
Computational
Complexity

Lecture 1
in which we talk about

Time Complexity, P, NP and coNP

Evolution of Computation

Evolution of Computation

The program (Turing Machine) starts in an initial
configuration (tape-contents, control-state, head-
position)

Evolution of Computation

The program (Turing Machine) starts in an initial
configuration (tape-contents, control-state, head-
position)

input explicitly encoded in the initial configuration

Evolution of Computation

The program (Turing Machine) starts in an initial
configuration (tape-contents, control-state, head-
position)

input explicitly encoded in the initial configuration

At every step the configuration evolves

Evolution of Computation

The program (Turing Machine) starts in an initial
configuration (tape-contents, control-state, head-
position)

input explicitly encoded in the initial configuration

At every step the configuration evolves

Evolution of Computation

The program (Turing Machine) starts in an initial
configuration (tape-contents, control-state, head-
position)

input explicitly encoded in the initial configuration

At every step the configuration evolves

Evolution of Computation

The program (Turing Machine) starts in an initial
configuration (tape-contents, control-state, head-
position)

input explicitly encoded in the initial configuration

At every step the configuration evolves

Until computation terminates: final configuration

Evolution of Computation

The program (Turing Machine) starts in an initial
configuration (tape-contents, control-state, head-
position)

input explicitly encoded in the initial configuration

At every step the configuration evolves

Until computation terminates: final configuration

Evolution of Computation

The program (Turing Machine) starts in an initial
configuration (tape-contents, control-state, head-
position)

input explicitly encoded in the initial configuration

At every step the configuration evolves

Until computation terminates: final configuration

output explicitly encoded in the final configuration
(say, in the control-state)

Time Complexity

Time Complexity

Deterministic TM computation model

Time Complexity

Deterministic TM computation model

Program (deterministic TM) succinctly specifies the
“next configuration” function

Time Complexity

Deterministic TM computation model

Program (deterministic TM) succinctly specifies the
“next configuration” function

Time Complexity of language L (worst case): if there
is a TM that decides L (correct on all instances), and
for any input instance of size n, it takes at most T(n)
steps then L in class DTIME(T)

Time Complexity

Deterministic TM computation model

Program (deterministic TM) succinctly specifies the
“next configuration” function

Time Complexity of language L (worst case): if there
is a TM that decides L (correct on all instances), and
for any input instance of size n, it takes at most T(n)
steps then L in class DTIME(T)

(Note: complexity T is a function of n)

P for Polynomial Time

P for Polynomial Time
If a problem is in DTIME(T) and
T(n)=O(nc) for some c, then the
problem is in P

P for Polynomial Time
If a problem is in DTIME(T) and
T(n)=O(nc) for some c, then the
problem is in P

P = ∪a,b,c > 0 DTIME(a.nc+b)

P for Polynomial Time
If a problem is in DTIME(T) and
T(n)=O(nc) for some c, then the
problem is in P

P = ∪a,b,c > 0 DTIME(a.nc+b)

P for Polynomial Time
If a problem is in DTIME(T) and
T(n)=O(nc) for some c, then the
problem is in P

P = ∪a,b,c > 0 DTIME(a.nc+b) DTIME(n)

P for Polynomial Time
If a problem is in DTIME(T) and
T(n)=O(nc) for some c, then the
problem is in P

P = ∪a,b,c > 0 DTIME(a.nc+b) DTIME(n)

DTIME(n2)

P for Polynomial Time
If a problem is in DTIME(T) and
T(n)=O(nc) for some c, then the
problem is in P

P = ∪a,b,c > 0 DTIME(a.nc+b) DTIME(n)

P

DTIME(n2)

P for Polynomial Time
If a problem is in DTIME(T) and
T(n)=O(nc) for some c, then the
problem is in P

P = ∪a,b,c > 0 DTIME(a.nc+b)

DTIME(T) depends on the specifics
of the TM model (no. of tapes,
alphabet size)

DTIME(n)

P

DTIME(n2)

P for Polynomial Time
If a problem is in DTIME(T) and
T(n)=O(nc) for some c, then the
problem is in P

P = ∪a,b,c > 0 DTIME(a.nc+b)

DTIME(T) depends on the specifics
of the TM model (no. of tapes,
alphabet size)

But P is robust: Models can simulate
each other with only “polynomial
slow down”

DTIME(n)

P

DTIME(n2)

Non-deterministic
Computation

Non-deterministic
Computation

Not “realistic” as a computation
model, but has realistic
interpretations (coming up)

Non-deterministic
Computation

Not “realistic” as a computation
model, but has realistic
interpretations (coming up)

