Computational
Complexity

Lecture O






Computation

@ A paradigm of modern science



Computation

@ A paradigm of modern science

@ Theory of computation/computational
complexity is fo computer science what
theoretical physics is to electronics



Computational Complexity



Computational Complexity

D



Computational Complexity

@ Problems to be solved



Computational Complexity

@ Problems to be solved

@ Algorithms to solve them



Computational Complexity

@ Problems fo be solved
@ Algorithms to solve them

@ in various models of computation



Computational Complexity

@ Problems to be solved
@ Algorithms to solve them
@ in various models of computation

o of a problem (in a comp. model)



Computational Complexity

@ Problems to be solved
@ Algorithms to solve them
@ in various models of computation
o of a problem (in a comp. model)

@ How much “resource” is sufficient/necessary



Computational Complexity

in
Models of
comp U RQ.!*?W on

W.I ﬁ

Complexity.

measures







Problems

@ Input represented as (say) a binary string



Problems

@ Input represented as (say) a binary string

@ Given input, find a “satisfactory output”



Problems

@ Input represented as (say) a binary string
@ Given input, find a “satisfactory output”

@ Function evaluation: only one correct output



Problems

@ Input represented as (say) a binary string
@ Given input, find a “satisfactory output”
@ Function evaluation: only one correct output

@ Approximate evaluation



Problems

@ Input represented as (say) a binary string
@ Given input, find a “satisfactory output”
@ Function evaluation: only one correct output
@ Approximate evaluation

@ Search problem: find one of many (if any)



Problems

@ Input represented as (say) a binary string
@ Given input, find a “satisfactory output”
@ Function evaluation: only one correct output
@ Approximate evaluation
@ Search problem: find one of many (if any)

@ Decision problem: find out if any



Problems

@ Input represented as (say) a binary string
@ Given input, find a “satisfactory output”
@ Function evaluation: only one correct output
@ Approximate evaluation
@ Search problem: find one of many (if any)
@ Decision problem: find out if any

@ A Boolean function evaluation (TRUE/FALSE)







Decision Problems

@ Evaluate a Boolean function (TRUE/FALSE)



Decision Problems

@ Evaluate a Boolean function (TRUE/FALSE)

@ i.e., Decide if input has some property



Decision Problems

@ Evaluate a Boolean function (TRUE/FALSE)
@ i.e., Decide if input has some property

@ Language



Decision Problems

@ Evaluate a Boolean function (TRUE/FALSE)
@ i.e., Decide if input has some property
@ Language

@ Set of inputs with a particular property



Decision Problems

@ Evaluate a Boolean function (TRUE/FALSE)
@ i.e., Decide if input has some property
@ Language
@ Set of inputs with a particular property

@ e.g. L = 1x | x has equal number of Os and 1s}



Decision Problems

@ Evaluate a Boolean function (TRUE/FALSE)
@ i.e., Decide if input has some property
@ Language
@ Set of inputs with a particular property
@ e.g. L = 1x | x has equal number of Os and 1s}

@ Decide if input is in L



Complexity of Languages



Complexity of Languages

@ Some languages are “simpler” than others



Complexity of Languages

@ Some languages are “simpler” than others

@ L, = {x | x starts with 0}



Complexity of Languages

@ Some languages are “simpler” than others

@ L; = {x | x starts with 0}

@ L2 = {x | x has equal number of Os and 1s}



Complexity of Languages

@ Some languages are “simpler” than others

@ L; = {x | x starts with 0}

@ L2 = {x | x has equal number of Os and 1s}

@ Simpler in what way?



Complexity of Languages

@ Some languages are “simpler” than others

6L1={X

6L2={X

x starts with 0}

x has equal number of Os and 1s}

@ Simpler in what way?

@ Fewer calculations, less memory, need not
read all input, can do in an FSM



Complexity of Languages

@ Some languages are “simpler” than others

6L1={X

6L2={X

x starts with 0}

x has equal number of Os and 1s}

@ Simpler in what way?

