts (z,w) within time t } is in P

TMSAT is NP-hard: Given a language L in NP defined as
L = { x | ∃w, |w|<n s.t. ML’ accepts (x,w) } and ML’ runs

within time t, (where n,t are poly(|x|)), let the Karp
reduction be f(x) = (ML’,x,1n,1t)

Any “natural” NPC language?

8

Boolean Circuits
0 1

9

Boolean Circuits
Boolean valued wires, AND, OR, NOT,
CONST gates, inputs, output, directed
acyclic graph

0 1

9

Boolean Circuits
Boolean valued wires, AND, OR, NOT,
CONST gates, inputs, output, directed
acyclic graph

Circuit evaluation CKT-VAL:
given (ckt,inputs) find ckt’s
boolean output value

0 1

9

Boolean Circuits
Boolean valued wires, AND, OR, NOT,
CONST gates, inputs, output, directed
acyclic graph

Circuit evaluation CKT-VAL:
given (ckt,inputs) find ckt’s
boolean output value

Can be done very efficiently:
CKT-VAL is in P

0 1

9

Boolean Circuits
Boolean valued wires, AND, OR, NOT,
CONST gates, inputs, output, directed
acyclic graph

Circuit evaluation CKT-VAL:
given (ckt,inputs) find ckt’s
boolean output value

Can be done very efficiently:
CKT-VAL is in P

CKT-SAT: given ckt, is there a
“satisfying” input (output=1). In NP.

0 1

9

CKT-SAT is NP-Complete

10

CKT-SAT is NP-Complete

Reduce any NP language L to CKT-SAT

10

CKT-SAT is NP-Complete

Reduce any NP language L to CKT-SAT

Let’s start from the TM for verifying membership in
L, with time bound T

10

CKT-SAT is NP-Complete

Reduce any NP language L to CKT-SAT

Let’s start from the TM for verifying membership in
L, with time bound T

Build a circuit which on input w outputs what the
TM outputs on (x,w), within T steps

10

CKT-SAT is NP-Complete

Reduce any NP language L to CKT-SAT

Let’s start from the TM for verifying membership in
L, with time bound T

Build a circuit which on input w outputs what the
TM outputs on (x,w), within T steps

This circuit is an instance of CKT-SAT

10

CKT-SAT is NP-Complete

Reduce any NP language L to CKT-SAT

Let’s start from the TM for verifying membership in
L, with time bound T

Build a circuit which on input w outputs what the
TM outputs on (x,w), within T steps

This circuit is an instance of CKT-SAT

Ensure reduction is poly-time

10

TM to Circuit
(x,w)

11

TM to Circuit
Wires for configurations: a bundle
for each tape cell, encoding
(content,state), where state is
encoded in the cell with the head

(x,w)

11

TM to Circuit
Wires for configurations: a bundle
for each tape cell, encoding
(content,state), where state is
encoded in the cell with the head

(x,w)

11

TM to Circuit
Wires for configurations: a bundle
for each tape cell, encoding
(content,state), where state is
encoded in the cell with the head

Circuitry for evolution: each bundle
depends only on 3 previous bundles

(x,w)

11

TM to Circuit
Wires for configurations: a bundle
for each tape cell, encoding
(content,state), where state is
encoded in the cell with the head

Circuitry for evolution: each bundle
depends only on 3 previous bundles

(Part of) initial configuration, namely
w, to be plugged in as input

(x,w)

11

TM to Circuit
Wires for configurations: a bundle
for each tape cell, encoding
(content,state), where state is
encoded in the cell with the head

Circuitry for evolution: each bundle
depends only on 3 previous bundles

(Part of) initial configuration, namely
w, to be plugged in as input

x,q0
(x,w)

11

TM to Circuit
Wires for configurations: a bundle
for each tape cell, encoding
(content,state), where state is
encoded in the cell with the head

Circuitry for evolution: each bundle
depends only on 3 previous bundles

(Part of) initial configuration, namely
w, to be plugged in as input

x,q0
(x,w)

w

11

TM to Circuit
Wires for configurations: a bundle
for each tape cell, encoding
(content,state), where state is
encoded in the cell with the head

