
Computational
Complexity

Lecture 0

Computation

Computation

A paradigm of modern science

Computation

A paradigm of modern science

Theory of computation/computational
complexity is to computer science what
theoretical physics is to electronics

Computational Complexity

Computational Complexity

Computation:

Computational Complexity

Computation:

Problems to be solved

Computational Complexity

Computation:

Problems to be solved

Algorithms to solve them

Computational Complexity

Computation:

Problems to be solved

Algorithms to solve them

in various models of computation

Computational Complexity

Computation:

Problems to be solved

Algorithms to solve them

in various models of computation

Complexity of a problem (in a comp. model)

Computational Complexity

Computation:

Problems to be solved

Algorithms to solve them

in various models of computation

Complexity of a problem (in a comp. model)

How much “resource” is sufficient/necessary

Computational Complexity

of
Problems

in
Models of

computation

w.r.t
Complexity
measures

Problems

Problems
Input represented as (say) a binary string

Problems
Input represented as (say) a binary string

Given input, find a “satisfactory output”

Problems
Input represented as (say) a binary string

Given input, find a “satisfactory output”

Function evaluation: only one correct output

Problems
Input represented as (say) a binary string

Given input, find a “satisfactory output”

Function evaluation: only one correct output

Approximate evaluation

Problems
Input represented as (say) a binary string

Given input, find a “satisfactory output”

Function evaluation: only one correct output

Approximate evaluation

Search problem: find one of many (if any)

Problems
Input represented as (say) a binary string

Given input, find a “satisfactory output”

Function evaluation: only one correct output

Approximate evaluation

Search problem: find one of many (if any)

Decision problem: find out if any

Problems
Input represented as (say) a binary string

Given input, find a “satisfactory output”

Function evaluation: only one correct output

Approximate evaluation

Search problem: find one of many (if any)

Decision problem: find out if any

A Boolean function evaluation (TRUE/FALSE)

Decision Problems

Decision Problems

Evaluate a Boolean function (TRUE/FALSE)

Decision Problems

Evaluate a Boolean function (TRUE/FALSE)

i.e., Decide if input has some property

Decision Problems

Evaluate a Boolean function (TRUE/FALSE)

i.e., Decide if input has some property

Language

Decision Problems

Evaluate a Boolean function (TRUE/FALSE)

i.e., Decide if input has some property

Language

Set of inputs with a particular property

Decision Problems

Evaluate a Boolean function (TRUE/FALSE)

i.e., Decide if input has some property

Language

Set of inputs with a particular property

e.g. L = {x | x has equal number of 0s and 1s}

Decision Problems

Evaluate a Boolean function (TRUE/FALSE)

i.e., Decide if input has some property

Language

Set of inputs with a particular property

e.g. L = {x | x has equal number of 0s and 1s}

Decide if input is in L

Complexity of Languages

Complexity of Languages

Some languages are “simpler” than others

Complexity of Languages

Some languages are “simpler” than others

L1 = {x | x starts with 0}

Complexity of Languages

Some languages are “simpler” than others

L1 = {x | x starts with 0}

L2 = {x | x has equal number of 0s and 1s}

Complexity of Languages

Some languages are “simpler” than others

L1 = {x | x starts with 0}

L2 = {x | x has equal number of 0s and 1s}

Simpler in what way?

Complexity of Languages

Some languages are “simpler” than others

L1 = {x | x starts with 0}

L2 = {x | x has equal number of 0s and 1s}

Simpler in what way?

Fewer calculations, less memory, need not
read all input, can do in an FSM

Complexity of Languages

Some languages are “simpler” than others

L1 = {x | x starts with 0}

L2 = {x | x has equal number of 0s and 1s}

Simpler in what way?

Fewer calculations, less memory, need not
read all input, can do in an FSM Flying Spaghetti

 Monster?

Complexity of Languages

Complexity of Languages

Relating complexities of problems

Complexity of Languages

Relating complexities of problems

Mo = {x | x has more 0s than 1s}

Complexity of Languages

Relating complexities of problems

Mo = {x | x has more 0s than 1s}

Eq = {x | x has equal number of 0s and 1s}

Complexity of Languages

Relating complexities of problems

Mo = {x | x has more 0s than 1s}

Eq = {x | x has equal number of 0s and 1s}

Eq(x):

Complexity of Languages

Relating complexities of problems

Mo = {x | x has more 0s than 1s}

Eq = {x | x has equal number of 0s and 1s}

Eq(x):

if (Mo(x0) == TRUE and Mo(x) == FALSE)
then TRUE; else FALSE

Complexity of Languages

Relating complexities of problems

Mo = {x | x has more 0s than 1s}

Eq = {x | x has equal number of 0s and 1s}

Eq(x):

if (Mo(x0) == TRUE and Mo(x) == FALSE)
then TRUE; else FALSE

Eq is not (much) more complex than Mo.
Mo is at least (almost) as complex as Eq.

