
A Logical Reconstruction of Reachability

Tatiana Rybina and Andrei Voronkov

University of Manchester
{rybina,voronkov}@cs.man.ac.uk

Abstract. In this paper we discuss reachability analysis for infinite-
state systems. Infinite-state systems are formalized using transition
systems over a first-order structure. We establish a common ground
relating a large class of algorithms by analyzing the connections between
the symbolic representation of transition systems and formulas used
in various reachability algorithms. Our main results are related to the
so-called guarded assignment systems.

Keywords: theoretical foundations, model theory, infinite-state sys-
tems, reachability analysis.

1 Introduction

Reachability properties arise is many applications of verification. In this paper
we discuss reachability algorithms in infinite-state systems. Infinite-state systems
are formalized using transition systems over a first-order structure. We analyze
the connections between the symbolic representation of transition systems and
formulas which are used in various reachability algorithms. Our main results are
related to the so-called guarded assignment systems.

This paper serves two main purposes. First, it formalizes infinite-state sys-
tems using model-theoretic notions and discusses reachability algorithms based
on this formalization. Though many results and observations of this paper form
part of folklore circulating in the infinite-state model checking community, we
believe that our formalization is useful since it gives a common model-theoretic
approach to otherwise quite diverse formalizations. Second, we observe that for a
large class of systems, called guarded assignment systems (GAS), the reachability
analysis is simpler since only formulas of a special form are used for satisfiability-
and entailment-checking. Many known formalizations of broadcast, cache coher-
ence, and other protocols belong to the simplest kind of GAS, called simple
GAS. It follows from our results that the so-called local backward reachability
algorithms can be used for simple GAS over structures in which satisfiability-
checking is decidable for conjunctions of atomic formulas. This, for example,
allows one to extend the existing reachability algorithms to some theories of
queues.

This paper is organized as follows. In Section 2 we briefly overview relevant
parts of model theory and define several classes of first-order formulas. In Sec-
tion 3 we give a model theory-based formalization of transition systems and

M. Broy and A.V. Zamulin (Eds.): PSI 2003, LNCS 2890, pp. 222–237, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



A Logical Reconstruction of Reachability 223

their symbolic representations and introduce basic forward and backward reach-
ability algorithms. We also discuss requirements on the underlying first-order
structures. In Section 4 we define guarded assignment systems and reachability
algorithms for them. In Section 5 we introduce local reachability algorithms for
guarded assignment systems. Some other issues related to our formalization of
infinite-state systems and reachability are discussed in a full version of this paper
but not included here due to a lack of space.

2 Preliminaries

In this section we define notation and several classes of formulas which will be
used in the rest of the paper. We assume knowledge of standard model-theoretic
definitions, such as first-order formulas, structure and truth, which can be found
in any standard textbook on logic or model theory.

Unless stated otherwise, we will deal with a fixed first-order structure M with
a domain D and assume that all formulas are of the signature of this structure.
A valuation for a set of variables V in M is any mapping s : V → D. We will use
the standard model-theoretical notation M, s � A to denote that the formula A
is true in the structure M under a valuation s. When we use this notation, we
assume that s is defined on all free variables of A.

A formula A with free variables V is said to be satisfiable (respectively, valid)
in M if there exists a valuation s for V in M such that M, s � A (respectively,
for every valuation s we have M, s � A).

A formula A is called quantifier-free if A contains no quantifiers. A formula
A is called positive existential if A can be built from atomic formulas using
just ∃,∧,∨. A is called a conjunctive constraint if it can be built from atomic
formulas using just ∃,∧; and a simple constraint if it is a conjunction of atomic
formulas.

3 Transition Systems and Reachability: A Formalization
in Logic

Infinite-State Transition Systems and Their Symbolic Representation.
Our formalization of transition systems is as follows. A transition system has a
finite number of variables with values in a possibly infinite domain D. A state is
a mapping from variables to values. Transitions may change values of variables.
A symbolic representation of such a system uses first-order formulas interpreted
in a structure with the domain D.
Definition 1 (Transition System) A transition system is a tuple S =
(V,D, T ), where (i) V is a finite set of state variables; (ii) D is a non-empty
set, called the domain. Elements of D are called values. A state of the transition
system S is a function s : V → D. (iii) T is a set of pairs of states, called the
transition relation of S.