Circuitry for evolution: each bundle
depends only on 3 previous bundles

(Part of) initial configuration, namely
w, to be plugged in as input

T configurations, T bundles each

x,q0
(x,w)

w

11

TM to Circuit
Wires for configurations: a bundle
for each tape cell, encoding
(content,state), where state is
encoded in the cell with the head

Circuitry for evolution: each bundle
depends only on 3 previous bundles

(Part of) initial configuration, namely
w, to be plugged in as input

T configurations, T bundles each

Circuit size = O(T2)

x,q0
(x,w)

w

11

TM to Circuit
x,q0

(x,w)
w

12

TM to Circuit
Reducing any NP language L to
CKT-SAT

x,q0
(x,w)

w

12

TM to Circuit
Reducing any NP language L to
CKT-SAT

TM for verifying membership
in L, time-bound T, and input x
→ A circuit which on input w
outputs what the TM outputs
on (x,w) within T steps

x,q0
(x,w)

w

12

TM to Circuit
Reducing any NP language L to
CKT-SAT

TM for verifying membership
in L, time-bound T, and input x
→ A circuit which on input w
outputs what the TM outputs
on (x,w) within T steps

Poly-time reduction

x,q0
(x,w)

w

12

TM to Circuit
Reducing any NP language L to
CKT-SAT

TM for verifying membership
in L, time-bound T, and input x
→ A circuit which on input w
outputs what the TM outputs
on (x,w) within T steps

Poly-time reduction

CKT-SAT is NP-complete

x,q0
(x,w)

w

12

Other NP-complete
problems

13

Other NP-complete
problems

SAT and 3SAT

13

Other NP-complete
problems

SAT and 3SAT

SAT: Are all given “clauses” simultaneously
satisfiable? (Conjunctive Normal Form)

13

Other NP-complete
problems

SAT and 3SAT

SAT: Are all given “clauses” simultaneously
satisfiable? (Conjunctive Normal Form)

3SAT: Each clause has at most 3 literals

13

Other NP-complete
problems

SAT and 3SAT

SAT: Are all given “clauses” simultaneously
satisfiable? (Conjunctive Normal Form)

3SAT: Each clause has at most 3 literals

CLIQUE, INDEP-SET, VERTEX-COVER

13

Other NP-complete
problems

SAT and 3SAT

SAT: Are all given “clauses” simultaneously
satisfiable? (Conjunctive Normal Form)

3SAT: Each clause has at most 3 literals

CLIQUE, INDEP-SET, VERTEX-COVER

Hundreds (thousands?) more

13

Other NP-complete
problems

SAT and 3SAT

SAT: Are all given “clauses” simultaneously
satisfiable? (Conjunctive Normal Form)

3SAT: Each clause has at most 3 literals

CLIQUE, INDEP-SET, VERTEX-COVER

Hundreds (thousands?) more

Shown using already known ones:

13

Other NP-complete
problems

SAT and 3SAT

SAT: Are all given “clauses” simultaneously
satisfiable? (Conjunctive Normal Form)

3SAT: Each clause has at most 3 literals

CLIQUE, INDEP-SET, VERTEX-COVER

Hundreds (thousands?) more

Shown using already known ones:

If L ≤p L1 and L1 ≤p L2, then L ≤p L2

13

CKT-SAT ≤p SAT

14

CKT-SAT ≤p SAT

Converting a circuit to a collection of clauses:

14

CKT-SAT ≤p SAT

Converting a circuit to a collection of clauses:

For each wire (connected component), add a variable

14

CKT-SAT ≤p SAT

Converting a circuit to a collection of clauses:

For each wire (connected component), add a variable

For each gate, add a clause involving variables for wires
connected to the gate:

14

CKT-SAT ≤p SAT

Converting a circuit to a collection of clauses:

For each wire (connected component), add a variable

For each gate, add a clause involving variables for wires
connected to the gate:

e.g. : (z⇒x), (z⇒y), (¬z ⇒ ¬x ∨ ¬y).
i.e., (¬z ∨ x), (¬z ∨ y), (z ∨ ¬x ∨ y).

