
Computational 
Complexity

Lecture 2
in which we talk about

NP-completeness
(reductions, reductions)
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At the heart of today’s complexity theory
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Polynomial-Time 
Reduction

Many-one reduction, where ML1 runs in polynomial time

L1 ≤p L2

L2 is “computationally (almost) as hard or harder” 
compared to L1

“almost”: reduction overheads (reduction time, size 
blow-up)

L2 may be way harder
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Cook, Karp, Levin

Polynomial-time reduction

Cook: Turing reduction
Karp: Many-one reduction

We use this for ≤p

Between NP languages

Levin: Karp + witnesses easily 
transformed back and forth
Parsimonious: Karp + number 
of witnesses doesn’t change
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NP-completeness

A language L is NP-Hard if for all L’ in NP,   L’ ≤p L

A language L is NP-Complete if it is NP-Hard and is 
in NP

To efficiently solve all problems in NP, you need 
to efficiently solve L and nothing more
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TMSAT = { (M,z,1n,1t) | ∃w, |w|<n, s.t. TM represented by M 

accepts (z,w) within time t }

TMSAT is in NP: TMVAL = { (M,z,1n,1t,w) | |w|<n and M 
accepts (z,w) within time t } is in P

TMSAT is NP-hard: Given a language L in NP defined as    
L = { x | ∃w, |w|<n s.t. ML’ accepts (x,w) } and ML’ runs 

within time t, (where n,t are poly(|x|) ),  let the Karp 
reduction be   f(x) = (ML’,x,1n,1t)

Any “natural” NPC language?

8



Boolean Circuits
0 1

9



Boolean Circuits
Boolean valued wires, AND, OR, NOT, 
CONST gates, inputs, output, directed 
acyclic graph

0 1

9



Boolean Circuits
Boolean valued wires, AND, OR, NOT, 
CONST gates, inputs, output, directed 
acyclic graph

Circuit evaluation CKT-VAL:   
given (ckt,inputs) find ckt’s 
boolean output value

0 1

9



Boolean Circuits
Boolean valued wires, AND, OR, NOT, 
CONST gates, inputs, output, directed 
acyclic graph

Circuit evaluation CKT-VAL:   
given (ckt,inputs) find ckt’s 
boolean output value

Can be done very efficiently: 
CKT-VAL is in P

0 1

9



Boolean Circuits
Boolean valued wires, AND, OR, NOT, 
CONST gates, inputs, output, directed 
acyclic graph

Circuit evaluation CKT-VAL:   
given (ckt,inputs) find ckt’s 
boolean output value

Can be done very efficiently: 
CKT-VAL is in P

CKT-SAT: given ckt, is there a 
“satisfying” input (output=1). In NP.

0 1
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CKT-SAT is NP-Complete

Reduce any NP language L to CKT-SAT

Let’s start from the TM for verifying membership in 
L, with time bound T

Build a circuit which on input w outputs what the 
TM outputs on (x,w), within T steps

This circuit is an instance of CKT-SAT

Ensure reduction is poly-time

10



TM to Circuit
(x,w)

11



TM to Circuit
Wires for configurations: a bundle 
for each tape cell, encoding 
(content,state), where state is 
encoded in the cell with the head

(x,w)

11



TM to Circuit
Wires for configurations: a bundle 
for each tape cell, encoding 
(content,state), where state is 
encoded in the cell with the head

(x,w)

11



TM to Circuit
Wires for configurations: a bundle 
for each tape cell, encoding 
(content,state), where state is 
encoded in the cell with the head

Circuitry for evolution: each bundle 
depends only on 3 previous bundles

(x,w)

11



TM to Circuit
Wires for configurations: a bundle 
for each tape cell, encoding 
(content,state), where state is 
encoded in the cell with the head

Circuitry for evolution: each bundle 
depends only on 3 previous bundles

(Part of) initial configuration, namely 
w, to be plugged in as input

(x,w)

11



TM to Circuit
Wires for configurations: a bundle 
for each tape cell, encoding 
(content,state), where state is 
encoded in the cell with the head

Circuitry for evolution: each bundle 
depends only on 3 previous bundles

(Part of) initial configuration, namely 
w, to be plugged in as input

x,q0
(x,w)

