Complexity Homework 5 Released: April 7, 2009 Due: April 21, 2009

Problem 1: 2-Universal Hash Function Family.

The first couple of proeblems deal with 2-Universal Hash Function Families.

Define a hash function family as a function \mathcal{H} of the form $\mathcal{H} : H \times X \to R$, where H is the set of "hash functions" in the family, X is the input space and R the output space of the hash functions. H, X, R are all finite sets. When the family is understood, $\mathcal{H}(h, x) = y$ is often abbreviated as h(x) = y. Given an input $x \in X$ we will be interested in hashing it using a random $h \in H$.

Call a hash function family uniform if for all $x \in X$ and $y \in R$, $\mathbf{Pr}_{h \leftarrow H}[h(x) = y] = \frac{1}{|R|}$. Call a hash function family pairwise independent if for all $x_1 \neq x_2 \in X$ and $y_1, y_2 \in R$, $\mathbf{Pr}_{h \leftarrow H}[h(x_1) = y_1 \land h(x_2) = y_2] = \mathbf{Pr}_{h \leftarrow H}[h(x_1) = y_1]\mathbf{Pr}_{h \leftarrow H}[h(x_2) = y_2]$. Call a hash function family 2-universal if for all $x_1 \neq x_2 \in X$ and $y_1, y_2 \in R$, $\mathbf{Pr}_{h \leftarrow H}[h(x_1) = y_1 \land h(x_2) = y_2] = \frac{1}{|R|^2}$.

Define maximum collision probability of a hash function family as $\max_{x_1 \neq x_2 \in X} \mathbf{Pr}_{h \leftarrow H}[h(x_1) = h(x_2)].$

- 1. Show a trivial example of a uniform hash function family (use H = R) and a trivial example of a pairwise independent hash function family (use X = R). Show that a hash function family is uniform *and* pairwise independent if and only if it is 2-universal. Also show that for such a hash function family, the maximum collision probability is $\frac{1}{|R|}$.
- 2. If $\mathcal{H} : H \times X \to R$, is a uniform hash function family what can you say about the size of H, in terms of |R|? What if \mathcal{H} is a 2-universal hash function family?
- 3. A function $f : R \to R'$ is called *regular* if for each $y' \in R'$, $|\{y : f(y) = y'\}| = |R|/|R'|$. Suppose $\mathcal{H} : H \times X \to R$ is a 2-universal hash function family and $f : R \to R'$ is regular. Show that $\mathcal{H}' : H \times X \to R'$, where $\mathcal{H}'(h, x) = f(\mathcal{H}(h, x))$ is 2-universal. Note that this can be used to shrink the output space of a hash function family without affecting the other parameters.
- 4. A function $f : X' \to X$ is called *one-to-one* if for each $x \in X$, $|\{x' : f(x') = x\}| \leq 1$. Suppose $\mathcal{H} : \mathcal{H} \times X \to R$ is a 2-universal hash function family and $f : X' \to X$ is one-to-one. Show that $\mathcal{H}' : \mathcal{H} \times X \to R'$, where $\mathcal{H}'(h, x) = \mathcal{H}(h, f(x))$ is 2-universal. Note that this can be used to shrink the input space of a hash function family without affecting the other parameters.

Problem 2:

This problem shows why 2-universal hash function families are useful for the (public-coin) set lower-bound protocol. (See Lecture 15.)

For $S \subseteq X$ and $h: X \to R$, define $h(S) \subseteq R$ as $h(S) = \{h(x) : x \in S\}$. Define $\operatorname{shrink}(h, S) = |S| - |h(S)|$. Note that $\operatorname{shrink}(h, S) \ge 0$. Let $\operatorname{collision}(h, S) = |\{x_1, x_2 \in S : x_1 < x_2 \text{ and } h(x_1) = h(x_2)\}|$.

- 1. Show that $shrink(h, S) \leq collision(h, S)$.
- 2. Suppose $\mathcal{H}: H \times X \to R$ has a maximum collision probability p. Show that $\mathbf{E}_{h \leftarrow H}[\texttt{collision}(h, S)] \leq p|S|^2$. Using part (1) conclude that $\mathbf{E}_{h \leftarrow H}[\texttt{shrink}(h, S)] \leq p|S|^2$.
- 3. Suppose $\mathcal{H}: H \times X \to R$ is a 2-universal hash function family, then show that for any $T \subseteq X$ such that |T| = |R|/4, $\mathbf{E}_{h \leftarrow H}[\mathtt{shrink}(h, T)] \leq \frac{|R|}{16}$.
- 4. Use this to argue soundness and completeness of the set lower-bound protocol shown in class. Consider for completeness $S \subseteq X$ such that $|S| \ge |R|/4$ and, for soundness $S \subseteq X$ such that $|S| \le |R|/8$. (Explain clearly what completeness and soundness mean in this context.)