Non-deterministic
Computation

Not “realistic” as a computation
model, but has realistic
interpretations (coming up)

Non-deterministic
Computation

Not “realistic” as a computation
model, but has realistic
interpretations (coming up)

Non-deterministic
Computation

Not “realistic” as a computation
model, but has realistic
interpretations (coming up)

Non-deterministic
Computation

Not “realistic” as a computation
model, but has realistic
interpretations (coming up)

An NTM is said to accept an input if
any of the threads of execution
accepts it

Non-deterministic
Computation

Not “realistic” as a computation
model, but has realistic
interpretations (coming up)

An NTM is said to accept an input if
any of the threads of execution
accepts it

Time: longest execution thread

Non-deterministic
Computation

Not “realistic” as a computation
model, but has realistic
interpretations (coming up)

An NTM is said to accept an input if
any of the threads of execution
accepts it

Time: longest execution thread

L ∈ NTIME(T): an NTM decides L in

time at most T

NTIME(T): alt view

NTIME(T): alt view
L is in NTIME(T) iff it can be defined in the following way:

NTIME(T): alt view
L is in NTIME(T) iff it can be defined in the following way:

L = { x | ∃ w s.t. (x,w) ∈ L’ }

NTIME(T): alt view
L is in NTIME(T) iff it can be defined in the following way:

L = { x | ∃ w s.t. (x,w) ∈ L’ }

Where L’ is in DTIME(T(|x|)) (with an extra read-once
input tape for w)

NTIME(T): alt view
L is in NTIME(T) iff it can be defined in the following way:

L = { x | ∃ w s.t. (x,w) ∈ L’ }

Where L’ is in DTIME(T(|x|)) (with an extra read-once
input tape for w)

non-s
td no

tation

NTIME(T): alt view
L is in NTIME(T) iff it can be defined in the following way:

L = { x | ∃ w s.t. (x,w) ∈ L’ }

Where L’ is in DTIME(T(|x|)) (with an extra read-once
input tape for w)

i.e., in time T, deterministic TM for L’ can verify a
certificate of membership for L

non-s
td no

tation

NTIME(T): alt view
L is in NTIME(T) iff it can be defined in the following way:

L = { x | ∃ w s.t. (x,w) ∈ L’ }

Where L’ is in DTIME(T(|x|)) (with an extra read-once
input tape for w)

i.e., in time T, deterministic TM for L’ can verify a
certificate of membership for L

Non-deterministic computation: essentially guess w and
verify

non-s
td no

tation

L ∈ NTIME(T):
Equivalent views

L ∈ NTIME(T):
Equivalent views

Non-deterministic M

L ∈ NTIME(T):
Equivalent views

Non-deterministic M

input: x

L ∈ NTIME(T):
Equivalent views

Non-deterministic M

input: x

makes non-det choices

L ∈ NTIME(T):
Equivalent views

Non-deterministic M

input: x

makes non-det choices

x ∈ L iff some thread of

M accepts

L ∈ NTIME(T):
Equivalent views

Non-deterministic M

input: x

makes non-det choices

x ∈ L iff some thread of

M accepts

in at most T(|x|) steps

L ∈ NTIME(T):
Equivalent views

Non-deterministic M

input: x

makes non-det choices

x ∈ L iff some thread of

M accepts

in at most T(|x|) steps

Deterministic M’

L ∈ NTIME(T):
Equivalent views

Non-deterministic M

input: x

makes non-det choices

x ∈ L iff some thread of

M accepts

in at most T(|x|) steps

Deterministic M’

input: x and cert. w

L ∈ NTIME(T):
Equivalent views

Non-deterministic M

input: x

makes non-det choices

x ∈ L iff some thread of

M accepts

in at most T(|x|) steps

Deterministic M’

input: x and cert. w

reads bits from the cert.

L ∈ NTIME(T):
Equivalent views

Non-deterministic M

input: x

makes non-det choices

x ∈ L iff some thread of

M accepts

in at most T(|x|) steps

Deterministic M’

input: x and cert. w

reads bits from the cert.

x ∈ L iff for some cert.

w, M’ accepts

L ∈ NTIME(T):
Equivalent views

Non-deterministic M

input: x

makes non-det choices

x ∈ L iff some thread of

M accepts

in at most T(|x|) steps

Deterministic M’

input: x and cert. w

reads bits from the cert.

x ∈ L iff for some cert.