A transition system S is finite-state if D is finite, and infinite-state other-
wise. ❏



224 T. Rybina and A. Voronkov

We call any set of pairs of states a transition. Transition systems arising in
practical applications often have variables ranging over different domains. For
example, some state variables may range over the natural numbers, while others
over the boolean values or other finite domains. We introduce a single domain
for simplicity. It is not hard to generalize our formalization to several domains
using many-sorted first-order logic. In the sequel we assume a fixed transition
system S = (V,D, T ). Suppose that M is a first-order structure whose domain is
D. For example, if D is the set of natural numbers, then the structure M can be
the set of natural numbers together with the order <, operation + and constants
0, 1. In addition to the set of state variables V, we also introduce a set V ′ of next
state variables of the same cardinality as V. We fix a bijection ′ : V → V ′ so that
for all v ∈ V we have v′ ∈ V ′.

We can treat the variables in V ∪ V ′ also as logical variables. Then any
mapping s : V → D can be considered as both a state of the transition system S

and a valuation for V in the structure M, and similarly for s′ : V ′ → D.
Definition 2 (Symbolic Representation) Let S be a set of states and A be a
formula with free variables in V. We say that A symbolically represents S in M, or
simply represents S if for every valuation s for V in M we have s ∈ S ⇔ M, s � A.
Likewise, we say that a formula B with free variables in V ∪ V ′ (symbolically)
represents a transition T in M if for every pair of valuations s, s′ in M for V and
V ′ respectively we have (s, s′) ∈ T ⇔ M, s, s′ � B. ❏

In the sequel we will follow the following convention. We will often identify a
symbolic representation of a transition with the transition itself. For example,
when T is a formula with free variables in V∪V ′ we can refer to T as a transition.
Definition 3 We say that a state sn is forward reachable from a state s0 w.r.t.
T if there exists a sequence of states s1, . . . , sn−1 such that for all i ∈ {0, . . . , n−
1} we have (si, si+1) ∈ T . In this case we also say that sn is reachable from s0
in n steps and that s0 is backward reachable from sn in n steps. ❏

Instead of “forward reachable” we will say “reachable”. When we speak about
reachability with respect to T , and T is clear from the context, we will simply
say “reachable”. The reachability problem can now be defined as follows.
Definition 4 (Reachability Problem) The reachability problem for M is the
following decision problem. Given formulas In,Fin, and Tr such that
1. In represents a set of states I, called the set of initial states;
2. Fin represents a set of states F , called the set of final states;
3. Tr represents the transition relation of a transition system S,

do there exist states s1 ∈ I, s2 ∈ F such that s2 is reachable from s1 w.r.t.
Tr? ❏

In fact, reachability is a family of decision problems parametrized by the struc-
ture M.

When we discuss instances of the reachability problem, we will call the formu-
las In and Fin the initial and final conditions, respectively, and Tr the transition
formula.

The reachability problem for infinite-state systems is, in general, undecid-
able. Various results on reachability are discussed in many papers, including
[9,1,13,2].



A Logical Reconstruction of Reachability 225

Algorithms for Checking Reachability. The algorithms for checking reach-
ability are based on the idea of building a symbolic representation of the set of
reachable states. There are two main kinds of reachability algorithms: forward
reachability and backward reachability . Forward reachability algorithms try to
build the set of states reachable from the initial states and check whether this
set of states contains any final state. Backward reachability algorithms try to
build the set of states backward reachable from the final states and check if this
set of states contains any initial state.

Before defining these algorithms, let us discuss symbolic representations of
forward and backward reachable states. We assume fixed initial and final condi-
tions In(V), Fin(V) and the transition formula Tr(V,V ′).

Let A(V) be a formula which represents a set of states S. It is not hard
to argue that the set of states reachable in one step from a state in S can be
represented by the formula ∃V1(A(V1) ∧ Tr(V1,V)). Likewise, the set of states
backward reachable in one step from a state in S is represented by the for-
mula ∃V1(A(V1)∧Tr(V,V1)). This observation implies the following facts about
forward and backward reachability.

Lemma 5 (Forward Reachability) Consider the sequence of formulas FRi de-
fined as follows: FR0(V) = In(V); FRi+1(V) = FRi(V) ∨ ∃V1(FRi(V1) ∧
Tr(V1,V)). Then each FRi symbolically represents the set of states reachable
from I in at most i steps. ❏

Lemma 6 (Backward Reachability) Consider the sequence of formulas BRi de-
fined as follows: BR0(V) = Fin(V); BRi+1(V) = BRi(V) ∨ ∃V1(BRi(V1) ∧
Tr(V,V1)). Then each BRi symbolically represents the set of states backward
reachable from F in at most i steps. ❏

Using these lemmas, one can prove two theorems which form the basis of
reachability algorithms.

