
Complexity Homework 1
Released: January 27, 2008

Due: February 10, 2008

For problems that involve nondeterministic complexity classes, the solutions maybe simpler when phrased in terms
of “certificates” (instead of non-determinism).

Problem 1:

(a) Let L1, L2 be languages in NP. Are L1 ∪ L2 and L1 ∩ L2 necessarily in NP?

(b) Let L1, L2 be languages in NP. Show that L1L2 and L∗

1 are in NP.

(c) Let L1, L2 be languages in P. Show that L1L2 and L∗

1 are in P.

(d) Let L1, L2 be languages in NP ∩ co-NP. Show that their symmetric difference

L1 ⊕ L2
def

= {x | x is in exactly one of L1, L2}

is also in NP ∩ co-NP.

Problem 2:

(a) Show that the halting problem is NP-hard. Is it NP-complete?

(The halting problem is given by the language H = {(〈M〉, x) |M is a TM that halts on input x}. You may
recall that H is undecidable.)

(b) Show that SAT (the complement of SAT) is NP-hard under Cook reductions. That is, every language in NP
reduces to SAT via a Cook reduction.

Problem 3:

Show that the following two statements are equivalent (we don’t know if they are true):

(a) Every unary1 language in NP is also in P.

(b) DTIME(2O(n)) = NTIME(2O(n)) (these classes are called E and NE, respectively).

Hint: It takes Θ(log n) bits to encode the number “n” in binary.

Problem 4:

Give a parsimonious Karp reduction from SAT to 3SAT.

Problem 5:

In this problem, we analyze a reduction from 3SAT to the following language:

MAX-2SAT = {(φ, k) | φ is a 2-CNF formula, and there is an assignment that satisfies at least k clauses}

Our reduction is the following: Given a 3SAT instance φ, we will output a MAX-2SAT instance (φ′, k), where φ′ is
a 2-CNF formula. To construct φ′, do the following: for each clause (x ∨ y ∨ z) in φ, add the following 10 clauses
to φ′ (where w is a fresh variable for each clause):

(x), (y), (z), (¬x ∨ ¬y), (¬y ∨ ¬z), (¬x ∨ ¬z), (w), (x∨,¬w), (y ∨ ¬w), (z ∨ ¬w)

Find a value of k such that (φ′, k) ∈ MAX-2SAT if and only if φ ∈ 3SAT. Prove the correctness of the reduction.

1A language is unary if it is a subset of {1}∗ — that is, it only uses one symbol of the alphabet.

CS 579: Computational Complexity Homework 1 Page 1 of 3

Problem 6 (Extra credit):

Show that 2SAT is in P.
Hint: Consider a directed graph with all the literals as nodes, and edges as implications ((x ∨ y) corresponds

to (¬x ⇒ y) and (¬y ⇒ x)). Look to derive contradictions of the form (¬x ⇒ x) and (x →⇒ x). What do such
contradictions tell you about a possible satisfying assignment?

Problem 7 (Extra credit) [See Arora-Barak Chapter 2, Exercise #13]:

Show that if there is a unary language that is NP-complete, then P = NP.

Problem 8 (Extra credit):

Consider the following language:

MAX-CUT = {(G, k) | G is a multigraph with a cut of size at least k}

A cut in a graph is a partition of its vertices into two parts. The size of the cut is the number of edges which
“cross” the cut (whose endpoints are in opposite parts). A multigraph means we allow duplicate edges.

We now analyze a reduction from MAX-2SAT to MAX-CUT. Given an instance (φ, k) of MAX-2SAT, let n be
the number of variables occuring in φ, and m the number of clauses. Consider the following graph:

Gφ is a graph with a vertices labeled xi and ¬xi for each variable x occuring in φ, and two special vertices
labeled T and F . We add 5m edges between T and F , and 5m edges between each pair (xi,¬xi) — see Figure 1.
Then, for each clause (x ∨ y) ∈ φ, where x and y are literals, we add the following 7 edges (see Figure 2):

• (x, y), (T, x), (T, y).

• Two copies of the edges (x, F) and (y, F).

(a) Show that in the largest cut in Gφ, T and F must be in opposite parts.

(b) Show that in the largest cut in Gφ, the vertices corresponding to x and ¬x must be in opposite parts.

(c) Argue that (φ, k) ∈ MAX-2SAT if and only if (Gφ, 5m + 5mn + 4k + 2(m − k)) ∈ MAX-CUT.

CS 579: Computational Complexity Homework 1 Page 2 of 3

x1

¬x1

x2

¬x2

T F

...

xn

¬xn

5m edges

5m edges

5m edges

5m edges

Figure 1: Starting graph for Gφ, where φ has n variables, x1, . . . , xn.

...

x

T ... F

y

...

2 edges

2 edges

Figure 2: Edges to add for a clause of the form (x ∨ y)

CS 579: Computational Complexity Homework 1 Page 3 of 3

