Complexity Homework 2

Released: February 10, 2009 Due: February 24, 2009

Problem 1:

We say that a complexity class **X** is closed downward under Karp reductions if:

for all languages
$$A, B: A \in \mathbf{X}$$
 and $B \leq_P A \implies B \in \mathbf{X}$

Show that **E** and **NE** are *not* closed downward under Karp reductions. (These two complexity classes were defined in the previous problem set.)

Problem 2:

A language A is polynomial-time downward self-reducible if there is a polynomial-time oracle machine M such that:

- $L(M^A) = A$. That is, when given an oracle for A, M decides A (self-reducibility).
- On input x, M only queries the oracle on strings *smaller* than x (downward reducibility).

The second restriction is necessary to make the property interesting – otherwise, on input x, M could just directly ask the oracle if $x \in A$.

- (a) Show that SAT and TQBF are polynomial-time downward self-reducible.
- (b) Show that if L is polynomial-time downward self-reducible, then $L \in \mathbf{PSPACE}$.

Problem 3:

Show that $P \neq DSPACE(n)$.

Hint: Show that one class is closed downward under Karp reductions, while the other is not.

Problem 4:

An oracle machine is called a *robust oracle machine* if the language accepted by it remains the same no matter which oracle is used (however the running time may vary). Show that a language L is decided by M^K in polynomial time where M is a robust oracle machine and K is some oracle, if and only if $L \in \mathbf{NP} \cap \mathbf{co-NP}$.

Problem 5:

Consider any game between two parties Alice and Bob which will terminate in a finite number of steps, with only two possible outcomes, say 0 and 1.

In the class we saw that any such game falls into one of the two following kinds: (a) games in which Alice has a strategy to force the outcome to be 0, and (b) games in which Bob has a strategy to force the outcome to be 1. (The strategies may be hard to compute, given the description of the game.)

In this problem you will prove a more general result.

- 1. Show that any game falls into one of the four categories:
 - (a) Games in which Alice has a strategy to force the outcome to be 0 and she has a strategy to force the outcome to be 1.
 - (b) Games in which Bob has a strategy to force the outcome to be 0 and he has a strategy to force the outcome to be 1.
 - (c) Games in which both Alice and Bob have strategies to force the outcome to be 0.
 - (c) Games in which both Alice and Bob have strategies to force the outcome to be 1.

Hint: Use induction on the number of steps in the protocol.

2. Use this to conclude that in any game in which either Alice or Bob "wins," either Alice has a winning strategy or Bob has a winning strategy.