Computational
Complexity

Lecture 1
in which we talk about
Time Complexity, P, NP and coNP
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Evolution of Computation

@ The program (Turing Machine) starts in an initial
configuration (tape-contents, control-state, head-
position)

@ input explicitly encoded in the initial configuration

@ At every step the configuration evolves

@ Until computation terminates: final configuration v

@ output explicitly encoded in the final configuration

(say, in the control-state) 6
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@ Deterministic TM computation model

@ Program (deterministic TM) succinctly specifies the
"next configuration” function

@ Time Complexity of language L (worst case): if there
is a TM that decides L (correct on all instances), and
for any input instance of size n, it takes at most T(n)
steps then L in class DTIME(T) ’

@ (Note: complexity T is a function of n) f
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P for Polynomial Time

@ If a problem is in DTIME(T) and
T(n)=0O(n¢) for some c, then the
problem is in P

@ P = Ugpc > 0 DTIME(a.n+b)

@ DTIME(T) depends on the specifics
of the TM model (no. of tapes,
alphabet size)

® But P is robust: Models can simulate
each other with only “polynomial
slow down”
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Non-deterministic
Computation

Not “realistic” as a computation /
model, but has realistic ‘

interpretations (coming up)

An NTM is said to accept an input if / \4
any of the threads of execution ‘
accepts it

Time: longest execution thread i

L € NTIME(T): an NTM decides L in

\
e ut WA ® O¢
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NTIME(T): alt view

@ L is in NTIME(T) iff it can be defined in the followjng way:

@L=§{x|Iwst (xwel}

@ Where L is in DTIME(T(|x|)) (with an extra read-once
input tape for w)

@ i.e., in time T, deterministic TM for L can verify a
certificate of membership for L

@ Non-deterministic computation: essentially guess w and
verify
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NP

@ NP = Uapc > o NTIME(a.nc+b)

@ Theres an NTM that decides L in polynomial time
(some fixed polynomial)

@ Theres a TM that verifies certificates for membership in
L, in polynomial time

@ Recall: polynomial in size of x, not of (x,w)

@ Or, L={x | 3w s.t. (x,w) € L}, lwl = O(poly(Ix])), and
L' in P

@ Note: Completeness and soundness
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Some Problems in NP

Graph properties: has a clique of size n/2, has a
"Hamiltonian cycle”, graph has an "Eulerian tour”,
two graphs are isomorphic

Numerical properties: is a composite number, is a
prime number (not obvious)

Constraint satisfaction: equation has solution, Linear
Program (LP) is feasible, Integer LP is feasible, has a
short Traveling Salesperson tour

All problems in P (empty certificate)
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Search using Decision

@ Suppose given “oracles” for deciding all NP languages, can we
easily find certificates?

@ Yes! So, if decision easy (decision-oracles realizable), then
search is easy too!

@ Say, given X, need to find w s.t. (x,w) € L (if such w exists)

@ consider L; in NP: (x,y) € L, iff dz s.t. (x,yz) € L. (i.e., can
y be a prefix of a certificate for x).

@ Query Lj-oracle with (x,0) and (x,1). If dw, one of the two

must be positive: say (x,0) € Li; then first bit of w be 0.

@ For next bit query oracle with (x,00) and (x,01)
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What if NP = P

"Can find as efficiently as can verify” (broadly speaking)

Mathematics: Proofs are easy to verify efficiently (if written
in full). So we can generate them too efficiently?! Prove/
discover theorems mechanically!

Cryptography: If someone’s private key (well, key generation
info) given, can verify that it corresponds to a public key. So
we can find the private key efficiently?! No public-key crypto!

Solve all sorts of optimization problems efficiently!
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@ EXP is DTIME(2pPoly():
@ EXP = Ugpc > 0 DTIME(297°+b)
@ NEXP is NTIME(2roy():
® NEXP = Uqpc s 0 NTIME(297°+)
@ NEXP = all L of the form:
o L ={x|3dws.t (x,w) €L} Iwl = 0(2rx)) and L' in EXP?

@ No! L in DTIME(2roty(ixD)

@ ie,LlinP
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P NP and co-NP

@ Different possibilities
o If P=NP, then

@ CoNP = coP =P = NP

@ Also, EXP = NEXP [Exercise]
@ padding to scale up both classes
@ x — (x,pad), so that Exp(Ix|) = Poly(Ix,padl)

@ If P=NP, then the complexity landscape would get
greatly simplified than believed (more later)
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@ DTIME
@ P, EXP

@ NTIME
@ Two views: non-determinism and certificate
@ NP, NEXP

@ co-NTIME

@ Two views: co-NTM and “no counter-example”
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Next €lass Lecture

@ NP completeness
@ As hard as it gets inside NP

@ a la reductions (of course)