Theorem 7 (Reachability) (i) There exists a final state reachable from an ini-
tial state if and only if there exists a number i ≥ 0 such that M � ∃V(FRi(V) ∧
Fin(V)). (ii) If there exists a number i ≥ 0 such that M 	� ∃V(FRi(V) ∧ Fin(V))
and M � ∀V(FRi+1(V ) → FRi(V)), then there exists no final state reachable
from an initial state. The same statements hold if one replaces FR by BR and
Fin by In.

This theorem reduces, in some sense, reachability-checking to checking whether
formulas of a special form are true in the structure M. The form of these formulas
depends on the symbolic representations In,Fin,Tr of the sets of initial and
finite states and the transition relation.

The basic reachability algorithms are based on explicit computation of the
formulas FRi and BRi and the use of Theorem 7.

Definition 8 The forward reachability algorithm Forward and the backward
reachability algorithm Backward are shown in Figures 1 and 2. They are pa-
rameterized by a function simp, called a simplification function. ❏



226 T. Rybina and A. Voronkov

procedure Forward
input: formulas In,Fin,Tr
output: “reachable” or “unreachable”
begin

current(V) := In(V)
while M �� ∃V(current(V) ∧ Fin(V))

next(V) :=
simp(current(V) ∨

∃V1(current(V1) ∧ Tr(V1, V)) )
if M � ∀V(next(V) → current(V))

then return “unreachable”
current(V) := next(V)

return “reachable”
end

Fig. 1. Forward reachability algorithm

procedure Backward
input: formulas In,Fin,Tr
output: “reachable” or “unreachable”
begin

current(V) := Fin(V)
while M �� ∃V(current(V) ∧ In(V))

prev(V) :=
simp(current(V) ∨

∃V1(current(V1) ∧ Tr(V, V1)) )
if M � ∀V(prev(V) → current(V))

then return “unreachable”
current(V) := prev(V)

return “reachable”
end

Fig. 2. Backward reachability algorithm

Usually, this formula transforms formulas into equivalent ones, i.e., M � ∀V(A ↔
simp(A)) for all formulas A.

In different reachability algorithms, the simplification function simp may
make a simple transformation, for example into a normal form, but may also
perform more complex ones, such as quantifier elimination. We will sometimes
need the simplification function simp to preserve some class of formulas. To this
end, we introduce the following definition. We call a function simp on formulas
stable w.r.t. a class of formulas C, if for every formula A ∈ C we have simp(A) ∈ C.

First-Order Theories of Infinite Structures. In this section we analyze
first-order structures which are suitable for reachability algorithms. In both for-
ward and backward reachability algorithms one has to solve repeatedly the fol-
lowing problems:

1. Satisfiability: whether the formula current(V)∧Fin(V) or current(V)∧ In(V)
is satisfiable in M.

2. Entailment: whether the formula next(V) → current(V) or prev(V) →
current(V) is valid in M.

Of course the reachability algorithms of Figures 1 and 2 can only be considered
as algorithms modulo the assumption that satisfiability- and entailment-checking
are decidable.

It is not hard to argue that the formulas current(V) at the ith iteration of
the while-loop are equivalent to the formulas FRi for forward reachability and
BRi for backward reachability, provided that simp is equivalence-preserving. If
simp(A) = A for every formula A, then the formulas current(V) are exactly the
formulas FRi for the forward reachability algorithm and BRi for the backward



A Logical Reconstruction of Reachability 227

reachability algorithm. This implies that the reachability algorithms have the
following properties.

Theorem 9 (Soundness and Semi-Completeness) The algorithms Forward and
Backward have the following properties: (i) there is a final state reachable from
an initial state if and only if the algorithm returns “reachable”; (ii) if the algo-
rithm returns “unreachable”, then there is no final state reachable from an initial
state. ❏

On some inputs the algorithms do not terminate. In this case we say that the
reachability analysis diverges.

Complexity of the satisfiability and entailment problems depends on the
structure M and the form of the formulas current used in the algorithm.