@ Fewer calculations, less memory, need _not

read all input, can do in an FSM




Complexity of Languages



Complexity of Languages

@ Relating complexities of problems



Complexity of Languages

@ Relating complexities of problems

@ Mo = {x | x has more Os than 1s}



Complexity of Languages

@ Relating complexities of problems
@ Mo = {x | x has more Os than 1s}

@ Eq = 1x | x has equal number of Os and 1s}



Complexity of Languages

@ Relating complexities of problems
@ Mo = {x | x has more Os than 1s}
@ Eq = 1x | x has equal number of Os and 1s}

@ Eq(x):



Complexity of Languages

@ Relating complexities of problems
@ Mo = {x | x has more Os than 1s}
@ Eq = 1x | x has equal number of Os and 1s}
@ Eq(x):

@ if (Mo(x0) == TRUE and Mo(x) == FALSE)
then TRUE; else FALSE




Complexity of Languages

@ Relating complexities of problems
@ Mo = {x | x has more Os than 1s}
@ Eq = 1x | x has equal number of Os and 1s}
@ Eq(x):

@ if (Mo(x0) == TRUE and Mo(x) == FALSE)
then TRUE; else FALSE

@ Eq is not (much) more complex than Mo.
Mo is at least (almost) as complex as Eq.



Complexity of Languages

@ Relating complexities of problems
@ Mo = {x | x has more Os than 1s}
@ Eq = 1x | x has equal number of Os and 1s}

@ Eq(x): ; Eq reduces to Mo>

@ if (Mo(x0) == TRUE and Mo(x) == FALSE)
then TRUE; else FALSE

@ Eq is not (much) more complex than Mo.
Mo is at least (almost) as complex as Eq.



Models of Computation



Models of Computation

@ FSM, PDA, TM



Models of Computation

@ FSM, PDA, TM

@ Variations: Non-deterministic, probabilistic.
Other models: quantum computation



Models of Computation

@ FSM, PDA, TM

@ Variations: Non-deterministic, probabilistic.
Other models: quantum computation

@ Church-Turing thesis: TM is as “powerful”
as it gefs



Models of Computation

@ FSM, PDA, TM

@ Variations: Non-deterministic, probabilistic.
Other models: quantum computation

@ Church-Turing thesis: TM is as “powerful”
as it gefs

@ Not enough TMs (algorithms/programs) to
solve all decision problems!



Models of Computation

@ FSM, PDA, TM

@ Variations: Non-deterministic, probabilistic.
Other models: quantum computation

@ Church-Turing thesis: TM is as “powerful”
as it gefs

@ Not enough TMs (algorithms/programs) to
solve all decision problems!

@ Non-uniform computation: circuit families



Complexity Measures



Complexity Measures

@ Number of computational steps, amount of
memory, circuit size/depth, ...



Complexity Measures

@ Number of computational steps, amount of
memory, circuit size/depth, ...

@ Exact numbers very much
dependent on exact
specification of the model
(e.g. no. of tapes in TM)



Complexity Measures

@ Number of computational steps, amount of
memory, circuit size/depth, ...

@ Exact numbers very much
dependent on exact
specification of the model
(e.g. no. of tapes in TM)

@ But “broad trends” robust



Complexity Measures

@ Number of computational steps, amount of
memory, circuit size/depth, ...

@ Exact numbers very much
dependent on exact
specification of the model
(e.g. no. of tapes in TM)

@ But “broad trends” robust

il



Complexity Measures

@ Number of computational steps, amount of
memory, circuit size/depth, ...

@ Exact numbers very much
dependent on exact
specification of the model
(e.g. no. of tapes in TM)

@ But “broad trends” robust

@ Trends: asymptotic 11




Complexity Measures

@ Number of computational steps, amount of
memory, circuit size/depth, ...

@ Exact numbers very much
dependent on exact
specification of the model
(e.g. no. of tapes in TM)

@ But “broad trends” robust

@ Trends: asymptotic ‘JJ
@ Broad: Log, Poly, Exp o "




Complexity Measures

@ Number of computational steps, amount of
memory, circuit size/depth, ...

