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A paradigm of modern science

Theory of computation/computational 
complexity is to computer science what 
theoretical physics is to electronics
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Computation:

Problems to be solved

Algorithms to solve them

in various models of computation

Complexity of a problem (in a comp. model)

How much “resource” is sufficient/necessary
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Decision Problems

Evaluate a Boolean function (TRUE/FALSE)

i.e., Decide if input has some property

Language

Set of inputs with a particular property

e.g. L = {x | x has equal number of 0s and 1s}

Decide if input is in L
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Some languages are “simpler” than others

L1  = {x | x starts with 0}

L2 = {x | x has equal number of 0s and 1s}

Simpler in what way?

Fewer calculations, less memory, need not 
read all input, can do in an FSM Flying Spaghetti

 Monster?
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Relating complexities of problems

Mo = {x | x has more 0s than 1s}

Eq = {x | x has equal number of 0s and 1s}

Eq(x):

if (Mo(x0) == TRUE and Mo(x) == FALSE) 
then TRUE; else FALSE

Eq is not (much) more complex than Mo.    
Mo is at least (almost) as complex as Eq.

Eq reduces to Mo
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Models of Computation

FSM, PDA, TM

Variations: Non-deterministic, probabilistic. 
Other models: quantum computation

Church-Turing thesis: TM is as “powerful” 
as it gets

Not enough TMs (algorithms/programs) to 
solve all decision problems!

Non-uniform computation: circuit families
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Complexity Measures
Number of computational steps, amount of 
memory, circuit size/depth, ...

Exact numbers very much         
dependent on exact               
specification of the model                  
(e.g. no. of tapes in TM)

But “broad trends” robust

Trends: asymptotic

Broad: Log, Poly, Exp
Log Poly Exp
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Complexity Theory

Understand complexity of problems (i.e., how 
much resource used by best algorithm for it)

Relate problems to each other [Reduce]

Relate computational models/complexity 
measures to each other [Simulate]

Calculate complexity of problems
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Complexity in various 
settings

With various models of computation: decision 
trees, interactive settings, probabilistic 
computation

Various measures: depth, width, amount of 
communication, number of rounds, amount of 
randomness, amount of non-uniformity, ...

Various connections: time vs. space, 
randomness vs. hardness
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Cryptography

Need to prove that a scheme is secure 
(according to some definition)

i.e., breaking security has high complexity

Reductions: if you could break my scheme’s 
security efficiently, I can solve a hard 
problem almost as efficiently

Hard problems: almost all instances hard

For most keys scheme should be secure
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Welcome to CS 579!
Textbook: www.cs.princeton.edu/theory/complexity/
About 6 assignments and a class test
Office hours: TBA