Complexity of Languages

Relating complexities of problems

Mo = {x | x has more 0s than 1s}

Eq = {x | x has equal number of 0s and 1s}

Eq(x):

if (Mo(x0) == TRUE and Mo(x) == FALSE)
then TRUE; else FALSE

Eq is not (much) more complex than Mo.
Mo is at least (almost) as complex as Eq.

Eq reduces to Mo

Models of Computation

Models of Computation

FSM, PDA, TM

Models of Computation

FSM, PDA, TM

Variations: Non-deterministic, probabilistic.
Other models: quantum computation

Models of Computation

FSM, PDA, TM

Variations: Non-deterministic, probabilistic.
Other models: quantum computation

Church-Turing thesis: TM is as “powerful”
as it gets

Models of Computation

FSM, PDA, TM

Variations: Non-deterministic, probabilistic.
Other models: quantum computation

Church-Turing thesis: TM is as “powerful”
as it gets

Not enough TMs (algorithms/programs) to
solve all decision problems!

Models of Computation

FSM, PDA, TM

Variations: Non-deterministic, probabilistic.
Other models: quantum computation

Church-Turing thesis: TM is as “powerful”
as it gets

Not enough TMs (algorithms/programs) to
solve all decision problems!

Non-uniform computation: circuit families

Complexity Measures

Complexity Measures
Number of computational steps, amount of
memory, circuit size/depth, ...

Complexity Measures
Number of computational steps, amount of
memory, circuit size/depth, ...

Exact numbers very much
dependent on exact
specification of the model
(e.g. no. of tapes in TM)

Complexity Measures
Number of computational steps, amount of
memory, circuit size/depth, ...

Exact numbers very much
dependent on exact
specification of the model
(e.g. no. of tapes in TM)

But “broad trends” robust

Complexity Measures
Number of computational steps, amount of
memory, circuit size/depth, ...

Exact numbers very much
dependent on exact
specification of the model
(e.g. no. of tapes in TM)

But “broad trends” robust

Complexity Measures
Number of computational steps, amount of
memory, circuit size/depth, ...

Exact numbers very much
dependent on exact
specification of the model
(e.g. no. of tapes in TM)

But “broad trends” robust

Trends: asymptotic

Complexity Measures
Number of computational steps, amount of
memory, circuit size/depth, ...

Exact numbers very much
dependent on exact
specification of the model
(e.g. no. of tapes in TM)

But “broad trends” robust

Trends: asymptotic

Broad: Log, Poly, Exp

Complexity Measures
Number of computational steps, amount of
memory, circuit size/depth, ...

Exact numbers very much
dependent on exact
specification of the model
(e.g. no. of tapes in TM)

But “broad trends” robust

Trends: asymptotic

Broad: Log, Poly, Exp
Log Poly Exp

Complexity Theory

Complexity Theory

Understand complexity of problems (i.e., how
much resource used by best algorithm for it)

Complexity Theory

Understand complexity of problems (i.e., how
much resource used by best algorithm for it)

Relate problems to each other [Reduce]

Complexity Theory

Understand complexity of problems (i.e., how
much resource used by best algorithm for it)

Relate problems to each other [Reduce]

Relate computational models/complexity
measures to each other [Simulate]

Complexity Theory

Understand complexity of problems (i.e., how
much resource used by best algorithm for it)

Relate problems to each other [Reduce]

Relate computational models/complexity
measures to each other [Simulate]

Calculate complexity of problems

Complexity
Classes

Complexity
Classes

Collect (decision)
problems with
similar complexity
into classes

Complexity
Classes

Collect (decision)
problems with
similar complexity
into classes

Complexity
Classes

Collect (decision)
problems with
similar complexity
into classes

P

Complexity
Classes

Collect (decision)
problems with
similar complexity
into classes NP

P

Complexity
Classes

Collect (decision)
problems with
similar complexity
into classes

IP
NP

P

Complexity
Classes

Collect (decision)
problems with
similar complexity
into classes

PSPACE
IP

NP

P

Complexity
Classes

Collect (decision)
problems with
similar complexity
into classes

PSPACE
IP

NP

BPP

P

Complexity
Classes

Collect (decision)
problems with
similar complexity
into classes

Relate classes to
each other

PSPACE
IP

NP

BPP

P

Complexity
Classes

Collect (decision)
problems with
similar complexity
into classes

Relate classes to
each other

PSPACE
IP

NP

BPP

P

IP=PSPACE

Complexity
Classes

Collect (decision)
problems with
similar complexity
into classes

Relate classes to
each other

PSPACE
IP

NP

BPP

P

IP=PSPACE
P vs NP ?