If the first-order theory of M is decidable, one can implement satisfiability-
and entailment-checking using a decision procedure for the first-order theory of
M. In some cases, one can even use off-the-shelf decision procedures or libraries.
For example, [5] use the Omega Library [16] for deciding Presburger arithmetic.
The use of general-purpose algorithms to decide specific classes of formulas may
be inefficient. Then specialized tools may be needed to decide these classes of
formulas more efficiently.

It is not hard to see that in many important special cases the formulas FRi

and BRi have a special form.

Lemma 10 Let In, Fin, and Tr be positive existential formulas and simp be
stable w.r.t. positive existential formulas. Then the formulas current in the algo-
rithms Forward and Backward are positive existential too. ❏

It follows from this lemma that it is enough to solve satisfiability and entailment
for positive existential formulas only, as soon as the initial and final conditions
and the transition formula are positive existential formulas, which they often
are. As we will see below, for some important special cases even quantifier-free
formulas suffice.

If the first-order theory of M admits quantifier elimination, i.e., every for-
mula is effectively equivalent to a quantifier-free formula, then it is enough to
check satisfiability and entailment of quantifier-free formulas only. This can be
achieved by applying quantifier elimination, i.e., replacing quantified formulas
by equivalent quantifier-free formulas, whenever quantified formulas appear, for
example, when transitions are applied. However, quantifier elimination may be
expensive.

Integer Systems. Denote by I the set of integers. Consider the structure
I = (I, >, <,≥,≤, +,−, 0, 1, 2, . . .), where all the function and predicate symbols
(for example, >) have their standard interpretation over integers. The first-
order theory of I is decidable, which means that one can use the reachability
algorithms Forward and Backward even when the initial and final conditions and
the transition formula are arbitrary first-order formulas. In addition, infinite-
state transition systems (of a very simple form) over the domain of integers can
be used for specifying safety properties of large classes of protocols, for example,



228 T. Rybina and A. Voronkov

broadcast protocols [9]. The first-order theory of I (essentially, the Presburger
arithmetic) admits quantifier elimination, if we extend the signature of I by
the predicates expressing m | (x − n) for concrete natural numbers m, n. We
will call the transition systems over I the integer transition systems and the
reachability problem over I the integer reachability problem. Off-the-shelf tools,
such as Omega Library [16] or the Composite Library [20], are available to decide
the Presburger arithmetic or its fragments.

The fact that satisfiability- and entailment-checking are decidable does not
necessarily imply that the reachability problem is decidable. Neither does it
imply that termination of the reachability algorithms is decidable. In this section
we note the following undecidability result, which will carry over to all classes
of transition systems and reachability algorithms studied in this paper.

Theorem 11 Consider the instances of the integer reachability problem with
three state variables c1, c2, s whose transition relation is a disjunction of con-
junctions of the following formulas: ci > 0 or s = n, where n is a natural
number, c′

i = ci + 1, c′
i = ci − 1, c′

i = ci, or s′ = m, where m is a natural
number. There is exactly one initial and one final state. Then

1. the reachability problem for this class is undecidable;
2. termination of the algorithm Forward is undecidable;
3. termination of the algorithm Backward is undecidable. ❏

One can easily prove this theorem by encoding two-counter machines by transi-
tion systems of this form. The systems used in the theorem are simple guarded
assignment systems (the definition is given below).

Some decidability results for integer systems are given in e.g., [9,1]. For ex-
ample, safety properties of broadcast protocols can be represented as instances
of the integer reachability problem, and the backward reachability algorithm
terminates on these instances [9].

4 Guarded Assignment Transition Systems

In this section we consider an important special case of transition systems in
which quantifier-free formulas can be used for backward reachability, even with-
out the use of expensive quantifier elimination algorithms. Guarded assignment
systems lie in the heart of the model-checking system BRAIN [18].

Guarded Assignments. As usual, we assume that V is the set of state variables
of the transition system.