AND

x
y z

14

CKT-SAT ≤p SAT

Converting a circuit to a collection of clauses:

For each wire (connected component), add a variable

For each gate, add a clause involving variables for wires
connected to the gate:

e.g. : (z⇒x), (z⇒y), (¬z ⇒ ¬x ∨ ¬y).
i.e., (¬z ∨ x), (¬z ∨ y), (z ∨ ¬x ∨ y).

and : (z⇒x ∨ y), (¬z⇒¬x), (¬z⇒¬y).

AND

x
y z

OR

x
y z

14

SAT ≤p 3SAT

15

SAT ≤p 3SAT
Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT ≤p 3SAT.

15

SAT ≤p 3SAT
Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT ≤p 3SAT.

More directly:

15

SAT ≤p 3SAT
Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT ≤p 3SAT.

More directly:

(a ∨ b ∨ c ∨ d ∨ e) → (a ∨ b ∨ x), (¬x ∨ c ∨ d ∨ e)
→ (a ∨ b ∨ x), (¬x ∨ c ∨ y), (¬y ∨ d ∨ e)

15

SAT ≤p 3SAT
Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT ≤p 3SAT.

More directly:

(a ∨ b ∨ c ∨ d ∨ e) → (a ∨ b ∨ x), (¬x ∨ c ∨ d ∨ e)
→ (a ∨ b ∨ x), (¬x ∨ c ∨ y), (¬y ∨ d ∨ e)

Reduction needs 3SAT

15

SAT ≤p 3SAT
Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT ≤p 3SAT.

More directly:

(a ∨ b ∨ c ∨ d ∨ e) → (a ∨ b ∨ x), (¬x ∨ c ∨ d ∨ e)
→ (a ∨ b ∨ x), (¬x ∨ c ∨ y), (¬y ∨ d ∨ e)

Reduction needs 3SAT

2SAT is in fact in P! [Exercise]

15

SAT ≤p 3SAT
Previous reduction was to 3SAT, so 3SAT is NP-complete.
And SAT is in NP. So SAT ≤p 3SAT.

More directly:

(a ∨ b ∨ c ∨ d ∨ e) → (a ∨ b ∨ x), (¬x ∨ c ∨ d ∨ e)
→ (a ∨ b ∨ x), (¬x ∨ c ∨ y), (¬y ∨ d ∨ e)

Reduction needs 3SAT

2SAT is in fact in P! [Exercise]

Reduction not parsimonious (can you make it? [Exercise])

15

3SAT ≤p CLIQUE

16

3SAT ≤p CLIQUE

Clauses → Graph

16

3SAT ≤p CLIQUE

Clauses → Graph

(x ∨ ¬y ∨ ¬z)

(w ∨ x ∨ ¬z)

(w ∨ y)

16

3SAT ≤p CLIQUE

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

(x ∨ ¬y ∨ ¬z)

(w ∨ x ∨ ¬z)

(w ∨ y)

16

3SAT ≤p CLIQUE

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

(x ∨ ¬y ∨ ¬z)

(w ∨ x ∨ ¬z)

0*1*
1*1*

1*0*

(w ∨ y)

16

3SAT ≤p CLIQUE

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

(x ∨ ¬y ∨ ¬z)

(w ∨ x ∨ ¬z)

0*1*
1*1*

1*0*

(w ∨ y)

16

3SAT ≤p CLIQUE

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)

0*1*
1*1*

1*0*

(w ∨ y)

16

3SAT ≤p CLIQUE

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)

0*1*
1*1*

1*0*

(w ∨ y)