w, M’ accepts

in at most T(|x|) steps

L ∈ NTIME(T):
Equivalent views

Non-deterministic M

input: x

makes non-det choices

x ∈ L iff some thread of

M accepts

in at most T(|x|) steps

Deterministic M’

input: x and cert. w

reads bits from the cert.

x ∈ L iff for some cert.

w, M’ accepts

in at most T(|x|) steps

Equivalent

NP

NP
NP = ∪a,b,c > 0 NTIME(a.nc+b)

NP
NP = ∪a,b,c > 0 NTIME(a.nc+b)

There’s an NTM that decides L in polynomial time
(some fixed polynomial)

NP
NP = ∪a,b,c > 0 NTIME(a.nc+b)

There’s an NTM that decides L in polynomial time
(some fixed polynomial)

There’s a TM that verifies certificates for membership in
L, in polynomial time

NP
NP = ∪a,b,c > 0 NTIME(a.nc+b)

There’s an NTM that decides L in polynomial time
(some fixed polynomial)

There’s a TM that verifies certificates for membership in
L, in polynomial time

Recall: polynomial in size of x, not of (x,w)

NP
NP = ∪a,b,c > 0 NTIME(a.nc+b)

There’s an NTM that decides L in polynomial time
(some fixed polynomial)

There’s a TM that verifies certificates for membership in
L, in polynomial time

Recall: polynomial in size of x, not of (x,w)

Or, L={x | ∃w s.t. (x,w) ∈ L’}, |w| = O(poly(|x|)), and

L’ in P

NP
NP = ∪a,b,c > 0 NTIME(a.nc+b)

There’s an NTM that decides L in polynomial time
(some fixed polynomial)

There’s a TM that verifies certificates for membership in
L, in polynomial time

Recall: polynomial in size of x, not of (x,w)

Or, L={x | ∃w s.t. (x,w) ∈ L’}, |w| = O(poly(|x|)), and

L’ in P

Note: Completeness and soundness

Some Problems in NP

Some Problems in NP

Graph properties: has a clique of size n/2, has a
“Hamiltonian cycle”, graph has an “Eulerian tour”,
two graphs are isomorphic

Some Problems in NP

Graph properties: has a clique of size n/2, has a
“Hamiltonian cycle”, graph has an “Eulerian tour”,
two graphs are isomorphic

Numerical properties: is a composite number, is a
prime number (not obvious)

Some Problems in NP

Graph properties: has a clique of size n/2, has a
“Hamiltonian cycle”, graph has an “Eulerian tour”,
two graphs are isomorphic

Numerical properties: is a composite number, is a
prime number (not obvious)

Constraint satisfaction: equation has solution, Linear
Program (LP) is feasible, Integer LP is feasible, has a
short Traveling Salesperson tour

Some Problems in NP

Graph properties: has a clique of size n/2, has a
“Hamiltonian cycle”, graph has an “Eulerian tour”,
two graphs are isomorphic

Numerical properties: is a composite number, is a
prime number (not obvious)

Constraint satisfaction: equation has solution, Linear
Program (LP) is feasible, Integer LP is feasible, has a
short Traveling Salesperson tour

All problems in P (empty certificate)

Search using Decision

Search using Decision
Suppose given “oracles” for deciding all NP languages, can we
easily find certificates?

Search using Decision
Suppose given “oracles” for deciding all NP languages, can we
easily find certificates?

Yes! So, if decision easy (decision-oracles realizable), then
search is easy too!

Search using Decision
Suppose given “oracles” for deciding all NP languages, can we
easily find certificates?

Yes! So, if decision easy (decision-oracles realizable), then
search is easy too!

Say, given x, need to find w s.t. (x,w) ∈ L’ (if such w exists)

Search using Decision
Suppose given “oracles” for deciding all NP languages, can we
easily find certificates?

Yes! So, if decision easy (decision-oracles realizable), then
search is easy too!

Say, given x, need to find w s.t. (x,w) ∈ L’ (if such w exists)

consider L1 in NP: (x,y) ∈ L1 iff ∃z s.t. (x,yz) ∈ L’. (i.e., can
y be a prefix of a certificate for x).

Search using Decision
Suppose given “oracles” for deciding all NP languages, can we
easily find certificates?

Yes! So, if decision easy (decision-oracles realizable), then
search is easy too!

Say, given x, need to find w s.t. (x,w) ∈ L’ (if such w exists)

consider L1 in NP: (x,y) ∈ L1 iff ∃z s.t. (x,yz) ∈ L’. (i.e., can
y be a prefix of a certificate for x).
Query L1-oracle with (x,0) and (x,1). If ∃w, one of the two

must be positive: say (x,0) ∈ L1; then first bit of w be 0.