Definition 12 (Guarded Assignment) A guarded assignment is any formula
(or transition) of the form P ∧ v′

1 = t1 ∧ . . . ∧ v′
n = tn ∧

∧
v∈V−{v1,...,vn} v′ = v,

where P is a formula with free variables V, {v1, . . . , vn} ⊆ V, and t1, . . . , tn are
terms with variables in V. We will write guarded assignments as

P ⇒ v1 := t1, . . . , vn := tn. (1)



A Logical Reconstruction of Reachability 229

drinks > 0 ∧ customers > 0 ⇒ drinks := drinks − 1 (* dispense-drink *)
true ⇒ drinks := drinks + 64 (* recharge *)
true ⇒ customers := customers + 1 (* customer-coming *)

customers > 0 ⇒ customers := customers − 1 (* customer-going *)

Fig. 3. Guarded assignment system

The formula P is called the guard of this guarded assignment.
A guarded assignment is quantifier-free (respectively, positive existential), if

so is its guard. A guarded assignment is called simple existential if its guard is
a conjunctive constraint, and simple if its guard is a simple constraint. ❏

Formula (1) represents a transition which applies to states satisfying P and
changes the values of variables vi to the values of the terms ti. Note that a
guarded assignment T is a deterministic transition: for every state s there exists
at most one state s′ such that (s, s′) ∈ T . Moreover, such a state s′ exists if and
only if the guard of this guarded assignment is true in s, i.e., M, s � P .

Definition 13 (Guarded Assignment System) A transition system is called a
guarded assignment system, or simply GAS , if its transition relation is a union
of a finite number of guarded assignments. A GAS is called quantifier-free (re-
spectively, positive existential , simple existential , or simple) if every guarded
assignment in it is also quantifier-free (respectively positive existential, simple
existential, or simple). ❏

An example integer guarded assignment system for representing a drink dis-
penser is given in Fig. 3. This system is a union of transitions shown in this
figure. Since all guards are simple constraints, the system is simple.

Note that every guarded assignment represents a deterministic transition,
but a guarded assignment system may represent a non-deterministic transition
system because several guards may be true in the same state. Not every transition
system is a guarded assignment system. Indeed, in every guarded assignment
system with a transition relation T for every state s there exists a finite number
of states s′ such that (s, s′) ∈ T . The greatest transition true over any infinite
structure M does not have this property.

Theorem 14 Every integer quantifier-free GAS is also a simple GAS. ❏

One can generalize this theorem to structures different from I. Indeed, the only
property of I used in this proof is that the negation of an atomic formula is
equivalent to a positive quantifier-free formula.

The notion of a guarded assignment system is not very restrictive. Indeed,
broadcast protocols and Petri nets can be represented as integer simple guarded
assignment systems. All transition systems for cache coherence protocols de-
scribed in [6] are integer simple GAS.

Let us note one interesting property of GAS related to properties other than
reachability. Let us call a state s a deadlock state if there is no state s′ such that
(s, s′) ∈ T , where T is the transition relation.



230 T. Rybina and A. Voronkov

Theorem 15 Let the transition relation T be a union of guarded assignments
(P1 ⇒ A1), . . . , (Pn ⇒ An). Then the set of all deadlock states is represented by
the formula ¬(P1 ∨ . . . ∨ Pn). ❏

This theorem shows that checking deadlock-freedom (i.e., non-reachability of a
deadlock state) of GAS may be as easy as checking reachability properties, for
example, if the GAS is quantifier-free, then the set of deadlock states can also be
represented by a quantifier-free formula. Theorem 15 is also used in the system
BRAIN to generate the deadlock-freedom conditions automatically.

Reachability Algorithms for Guarded Assignment Systems. We intro-
duced simple guarded assignment systems because they have a convenient prop-
erty related to backward reachability algorithms. Essentially, one can use back-
ward reachability algorithms for these systems when the underlying structure
has a much weaker property than the decidability of the first-order theory.

Let us see how the formulas FRi and BRi look like in the case of sim-
ple guarded assignment systems. Let u be a guarded assignment of the form
P (v1, . . . , vn) ⇒ v1 := t1, . . . , vn := tn. For simplicity we assume that V =
{v1, . . . , vn}. This can be achieved by adding “dummy” assignments v := v for
every variable v ∈ V − {v1, . . . , vn}. Let also A(v1, . . . , vn) be a formula whose
free variables are in V. For every term t denote by t′ the term obtained from t
by replacing every occurrence of every state variable vi by v′

i.
Define the following formulas: A−u(v1, . . . , vn) def= P (v1, . . . , vn) ∧ A(t1, . . . , tn);

Au(v1, . . . , vn) def= ∃V ′(A(v′
1, . . . , v

′
n) ∧ P (v′

1, . . . , v
′
n) ∧ v1 = t′

1 ∧ . . . ∧ vn = t′
n).