Problem 3:

Show that $\mathbf{FP} \subseteq \#\mathbf{P}$. (*Hint: Associate a count with the output of a function, such that the count when written in binary is identical to the original output.*)

Problem 4:

In this problem you will show that $\sharp \mathbf{P} \subseteq \mathbf{FP}^{\mathbf{PP}}$.

An *implicit representation* of a binary string χ of length 2^m is a polynomial sized (in m) circuit A^{χ} such that $A^{\chi}(i) = \chi_i$, the *i*-th bit of χ .

- 1. Consider a binary string χ of length 2^m . Your task is to count the number of 1s in the string, in polynomial time (in *m*). Show how to do this if you are given an oracle T_{χ} , which when given a threshold τ tells you whether the string has more than τ fraction of 1s or not. (That is $T_{\chi}(\tau) = 1$ iff χ has more than $\tau |\chi|$ 1s.)
- 2. Suppose you are given an oracle H_{χ} which can only answer with respect to the threshold $\tau = \frac{1}{2}$, but allows you to give an implicit description of another string θ of length 2^m and answers whether the string $\chi\theta$ has more than $\frac{1}{2}$ 1s in it. (That is $H_{\chi}(A^{\theta}) = 1$ iff the string $\chi\theta$ has more than $\frac{1}{2}|\chi\theta|$ 1s.) Show how to implement the oracle T_{χ} using access to the oracle H_{χ} .
- 3. Consider the language L, such that $L(A^{\chi}, A^{\theta}) = H_{\chi}(\theta)$. Show that L is in **PP**.
- 4. Conclude that given oracle access to the **PP** language *L*, any function in $\sharp \mathbf{P}$ can be computed in polynomial time. i.e., $\sharp \mathbf{P} \subseteq \mathbf{FP}^{L}$.

Problem 5 (Extra Credit):

Recall the definition of alternating threshold Turing Machines from class (Lecture 17). Given $M_+ = \operatorname{ATTM}[k, (\exists_{\geq r}, \exists), R]$ (i.e. an ATTM with k alternations between thresholds $\exists_{\geq r}$ and \exists , and a relation R at the leaves; the degrees of the different $\exists_{\geq r}$ ans \exists configuration nodes are left out of the notation for clarity), with $r > \frac{1}{2}$, define it's complementary ATTM $M_- = \operatorname{ATTM}[k, (\exists_{\geq r}, \forall), \overline{R}]$. Such a pair (M_+, M_-) is said to decide a language L if $x \in L \iff M_+(x) = 1, M_-(x) = 0$ and $x \notin L \iff M_+(x) = 0, M_-(x) = 1$.

Also recall the definition of an AM[k] protocol defined by a verification procedure for Arthur, A (and the lengths of the k messages, alternating between random strings from Arthur and messages from Merlin, starting with one from Arthur). an AM protocol A is said to decide a language L with error probability at most ϵ if $x \in L \iff \max_M \Pr[A \text{ accepts } x \text{ after interacting with } M] \ge 1 - \epsilon$ and $x \notin L \iff \max_M \Pr[A \text{ accepts } x \text{ after interacting with } M] \ge 1 - \epsilon$ and $x \notin L \iff \max_M \Pr[A \text{ accepts } x \text{ after interacting with } M] \le \epsilon$.

1. Given an AM[k] protocol A, define a pair of complementary ATTMs (M_+, M_-) as $M_+ = \text{ATTM}[k, (\exists_{\geq r}, \exists), R]$ and $M_- = \text{ATTM}[k, (\exists_{\geq r}, \forall), \overline{R}])$, (with degrees of the configuration nodes being the message lengths of the protocol to the power of 2) with R = A and $r = \frac{3}{4}$. Show that if A is an AM protocol that decides a language L with error probability at most $2^{-(k+3)}$, then (M_+, M_-) decides L.

Hint: First try k = 2. Consider the protocol's tree, and define the maximum-average acceptance probability for each node (as shown in class). For $x \in L$, using completeness guarantee, what can you say about the fraction of first messages that lead to a node with acceptance probability greater than $1 - 4\epsilon$? For $x \notin L$ use soundness guarantee.

2. Given a pair of complementary ATTMs $(M_+, M_-) = (\text{ATTM}[k, (\exists_{\geq r}, \exists), R], \text{ATTM}[k, (\exists_{\geq r}, \forall), \overline{R}]),$ (with degrees of the configuration nodes being powers of 2) define an AM[k] protocol with A = R (and lengths of the messages being logarithms (base 2) of the degrees of the ATTM pair). Show that if (M_+, M_-) decides a language L and if $r \geq 1 - \frac{1}{4k}$, then A_R is an AM protocol that decides L with error probability at most 1/4.

Hint: For $x \in L$, using M_+ , what can you say about the maximum-acceptance probability of nodes of the constructed protocol's tree. First try k = 2. To extend to general k, consider two levels at a time, and use the "union-bound" inequality $(1-p)^t \ge 1-pt$.