@ Exact numbers very much
dependent on exact
specification of the model
(e.g. no. of tapes in TM)

@ But “broad trends” robust

@ Trends: asymptotic ‘JJ
@ Broad: Log, Poly, Exp o "
B Log B Poly Exp







Complexity Theory

@ Understand complexity of problems (i.e., how
much resource used by best algorithm for it)



Complexity Theory

@ Understand complexity of problems (i.e., how
much resource used by best algorithm for it)

@ Relate problems to each other [Reduce]



Complexity Theory

@ Understand complexity of problems (i.e., how
much resource used by best algorithm for it)

@ Relate problems to each other [Reduce]

@ Relate computational models/complexity
measures to each other [Simulate]



Complexity Theory

@ Understand complexity of problems (i.e., how
much resource used by best algorithm for it)

@ Relate problems to each other [Reduce]

@ Relate computational models/complexity
measures to each other [Simulate]



Complexity
Classes




Complexity
Classes

@ Collect (decision)
problems with
similar complexity
info classes




Complexity
Classes

@ Collect (decision)
problems with
similar complexity
into classes |




Complexity
Classes

@ Collect (decision)
problems with
similar complexity
into classes |




Complexity
Classes

@ Collect (decision)
problems with
similar complexity
into classes |




Complexity
Classes

@ Collect (decision)
problems with
similar complexity
info classes




Complexity
Classes

@ Collect (decision)
problems with
similar complexity
info classes




Complexity
Classes

@ Collect (decision)
problems with
similar complexity
info classes




Complexity
Classes

@ Collect (decision)
problems with
similar complexity
info classes

o Relate classes to
each other




Comp Iexi’ry [P=PSPACE
Classes

@ Collect (decision)
problems with
similar complexity
info classes

o Relate classes to
each other




Comp Iexi’ry [P=PSPACE
P VS NP ?

Classes

@ Collect (decision)
problems with
similar complexity
info classes

o Relate classes to
each other




Comp Iexi’ry [P=PSPACE

P vs NP ?
Classes P 5: BPP ?

@ Collect (decision)
problems with
similar complexity
info classes

o Relate classes to
each other




Comp Iexi’ry [P=PSPACE

P vs NP ?
Classes P 53 BPP ?

@ Collect (decision)
problems with
similar complexity
info classes

o Relate classes to
each other

® Hundreds of
classes!




Complexity
Z00!

@ Collect problems
with similar
complexity into
classes

o Relate classes to
each other

® Hundreds of
classes!




Complexity
Z00!

@ Collect problems
with similar
complexity into
classes

@ Relate classes to
each other | .

® Hundreds of
classes! -- =



Complexity / @?;:

=Y
200!
o ‘ =
@ Collect problems @‘@ "‘
with similar \'@ /@fﬂ
complexity into b e S
classes @

DO D

® Relate classes to
each other

® Hundreds of
classes!




Complexity in various
settings



Complexity in various
settings

@ With various models of computation: decision
trees, interactive settings, probabilistic
computation



Complexity in various
settings

@ With various models of computation: decision
trees, interactive settings, probabilistic
computation

@ Various measures: depth, width, amount of
communication, number of rounds, amount of
randomness, amount of non-uniformity, ...



Complexity in various
settings

@ With various models of computation: decision
trees, interactive settings, probabilistic
computation

@ Various measures: depth, width, amount of
communication, number of rounds, amount of
randomness, amount of non-uniformity, ...

@ Various connections: fime vs. space,
randomness vs. hardness






Cryptography

@ Need to prove that a scheme is secure
(according to some definition)



Cryptography

@ Need to prove that a scheme is secure
(according to some definition)

@ i.e., breaking security has high complexity



Cryptography

@ Need to prove that a scheme is secure
(according to some definition)

@ i.e., breaking security has high complexity

@ Reductions: if you could break my scheme'’s
security efficiently, I can solve a hard
problem almost as efficiently



Cryptography

@ Need to prove that a scheme is secure
(according to some definition)

@ i.e., breaking security has high complexity

@ Reductions: if you could break my scheme'’s
security efficiently, I can solve a hard
problem almost as efficiently

@ Hard problems: almost all instances hard



Cryptography

@ Need to prove that a scheme is secure
(according to some definition)

@ i.e., breaking security has high complexity

@ Reductions: if you could break my scheme'’s
security efficiently, I can solve a hard
problem almost as efficiently

@ Hard problems: almost all instances hard

@ For most keys scheme should be secure



All that and much more..



All that and much more..

® Welcome to CS 579!



All that and much more..

® Welcome to CS 579!
@ Textbook: www.cs.princeton.edu/theory/complexity/




All that and much more..

® Welcome to CS 579!
@ Textbook: www.cs.princeton.edu/theory/complexity/

@ About 6 assignments and a class fest




All that and much more..

® Welcome to CS 579!
@ Textbook: www.cs.princeton.edu/theory/complexity/

@ About 6 assignments and a class fest
@ Office hours: TBA