Lemma 16 Let a formula A(v1, . . . , vn) represent a set of states S. Then (i) the
formula Au(v1, . . . , vn) represents the set of states reachable in one step from S
using u; (ii) the formula A−u(v1, . . . , vn) represents the set of states backward
reachable in one step from S using u. ❏

One can deduce from this lemma that the formulas Au and A−u have a
special form, as expressed by the following lemma.

Lemma 17 Let u be a guarded assignment. Then the function A �→ Au is sta-
ble w.r.t. positive existential formulas and conjunctive constraints. The function
A �→ A−u is stable w.r.t. positive existential formulas, conjunctive constraints,
quantifier-free formulas, and simple constraints. ❏

Before this lemma, forward and backward reachability were treated symmetri-
cally. This lemma shows an asymmetry between forward and backward reach-
ability for simple GAS: the predicate transformer corresponding to backward
reachability yields simpler formulas. Using Lemma 16, one can modify forward
and backward reachability algorithms of Figures 1 and 2 for guarded assignment
transition systems.

Definition 18 The forward reachability algorithm GASForward and the back-
ward reachability algorithm GASBackward for GAS are shown in Figures 4 and 5.
When we check reachability for a GAS whose transition relation is a union of
guarded assignments u1, . . . , un, we let U = {u1, . . . , un} in the input of the
algorithm. ❏



A Logical Reconstruction of Reachability 231

procedure GASForward
input: formulas In,Fin,

finite set of guarded assignments U
output: “reachable” or “unreachable”
begin

current := In
while M �� ∃V(current ∧ Fin)

next := current ∨ ∨
u∈U currentu

if M � ∀V(next → current)
then return “unreachable”

current := next
return “reachable”

end

Fig. 4. Forward reachability algorithm
for GAS

procedure GASBackward
input: formulas In,Fin,

finite set of guarded assignments U
output: “reachable” or “unreachable”
begin

current := In
while M �� ∃V(current ∧ In)

prev := current ∨ ∨
u∈U current−u

if M � ∀V(prev → current)
then return “unreachable”

current := prev
return “reachable”

end

Fig. 5. Backward reachability algorithm
for GAS

Theorem 19 If the input GAS and the formulas In,Fin are quantifier-free, then
all of the formulas current in the algorithm GASBackward are quantifier-free too.
If, in addition, the input GAS and In,Fin are negation-free, then current is also
negation-free. ❏

This theorem shows that for quantifier-free GAS satisfiability and entailment in
the algorithm GASBackward should only be checked for quantifier-free formulas.
It does not hold for the forward reachability algorithm GASForward. Checking
satisfiability and validity of quantifier-free formulas is possible if the existential
theory (i.e., the set of all sentences of the form ∃XA, where A is quantifier-free)
of the structure M is decidable. There exist theories whose full first-order theory
is undecidable but existential theory is decidable. A simple example is Pres-
burger arithmetic extended by the divisibility predicate though it is not clear
how useful is this theory for applications. A more practical example are some
theories of queues considered in [4,3]. This shows that there are infinite domains
for which backward reachability may be easier to organize than forward reach-
ability. Of course one can omit the entailment checks from the algorithms, but
then they will only be applicable for checking reachability, but not for checking
non-reachability.

5 Local Algorithms

In this section we study so-called local algorithms, which are different from the
algorithms discussed above. They are simpler since checking for satisfiability and
entailment for simple GAS is only performed for conjunctive constraints, but not
so powerful since they may diverge for instances of reachability for which the
previously described algorithms terminate. The idea of these algorithms is to