11



TM to Circuit
Wires for configurations: a bundle 
for each tape cell, encoding 
(content,state), where state is 
encoded in the cell with the head

Circuitry for evolution: each bundle 
depends only on 3 previous bundles

(Part of) initial configuration, namely 
w, to be plugged in as input

x,q0
(x,w)

w

11



TM to Circuit
Wires for configurations: a bundle 
for each tape cell, encoding 
(content,state), where state is 
encoded in the cell with the head

Circuitry for evolution: each bundle 
depends only on 3 previous bundles

(Part of) initial configuration, namely 
w, to be plugged in as input

T configurations, T bundles each

x,q0
(x,w)

w

11



TM to Circuit
Wires for configurations: a bundle 
for each tape cell, encoding 
(content,state), where state is 
encoded in the cell with the head

Circuitry for evolution: each bundle 
depends only on 3 previous bundles

(Part of) initial configuration, namely 
w, to be plugged in as input

T configurations, T bundles each

Circuit size = O(T2)

x,q0
(x,w)

w
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Reducing any NP language L to   
CKT-SAT

TM for verifying membership 
in L, time-bound T, and input x        
→ A circuit which on input w 
outputs what the TM outputs 
on (x,w) within T steps

Poly-time reduction

CKT-SAT is NP-complete

x,q0
(x,w)

w
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problems

SAT and 3SAT

SAT: Are all given “clauses” simultaneously 
satisfiable? (Conjunctive Normal Form)

3SAT: Each clause has at most 3 literals

CLIQUE, INDEP-SET, VERTEX-COVER

Hundreds (thousands?) more

Shown using already known ones:

If L ≤p L1 and L1 ≤p L2, then L ≤p L2
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CKT-SAT ≤p SAT

Converting a circuit to a collection of clauses:

For each wire (connected component), add a variable

For each gate, add a clause involving variables for wires 
connected to the gate:

e.g.             : (z⇒x), (z⇒y), (¬z ⇒ ¬x ∨ ¬y).         
i.e., (¬z ∨ x), (¬z ∨ y), (z ∨ ¬x ∨ y).

and             : (z⇒x ∨ y), (¬z⇒¬x), (¬z⇒¬y).

AND

x
y z

OR

x
y z
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More directly:

(a ∨ b ∨ c ∨ d ∨ e) → (a ∨ b ∨ x), (¬x ∨ c ∨ d ∨ e)                
→ (a ∨ b ∨ x), (¬x ∨ c ∨ y), (¬y ∨ d ∨ e)

Reduction needs 3SAT 

2SAT is in fact in P! [Exercise]

Reduction not parsimonious (can you make it? [Exercise])
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3SAT ≤p CLIQUE

Clauses → Graph

vertices: each clause’s 
satisfying assignments 
(for its variables)

edges between 
consistent assignments

m-clique iff all m 
clauses satisfiable

(x ∨ ¬y ∨ ¬z) *000

*001
*010

*100

*101
*110

*111

(w ∨ x ∨ ¬z)
00*0

01*1
01*0

10*0

10*1
11*0

11*1

0*1*
1*1*

1*0*

(w ∨ y)

1*1*
*110
11*0
----
1110sat assignment

3-Clique
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VERTEX-COVER

CLIQUE ≤p INDEP-SET

G has an m-clique iff G’ has an m-independent-set

INDEP-SET ≤p VERTEX-COVER

G has an m-indep-set iff G has an (n-m)-vertex-cover
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NP, P, co-NP and NPC

We say class X is “closed under polynomial reductions” 
if (L1 ≤p L2 and L2 in class X) implies L1 in X

e.g. P, NP are closed under polynomial reductions

So is co-NP (If X is closed, so is co-X. Why?)

If any NPC language is in P, then NP = P

If any NPC language is in co-NP, NP=co-NP

Note: if L in NPC, Lc is in co-NPC

P

NP coNP

NPC coNPC
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Today

Polynomial-time reductions

NP-completeness (using Karp reductions)

Trivially, TMSAT

Interestingly, CKT-SAT, SAT, 3SAT, CLIQUE, 
INDEP-SET, VERTEX-COVER

If any NPC language in P, then P=NP
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Next Time

Ladner’s Theorem: If NP ≠ P, then non-P, non-NPC 
languages

Time hierarchy theorems: More time, more power, 
strictly!
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