Complexity
Classes

Collect (decision)
problems with
similar complexity
into classes

Relate classes to
each other

PSPACE
IP

NP

BPP

P

IP=PSPACE
P vs NP ?
P vs BPP ?

Complexity
Classes

Collect (decision)
problems with
similar complexity
into classes

Relate classes to
each other

Hundreds of
classes!

PSPACE
IP

NP

BPP

P

IP=PSPACE
P vs NP ?
P vs BPP ?

Complexity
Zoo!

Collect problems
with similar
complexity into
classes

Relate classes to
each other

Hundreds of
classes!

Complexity
Zoo!

(NP-cap-coNP)/poly

NP/poly

PP/poly

NE/poly

(k>=5)-PBP

NC^1 PBP

LQNC^1

CSL

+EXP

EXPSPACE

EESPACEEEXP

+L

+L/poly +SAC^1

AL

P/poly

NC^2

P

BQP/poly

+P

ModP

SF_2

AmpMP

SF_3

+SAC^0

AC^0[2]

QNC_f^0

ACC^0

QACC^0

NC

1NAuxPDA^p

SAC^1

AC^1

2-PBP

3-PBP

4-PBP

TC^0

TC^0/poly

AC^0

AC^0/poly

FOLL

MAC^0QAC^0

L/poly

AH

ALL

AvgP

HalfP

NT

P-Close

P-Sel

P/log

UPbeta_2P

compNP

AM

AM[polylog]

BPP^{NP}

QAM

Sigma_2P

ZPP^{NP}

IP

Delta_3PSQG

BP.PP

QIP[2] RP^{NP}

PSPACE

MIPMIP* QIP

AM_{EXP}

IP_{EXP}

NEXP^{NP}

MIP_{EXP}

EXPH

APP

PP

P^{#P[1]}

AVBPP

HeurBPP

EXP

AWPP

A_0PP

Almost-PSPACE

BPEXP

BPEEMA_{EXP}

MP

AmpP-BQP

BQP

Sigma_3P

BQP/log

DQP

NIQSZK QCMAYQP

PH

AvgE

EE

NEE

ENearly-P

UE

ZPE

BH

P^{NP[log]}

BPP_{path}

P^{NP[log^2]}

BH_2

CH

EXP/poly

BPE

MA_E

EH

EEE

PEXP

BPL

PL

SC

NL/poly

L^{DET}

polyL

BPP

BPP/log

BPQP

Check

FH

N.BPP

NISZK

PZK

TreeBQP

WAPP

XOR-MIP*[2,1]

BPP/mlog

QPSPACE

frIP

MA

N.NISZK

NISZK_h

SZK

SBP

QMIP_{le}

BPP//log

BPP/rlog

BQP/mlog

BQP/qlog

QRG ESPACE

QSZK

QMA

BQP/qpoly

BQP/mpoly

CFL

GCSL

NLIN

QCFL

Q

NLINSPACE

RG

CZK

C_=L

C_=P

Coh

DCFL

LIN

NEXP

Delta_2P

P^{QMA}S_2P

P^{PP}

QS_2P

RG[1]

NE

RPE

NEEXP

NEEE

ELEMENTARY

PR

R

EP

Mod_3PMod_5P

NP

NP/one RP^{PromiseUP}US

EQP

LWPP

ZQP

WPP

RQP

NEXP/poly

EXP^{NP}

SEH

Few

P^{FewP}

SPP

FewL

LFew

NL SPL

FewP

FewUL

LogFew

RP

ZPP

RBQPYP

ZBQP

IC[log,poly]

QMIP_{ne}QMIP

R_HLUL

RL

MAJORITY

PT_1

PL_{infty}

MP^{#P}

SF_4

RNC

QNC

QP

NC^0

PL_1

QNC^0 SAC^0

NONE

PARITY

TALLY

REG

SPARSE

NP/log

NT*

UAPQPLINbetaP

compIP

RE

QMA(2)

SUBEXP

YPP

Collect problems
with similar
complexity into
classes

Relate classes to
each other

Hundreds of
classes!

