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@ Theory of computation/computational
complexity is fo computer science what
theoretical physics is to electronics
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@ Problems to be solved
@ Algorithms to solve them
@ in various models of computation
o of a problem (in a comp. model)

@ How much “resource” is sufficient/necessary
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Problems

@ Input represented as (say) a binary string
@ Given input, find a “satisfactory output”
@ Function evaluation: only one correct output
@ Approximate evaluation
@ Search problem: find one of many (if any)
@ Decision problem: find out if any

@ A Boolean function evaluation (TRUE/FALSE)
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Decision Problems

@ Evaluate a Boolean function (TRUE/FALSE)
@ i.e., Decide if input has some property
@ Language
@ Set of inputs with a particular property
@ e.g. L = 1x | x has equal number of Os and 1s}

@ Decide if input is in L
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6L1={X

6L2={X

x starts with 0}

x has equal number of Os and 1s}

@ Simpler in what way?

@ Fewer calculations, less memory, need _not

read all input, can do in an FSM
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Complexity of Languages

@ Relating complexities of problems
@ Mo = {x | x has more Os than 1s}
@ Eq = 1x | x has equal number of Os and 1s}

@ Eq(x): ; Eq reduces to Mo>

@ if (Mo(x0) == TRUE and Mo(x) == FALSE)
then TRUE; else FALSE

@ Eq is not (much) more complex than Mo.
Mo is at least (almost) as complex as Eq.
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Models of Computation

@ FSM, PDA, TM

@ Variations: Non-deterministic, probabilistic.
Other models: quantum computation

@ Church-Turing thesis: TM is as “powerful”
as it gefs

@ Not enough TMs (algorithms/programs) to
solve all decision problems!

@ Non-uniform computation: circuit families
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@ Number of computational steps, amount of
memory, circuit size/depth, ...

@ Exact numbers very much
dependent on exact
specification of the model
(e.g. no. of tapes in TM)

@ But “broad trends” robust

@ Trends: asymptotic ‘JJ
@ Broad: Log, Poly, Exp o "
B Log B Poly Exp
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@ Collect problems
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® Hundreds of
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Complexity in various
settings

@ With various models of computation: decision
trees, interactive settings, probabilistic
computation

@ Various measures: depth, width, amount of
communication, number of rounds, amount of
randomness, amount of non-uniformity, ...

@ Various connections: fime vs. space,
randomness vs. hardness
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Cryptography

@ Need to prove that a scheme is secure
(according to some definition)

@ i.e., breaking security has high complexity

@ Reductions: if you could break my scheme'’s
security efficiently, I can solve a hard
problem almost as efficiently

@ Hard problems: almost all instances hard

@ For most keys scheme should be secure
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® Welcome to CS 579!
@ Textbook: www.cs.princeton.edu/theory/complexity/

@ About 6 assignments and a class fest
@ Office hours: TBA




