
Computational 
Complexity

Lecture 1
in which we talk about

Time Complexity, P, NP and coNP
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Evolution of Computation

The program (Turing Machine) starts in an initial 
configuration (tape-contents, control-state, head-
position)

input explicitly encoded in the initial configuration

At every step the configuration evolves

Until computation terminates: final configuration

output explicitly encoded in the final configuration 
(say, in the control-state)
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Deterministic TM computation model

Program (deterministic TM) succinctly specifies the 
“next configuration” function

Time Complexity of language L (worst case):  if there 
is a TM that decides L (correct on  all instances), and 
for any input instance of size n, it takes at most T(n) 
steps then L in class DTIME(T)

(Note: complexity T is a function of n)
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P for Polynomial Time
If a problem is in DTIME(T) and     
T(n)=O(nc) for some c, then the 
problem is in P

P = ∪a,b,c > 0 DTIME(a.nc+b)

DTIME(T) depends on the specifics 
of the TM model (no. of tapes, 
alphabet size)

But P is robust: Models can simulate 
each other with only “polynomial 
slow down”

DTIME(n)

P

DTIME(n2)
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Non-deterministic 
Computation

Not “realistic” as a computation 
model, but has realistic 
interpretations (coming up)

An NTM is said to accept an input if 
any of the threads of execution 
accepts it

Time: longest execution thread

L ∈ NTIME(T): an NTM decides L in 

time at most T
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NTIME(T): alt view
L is in NTIME(T) iff it can be defined in the following way:

L = { x | ∃ w s.t. (x,w) ∈ L’ }

Where L’ is in DTIME(T(|x|)) (with an extra read-once 
input tape for w)

i.e., in time T, deterministic TM for L’ can verify a 
certificate of membership for L

Non-deterministic computation: essentially guess w and 
verify

non-s
td no

tation
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L ∈ NTIME(T):    
Equivalent views

Non-deterministic M

input: x

makes non-det choices

x ∈ L iff some thread of 

M accepts

in at most T(|x|) steps

Deterministic M’

input: x and cert. w

reads bits from the cert.

x ∈ L iff for some cert. 

w, M’ accepts 

in at most T(|x|) steps

Equivalent
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NP
NP = ∪a,b,c > 0 NTIME(a.nc+b)

There’s an NTM that decides L in polynomial time 
(some fixed polynomial)

There’s a TM that verifies certificates for membership in 
L, in polynomial time

Recall: polynomial in size of x, not of (x,w)

Or, L={x | ∃w s.t. (x,w) ∈ L’}, |w| = O(poly(|x|)), and    

L’ in P

Note: Completeness and soundness
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Some Problems in NP

Graph properties: has a clique of size n/2, has a 
“Hamiltonian cycle”, graph has an “Eulerian tour”, 
two graphs are isomorphic

Numerical properties: is a composite number, is a 
prime number (not obvious)

Constraint satisfaction: equation has solution, Linear 
Program (LP) is feasible, Integer LP is feasible, has a 
short Traveling Salesperson tour

All problems in P (empty certificate)
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Search using Decision
Suppose given “oracles” for deciding all NP languages, can we 
easily find certificates?

Yes! So, if decision easy (decision-oracles realizable), then 
search is easy too!

Say, given x, need to find w s.t. (x,w) ∈ L’ (if such w exists)

consider L1 in NP: (x,y) ∈ L1 iff ∃z s.t. (x,yz) ∈ L’. (i.e., can 
y be a prefix of a certificate for x).
Query L1-oracle with (x,0) and (x,1). If ∃w, one of the two 

must be positive: say (x,0) ∈ L1; then first bit of w be 0.

For next bit query oracle with (x,00) and (x,01)
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What if NP = P

“Can find as efficiently as can verify” (broadly speaking)

Mathematics: Proofs are easy to verify efficiently (if written 
in full). So we can generate them too efficiently?! Prove/
discover theorems mechanically!

Cryptography: If someone’s private key (well, key generation 
info) given, can verify that it corresponds to a public key. So 
we can find the private key efficiently?! No public-key crypto!

Solve all sorts of optimization problems efficiently!
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EXP is DTIME(2poly(n)): 

EXP = ∪a,b,c > 0 DTIME(2anc+b)

NEXP is NTIME(2poly(n)): 

NEXP = ∪a,b,c > 0 NTIME(2anc+b)

NEXP = all L of the form:
L = {x | ∃w s.t. (x,w) ∈ L’}, |w| = O(2poly(|x|)), and L’ in EXP?

No!  L’ in DTIME(2poly(|x|))
i.e., L’ in P
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co-Class

co-X = { L | Lc is in X } (where Lc = { x | x∉L } )

co-DTIME(T) = DTIME(T)

Lc in DTIME(T) iff L in DTIME(T)

MLc ↔ ML: flip accept/reject states

co-NTIME(T):  all L s.t. Lc is in NTIME(T)

MLc ↔ ML? flip accept/reject states and flip “there 
exists” and “for all” (NTM ↔ “co-NTM”)

Lc = { x | ∄w s.t. (x,w) ∈ L’ } = { x | ∀w (x,w) ∈ L’c }

no          counter-example
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P, NP and co-NP
Different possibilities

If P=NP, then

coNP = coP = P = NP

Also, EXP = NEXP [Exercise]

padding to scale up both classes

x → (x,pad), so that Exp(|x|) = Poly(|x,pad|) 

If P=NP, then the complexity landscape would get 
greatly simplified than believed (more later)

P

NP coNP NP=coNP

P =P
NP=coNP
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Today

DTIME

P, EXP

NTIME

Two views: non-determinism and certificate

NP, NEXP

co-NTIME

Two views: co-NTM and “no counter-example”
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Next Class Lecture

NP completeness

As hard as it gets inside NP

a la reductions (of course)