(NP-cap-coNP)/poly

NP/poly

PP/poly

NE/poly

(k>=5)-PBP

NC^1 PBP

LQNC^1

CSL

+EXP

EXPSPACE

EESPACEEEXP

+L

+L/poly +SAC^1

AL

P/poly

NC^2

P

BQP/poly

+P

ModP

SF_2

AmpMP

SF_3

+SAC^0

AC^0[2]

QNC_f^0

ACC^0

QACC^0

NC

1NAuxPDA^p

SAC^1

AC^1

2-PBP

3-PBP

4-PBP

TC^0

TC^0/poly

AC^0

AC^0/poly

FOLL

MAC^0QAC^0

L/poly

AH

ALL

AvgP

HalfP

NT

P-Close

P-Sel

P/log

UPbeta_2P

compNP

AM

AM[polylog]

BPP^{NP}

QAM

Sigma_2P

ZPP^{NP}

IP

Delta_3PSQG

BP.PP

QIP[2] RP^{NP}

PSPACE

MIPMIP* QIP

AM_{EXP}

IP_{EXP}

NEXP^{NP}

MIP_{EXP}

EXPH

APP

PP

P^{#P[1]}

AVBPP

HeurBPP

EXP

AWPP

A_0PP

Almost-PSPACE

BPEXP

BPEEMA_{EXP}

MP

AmpP-BQP

BQP

Sigma_3P

BQP/log

DQP

NIQSZK QCMAYQP

PH

AvgE

EE

NEE

ENearly-P

UE

ZPE

BH

P^{NP[log]}

BPP_{path}

P^{NP[log^2]}

BH_2

CH

EXP/poly

BPE

MA_E

EH

EEE

PEXP

BPL

PL

SC

NL/poly

L^{DET}

polyL

BPP

BPP/log

BPQP

Check

FH

N.BPP

NISZK

PZK

TreeBQP

WAPP

XOR-MIP*[2,1]

BPP/mlog

QPSPACE

frIP

MA

N.NISZK

NISZK_h

SZK

SBP

QMIP_{le}

BPP//log

BPP/rlog

BQP/mlog

BQP/qlog

QRG ESPACE

QSZK

QMA

BQP/qpoly

BQP/mpoly

CFL

GCSL

NLIN

QCFL

Q

NLINSPACE

RG

CZK

C_=L

C_=P

Coh

DCFL

LIN

NEXP

Delta_2P

P^{QMA}S_2P

P^{PP}

QS_2P

RG[1]

NE

RPE

NEEXP

NEEE

ELEMENTARY

PR

R

EP

Mod_3PMod_5P

NP

NP/one RP^{PromiseUP}US

EQP

LWPP

ZQP

WPP

RQP

NEXP/poly

EXP^{NP}

SEH

Few

P^{FewP}

SPP

FewL

LFew

NL SPL

FewP

FewUL

LogFew

RP

ZPP

RBQPYP

ZBQP

IC[log,poly]

QMIP_{ne}QMIP

R_HLUL

RL

MAJORITY

PT_1

PL_{infty}

MP^{#P}

SF_4

RNC

QNC

QP

NC^0

PL_1

QNC^0 SAC^0

NONE

PARITY

TALLY

REG

SPARSE

NP/log

NT*

UAPQPLINbetaP

compIP

RE

QMA(2)

SUBEXP

YPP

Complexity
Zoo!

Collect problems
with similar
complexity into
classes

Relate classes to
each other

Hundreds of
classes!

Complexity in various
settings

Complexity in various
settings

With various models of computation: decision
trees, interactive settings, probabilistic
computation

Complexity in various
settings

With various models of computation: decision
trees, interactive settings, probabilistic
computation

Various measures: depth, width, amount of
communication, number of rounds, amount of
randomness, amount of non-uniformity, ...

Complexity in various
settings

With various models of computation: decision
trees, interactive settings, probabilistic
computation

Various measures: depth, width, amount of
communication, number of rounds, amount of
randomness, amount of non-uniformity, ...

Various connections: time vs. space,
randomness vs. hardness

Cryptography

Cryptography

Need to prove that a scheme is secure
(according to some definition)

Cryptography

Need to prove that a scheme is secure
(according to some definition)

i.e., breaking security has high complexity

Cryptography

Need to prove that a scheme is secure
(according to some definition)

i.e., breaking security has high complexity

Reductions: if you could break my scheme’s
security efficiently, I can solve a hard
problem almost as efficiently

Cryptography

Need to prove that a scheme is secure
(according to some definition)

i.e., breaking security has high complexity

Reductions: if you could break my scheme’s
security efficiently, I can solve a hard
problem almost as efficiently

Hard problems: almost all instances hard

Cryptography

Need to prove that a scheme is secure
(according to some definition)

i.e., breaking security has high complexity

Reductions: if you could break my scheme’s
security efficiently, I can solve a hard
problem almost as efficiently

Hard problems: almost all instances hard

For most keys scheme should be secure

All that and much more..

All that and much more..

Welcome to CS 579!

All that and much more..

Welcome to CS 579!
Textbook: www.cs.princeton.edu/theory/complexity/

All that and much more..

Welcome to CS 579!
Textbook: www.cs.princeton.edu/theory/complexity/
About 6 assignments and a class test

All that and much more..

Welcome to CS 579!
Textbook: www.cs.princeton.edu/theory/complexity/
About 6 assignments and a class test
Office hours: TBA