Search using Decision
Suppose given “oracles” for deciding all NP languages, can we
easily find certificates?

Yes! So, if decision easy (decision-oracles realizable), then
search is easy too!

Say, given x, need to find w s.t. (x,w) ∈ L’ (if such w exists)

consider L1 in NP: (x,y) ∈ L1 iff ∃z s.t. (x,yz) ∈ L’. (i.e., can
y be a prefix of a certificate for x).
Query L1-oracle with (x,0) and (x,1). If ∃w, one of the two

must be positive: say (x,0) ∈ L1; then first bit of w be 0.

For next bit query oracle with (x,00) and (x,01)

What if NP = P

What if NP = P

“Can find as efficiently as can verify” (broadly speaking)

What if NP = P

“Can find as efficiently as can verify” (broadly speaking)

Mathematics: Proofs are easy to verify efficiently (if written
in full). So we can generate them too efficiently?! Prove/
discover theorems mechanically!

What if NP = P

“Can find as efficiently as can verify” (broadly speaking)

Mathematics: Proofs are easy to verify efficiently (if written
in full). So we can generate them too efficiently?! Prove/
discover theorems mechanically!

Cryptography: If someone’s private key (well, key generation
info) given, can verify that it corresponds to a public key. So
we can find the private key efficiently?! No public-key crypto!

What if NP = P

“Can find as efficiently as can verify” (broadly speaking)

Mathematics: Proofs are easy to verify efficiently (if written
in full). So we can generate them too efficiently?! Prove/
discover theorems mechanically!

Cryptography: If someone’s private key (well, key generation
info) given, can verify that it corresponds to a public key. So
we can find the private key efficiently?! No public-key crypto!

Solve all sorts of optimization problems efficiently!

EXP and NEXP

EXP and NEXP

EXP is DTIME(2poly(n)):

EXP and NEXP

EXP is DTIME(2poly(n)):

EXP = ∪a,b,c > 0 DTIME(2anc+b)

EXP and NEXP

EXP is DTIME(2poly(n)):

EXP = ∪a,b,c > 0 DTIME(2anc+b)

NEXP is NTIME(2poly(n)):

EXP and NEXP

EXP is DTIME(2poly(n)):

EXP = ∪a,b,c > 0 DTIME(2anc+b)

NEXP is NTIME(2poly(n)):

NEXP = ∪a,b,c > 0 NTIME(2anc+b)

EXP and NEXP

EXP is DTIME(2poly(n)):

EXP = ∪a,b,c > 0 DTIME(2anc+b)

NEXP is NTIME(2poly(n)):

NEXP = ∪a,b,c > 0 NTIME(2anc+b)

NEXP = all L of the form:

EXP and NEXP

EXP is DTIME(2poly(n)):

EXP = ∪a,b,c > 0 DTIME(2anc+b)

NEXP is NTIME(2poly(n)):

NEXP = ∪a,b,c > 0 NTIME(2anc+b)

NEXP = all L of the form:
L = {x | ∃w s.t. (x,w) ∈ L’}, |w| = O(2poly(|x|)), and L’ in EXP?

EXP and NEXP

EXP is DTIME(2poly(n)):

EXP = ∪a,b,c > 0 DTIME(2anc+b)

NEXP is NTIME(2poly(n)):

NEXP = ∪a,b,c > 0 NTIME(2anc+b)

NEXP = all L of the form:
L = {x | ∃w s.t. (x,w) ∈ L’}, |w| = O(2poly(|x|)), and L’ in EXP?

No! L’ in DTIME(2poly(|x|))

EXP and NEXP

EXP is DTIME(2poly(n)):

EXP = ∪a,b,c > 0 DTIME(2anc+b)

NEXP is NTIME(2poly(n)):

NEXP = ∪a,b,c > 0 NTIME(2anc+b)

NEXP = all L of the form:
L = {x | ∃w s.t. (x,w) ∈ L’}, |w| = O(2poly(|x|)), and L’ in EXP?