16

3SAT ≤p CLIQUE

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

16

3SAT ≤p CLIQUE

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

edges between
consistent assignments

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

16

3SAT ≤p CLIQUE

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

edges between
consistent assignments

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

16

3SAT ≤p CLIQUE

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

edges between
consistent assignments

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

16

3SAT ≤p CLIQUE

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

edges between
consistent assignments

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

16

3SAT ≤p CLIQUE

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

edges between
consistent assignments

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

16

3SAT ≤p CLIQUE

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

edges between
consistent assignments

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

16

3SAT ≤p CLIQUE

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

edges between
consistent assignments

m-clique iff all m
clauses satisfiable

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

16

3SAT ≤p CLIQUE

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

edges between
consistent assignments

m-clique iff all m
clauses satisfiable

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

16

3SAT ≤p CLIQUE

Clauses → Graph

vertices: each clause’s
satisfying assignments
(for its variables)

edges between
consistent assignments

m-clique iff all m
clauses satisfiable

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

1*1*
*110
11*0

1110sat assignment

3-Clique

16

INDEP-SET and
VERTEX-COVER

17

INDEP-SET and
VERTEX-COVER

CLIQUE ≤p INDEP-SET

17

INDEP-SET and
VERTEX-COVER

CLIQUE ≤p INDEP-SET

G has an m-clique iff G’ has an m-independent-set

17

INDEP-SET and
VERTEX-COVER

CLIQUE ≤p INDEP-SET

G has an m-clique iff G’ has an m-independent-set

INDEP-SET ≤p VERTEX-COVER

17

INDEP-SET and
VERTEX-COVER

CLIQUE ≤p INDEP-SET

G has an m-clique iff G’ has an m-independent-set

INDEP-SET ≤p VERTEX-COVER

G has an m-indep-set iff G has an (n-m)-vertex-cover

17

NP, P, co-NP and NPC

P

NP coNP

NPC coNPC

18

NP, P, co-NP and NPC

We say class X is “closed under polynomial reductions”
if (L1 ≤p L2 and L2 in class X) implies L1 in X

P

NP coNP

NPC coNPC

18

NP, P, co-NP and NPC

We say class X is “closed under polynomial reductions”
if (L1 ≤p L2 and L2 in class X) implies L1 in X

e.g. P, NP are closed under polynomial reductions

P

NP coNP

NPC coNPC

18

NP, P, co-NP and NPC

We say class X is “closed under polynomial reductions”
if (L1 ≤p L2 and L2 in class X) implies L1 in X

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

P

NP coNP

NPC coNPC

18

NP, P, co-NP and NPC

We say class X is “closed under polynomial reductions”
if (L1 ≤p L2 and L2 in class X) implies L1 in X

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

If any NPC language is in P, then NP = P
P

NP coNP

NPC coNPC

18

NP, P, co-NP and NPC

We say class X is “closed under polynomial reductions”
if (L1 ≤p L2 and L2 in class X) implies L1 in X

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

If any NPC language is in P, then NP = P

If any NPC language is in co-NP, NP=co-NP P

NP coNP

NPC coNPC

18

NP, P, co-NP and NPC

We say class X is “closed under polynomial reductions”
if (L1 ≤p L2 and L2 in class X) implies L1 in X

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

If any NPC language is in P, then NP = P

If any NPC language is in co-NP, NP=co-NP

Note: if L in NPC, Lc is in co-NPC

P

NP coNP

NPC coNPC

18

Today

19

Today

Polynomial-time reductions

19

Today

Polynomial-time reductions

NP-completeness (using Karp reductions)

19

Today

Polynomial-time reductions

NP-completeness (using Karp reductions)

Trivially, TMSAT

19

Today

Polynomial-time reductions

NP-completeness (using Karp reductions)

Trivially, TMSAT

Interestingly, CKT-SAT, SAT, 3SAT, CLIQUE,
INDEP-SET, VERTEX-COVER

19

Today

Polynomial-time reductions

NP-completeness (using Karp reductions)

Trivially, TMSAT

Interestingly, CKT-SAT, SAT, 3SAT, CLIQUE,
INDEP-SET, VERTEX-COVER

If any NPC language in P, then P=NP

19

Next Time

20

Next Time

Ladner’s Theorem: If NP ≠ P, then non-P, non-NPC
languages

20

Next Time

Ladner’s Theorem: If NP ≠ P, then non-P, non-NPC
languages

Time hierarchy theorems: More time, more power,
strictly!

20