232 T. Rybina and A. Voronkov

procedure LocalForward
input: sets of formulas IS , FS ,

finite set of guarded assignments U
output: “reachable” or “unreachable”
begin

if there exist I ∈ IS , F ∈ FS such that
M � ∃V(I ∧ F ) then

return “reachable”
unused := IS
used := ∅
while unused �= ∅

S := select(unused)
used := used ∪ {S}
unused := unused − {S}
forall u ∈ U

N := Su

if there exists F ∈ FS such that
M � ∃V(N ∧ F ) then

return “reachable”
if for all C ∈ used ∪ unused

M �� ∀V(N → C) then
unused = unused ∪ {N}
forall C′ ∈ used ∪ unused

if M � ∀V(C′ → N) then
remove C′ from used or unused

return “unreachable”
end

Fig. 6. Local forward reachability
algorithm

procedure LocalBackward
input: sets of formulas IS , FS ,

finite set of guarded assignments U
output: “reachable” or “unreachable”
begin

if there exist I ∈ IS , F ∈ FS such that
M � ∃V(I ∧ F ) then

return “reachable”
unused := FS
used := ∅
while unused �= ∅

S := select(unused)
used := used ∪ {S}
unused := unused − {S}
forall u ∈ U

N := S−u

if there exists I ∈ IS such that
M � ∃V(N ∧ I) then

return “reachable”
if for all C ∈ used ∪ unused

M �� ∀V(N → C) then
unused = unused ∪ {N}
forall C′ ∈ used ∪ unused

if M � ∀V(C′ → N) then
remove C′ from used or unused

return “unreachable”
end

Fig. 7. Local backward reachability
algorithm

get rid of disjunctions which appear in the formulas current even when the input
contains no disjunctions at all. Instead of a disjunction C1 ∨ . . . ∨ Cn, one deals
with the set of formulas {C1, . . . , Cn}. The entailment check is not performed
on the disjunction, but separately on each member Ci of the disjunction, and is
therefore called a local entailment check.

Definition 20 (Local Reachability Algorithms) The local forward reachability
algorithm LocalForward and local backward reachability algorithm LocalBackward
are given in Figures 6 and 7. They are parametrized by a function select which
selects a formula in a set of formulas. The input set of guarded assignments U
is defined as in the algorithms GASForward and GASBackward. The input sets
of formulas IS and FS are any sets of formulas such that In =

∨
A∈IS A and

Fin =
∨

A∈FS A. ❏

Local algorithms can be used not only for guarded assignment systems, but for
every system in which the transition relation is represented by a finite union of
transitions. One can prove soundness and semi-completeness of the algorithms
LocalForward and LocalBackward similar to that of Theorem 9. However, we
cannot guarantee that the algorithms terminate if and only if their non-local
counterparts terminate.



A Logical Reconstruction of Reachability 233

As an example, consider an integer GAS with one variable v whose transition
relation is represented by a single guarded assignment true ⇒ v := v − 1. Take
0 > 0 as the initial condition and v 	= 0 as the final condition. The non-local
backward reachability algorithm for GAS at the second iteration will generate
the formula v 	= 0 ∨ v 	= 1, and at the third iteration v 	= 0 ∨ v 	= 1 ∨ v 	= 2.
Since these formulas entail each other, the algorithm terminates. However, the
local backward reachability algorithm for GAS generates formulas v 	= 0, v 	= 1,
v 	= 2, . . . which do not entail one another, and hence diverges. One can give a
similar example for forward reachability.
Theorem 21 If LocalForward (respectively, LocalBackward) terminates, then so
does GASForward (respectively, GASBackward). ❏

Note that termination of the local algorithms may depend on the selection func-
tion select . Let us call the selection function fair if no formula remains in unused
forever.
Theorem 22 If the local forward (respectively backward) algorithm terminates
for some selection function, then it terminates for every fair selection function.❏

It is difficult to say whether there are problems coming from real applications
for which a non-local algorithm terminates but its local counterpart does not.
One can prove, for example, that for broadcast protocols LocalBackward always
terminates. The main property of the local algorithms is that subsumption and
entailment-checking is only performed on simpler classes of formulas.
Theorem 23 If the input GAS is conjunctive and the sets IS ,FS are sets
of conjunctive constraints, then all of the formulas current in the algorithms
LocalForward and LocalBackward are conjunctive constraints. If the input GAS
is simple and the sets IS ,FS are simple constraints then all of the formulas
current in LocalBackward are simple constraints too. ❏

The last property of local reachability algorithms is heavily used in the sys-
tem BRAIN. For some structures (for example the reals or the integers) the algo-
rithms for satisfiability-checking of simple constraints are a heavily investigated
subject. If the structure is I, then a simple constraint is essentially a system
of linear equations and inequations. Checking satisfiability of simple constraints
means solving such a system. For solving systems of linear equations and inequa-
tions over integers or reals several off-the-shelf tools are available. For example,
[7] implement satisfiability- and entailment-checking for conjunctive constraints
over real numbers using the corresponding built-in functions of the SICStus Pro-
log constraint library.

When a backward reachability algorithm is performed on GAS, we get a
quantifier elimination effect due to the special form of formulas A−u. Theo-
rems 19 and 23 show that in many cases entailment can be checked only be-
tween quantifier-free formulas or even simple constraints. Let us show that in
some cases entailment-checking can be performed using satisfiability-checking.
It is easy to see that a formula ∀V(A → B) is valid if and only if the formula
∃V(A ∧ ¬B) is unsatisfiable. Therefore, for quantifier-free GAS and backward
reachability algorithms one can use satisfiability-checking for quantifier-free for-
mulas also for entailment-checking.