No! L’ in DTIME(2poly(|x|))
i.e., L’ in P

co-Class

co-Class

co-X = { L | Lc is in X } (where Lc = { x | x∉L })

co-Class

co-X = { L | Lc is in X } (where Lc = { x | x∉L })

co-DTIME(T) = DTIME(T)

co-Class

co-X = { L | Lc is in X } (where Lc = { x | x∉L })

co-DTIME(T) = DTIME(T)

Lc in DTIME(T) iff L in DTIME(T)

co-Class

co-X = { L | Lc is in X } (where Lc = { x | x∉L })

co-DTIME(T) = DTIME(T)

Lc in DTIME(T) iff L in DTIME(T)

MLc ↔ ML: flip accept/reject states

co-Class

co-X = { L | Lc is in X } (where Lc = { x | x∉L })

co-DTIME(T) = DTIME(T)

Lc in DTIME(T) iff L in DTIME(T)

MLc ↔ ML: flip accept/reject states

co-NTIME(T): all L s.t. Lc is in NTIME(T)

co-Class

co-X = { L | Lc is in X } (where Lc = { x | x∉L })

co-DTIME(T) = DTIME(T)

Lc in DTIME(T) iff L in DTIME(T)

MLc ↔ ML: flip accept/reject states

co-NTIME(T): all L s.t. Lc is in NTIME(T)

MLc ↔ ML? flip accept/reject states and flip “there
exists” and “for all” (NTM ↔ “co-NTM”)

co-Class

co-X = { L | Lc is in X } (where Lc = { x | x∉L })

co-DTIME(T) = DTIME(T)

Lc in DTIME(T) iff L in DTIME(T)

MLc ↔ ML: flip accept/reject states

co-NTIME(T): all L s.t. Lc is in NTIME(T)

MLc ↔ ML? flip accept/reject states and flip “there
exists” and “for all” (NTM ↔ “co-NTM”)

Lc = { x | ∄w s.t. (x,w) ∈ L’ } = { x | ∀w (x,w) ∈ L’c }

co-Class

co-X = { L | Lc is in X } (where Lc = { x | x∉L })

co-DTIME(T) = DTIME(T)

Lc in DTIME(T) iff L in DTIME(T)

MLc ↔ ML: flip accept/reject states

co-NTIME(T): all L s.t. Lc is in NTIME(T)

MLc ↔ ML? flip accept/reject states and flip “there
exists” and “for all” (NTM ↔ “co-NTM”)

Lc = { x | ∄w s.t. (x,w) ∈ L’ } = { x | ∀w (x,w) ∈ L’c }

no counter-example

P, NP and co-NP

P, NP and co-NP
Different possibilities

P, NP and co-NP
Different possibilities

P

NP coNP

P, NP and co-NP
Different possibilities

P

NP coNP NP=coNP

P

P, NP and co-NP
Different possibilities

P

NP coNP NP=coNP

P =P
NP=coNP

P, NP and co-NP
Different possibilities

If P=NP, then
P

NP coNP NP=coNP

P =P
NP=coNP

P, NP and co-NP
Different possibilities

If P=NP, then

coNP = coP = P = NP
P

NP coNP NP=coNP

P =P
NP=coNP

P, NP and co-NP
Different possibilities

If P=NP, then

coNP = coP = P = NP

Also, EXP = NEXP [Exercise]

P

NP coNP NP=coNP

P =P
NP=coNP

P, NP and co-NP
Different possibilities

If P=NP, then

coNP = coP = P = NP

Also, EXP = NEXP [Exercise]

padding to scale up both classes

P

NP coNP NP=coNP

P =P
NP=coNP

P, NP and co-NP
Different possibilities

If P=NP, then

coNP = coP = P = NP

Also, EXP = NEXP [Exercise]

padding to scale up both classes

x → (x,pad), so that Exp(|x|) = Poly(|x,pad|)

P

NP coNP NP=coNP

P =P
NP=coNP

P, NP and co-NP
Different possibilities

If P=NP, then

coNP = coP = P = NP

Also, EXP = NEXP [Exercise]

padding to scale up both classes

x → (x,pad), so that Exp(|x|) = Poly(|x,pad|)

If P=NP, then the complexity landscape would get
greatly simplified than believed (more later)

P

NP coNP NP=coNP

P =P
NP=coNP

Today

Today

DTIME

Today

DTIME

P, EXP

Today

DTIME

P, EXP

NTIME

Today

DTIME

P, EXP

NTIME

Two views: non-determinism and certificate

Today

DTIME

P, EXP

NTIME

Two views: non-determinism and certificate

NP, NEXP

Today

DTIME

P, EXP

NTIME

Two views: non-determinism and certificate

NP, NEXP

co-NTIME

Today

DTIME

P, EXP

NTIME

Two views: non-determinism and certificate

NP, NEXP

co-NTIME

Two views: co-NTM and “no counter-example”

Next Class Lecture

Next Class Lecture

NP completeness

Next Class Lecture

NP completeness

As hard as it gets inside NP

Next Class Lecture

NP completeness

As hard as it gets inside NP

a la reductions (of course)