234 T. Rybina and A. Voronkov

In the case of simple GAS the situation is not much more complicated.
Suppose that we would like to check an entailment problem of the form
∀V(A1 ∧ . . . ∧ An → B1 ∧ . . . ∧ Bm). This problem is equivalent to unsatisfi-
ability of the formula ∃V(A1 ∧ . . . ∧ An ∧ (¬B1 ∨ . . . ∨ ¬Bm)). This formula is
equivalent to ∃V(A1 ∧ . . . ∧ An ∧ ¬B1) ∨ · · · ∨ ∃V(A1 ∧ . . . ∧ An ∧ ¬Bm). There-
fore, to check the original entailment problem, one has to check m satisfiability
problems for the formulas A1 ∧ . . . ∧ An ∧ ¬Bi. These formulas are not simple
constraints any more, but can be made into simple constraints or disjunctions
of simple constraints if the first-order theory of the structure M has the follow-
ing property: the negation of any atomic formula is effectively equivalent to a
disjunction of atomic formulas. The first-order theory of I has this property, for
example the formula ¬x = y is equivalent to x > y ∨ y > x.

This observation shows that in many situations it is enough to implement
satisfiability-checking for simple constraints in order to implement backward
reachability. For example, for I it is enough to implement algorithms for solving
systems of linear equations and inequations.

One general obstacle for efficiency of reachability algorithms is the problem
of accumulated variables, i.e., existentially quantified variables introduced by
applications of the corresponding predicate transformers. We have shown that for
quantifier-free GAS and backward reachability algorithms no new variables are
accumulated. For forward reachability algorithms, GAS still have an advantage of
(normally) accumulating only a small number of extra variables. Indeed, consider
a guarded assignment u of the form P (v1, . . . , vk) ⇒ v1 := t1, . . . , vn := tn
and assume that V = {v1, . . . , vn, vn+1, . . . , vk}. Denote by t′1, . . . , t

′
n the terms

obtained from t1, . . . , tn by replacing each variable vi for i ∈ {1, . . . , n} by v′
i

(note that the variables vn+1, . . . , vk are not replaced). It is not hard to argue
that Au(v1, . . . , vk) is equivalent to

∃v′
1 . . .∃v′

n(A(v′
1, . . . , v

′
n, vn+1, . . . , vk) ∧ P (v′

1, . . . , v
′
n, vn+1, . . . , vk) ∧

v1 = t′1 ∧ . . . ∧ vn = t′n).

In this formula the new quantifiers bind the variables v′
1, . . . , v

′
n, i.e., only those

variables whose values are changed by the transition. In transition systems for-
malizing protocols (e.g., from [6]) the number of variables whose values are
changed by the transition is usually small compared to the overall number of
state variables.

In some cases accumulated existentially quantified variables are not the only
source of complexity. For example, for finite domains the number of variables
is usually large, and repeated substitutions of terms ti for vi make the formula
current grow exponentially. One way to make current shorter is to introduce extra
existentially quantified variables to name common subexpressions, in which case
the formulas current will not be quantifier-free even for simple GAS.

6 Related Work

Podelski [15] and Delzanno and Podelski [7] formalize model checking proce-
dures as constraint solving using a rather general framework. In fact, what they



A Logical Reconstruction of Reachability 235

call constraints are first-order formulas over structures. They treat a class of
properties more general than reachability and use GAS and local algorithms.
Our formalization has much in common with their formalization but our results
are, in a way, orthogonal, because they do not study special classes of formulas.
Among all results proved in this paper, only soundness and semi-completeness
are similar to those studied by Delzanno and Podelski. All other results of this
paper are new. In addition, Delzanno and Podelski do not discuss selection func-
tions, so their algorithms are less general than ours. The class of systems for
which Delzanno and Podelski’s algorithms can be applied is also less general
than the one studied here. Indeed, they require a constraint solver also to im-
plement variable elimination. If a theory has such a solver, then this theory also
has quantifier-elimination (every formula is equivalent to a boolean combination
of constraints). The solver is also able to decide satisfiability of constraints, so
in fact they deal with theories which are both decidable and have quantifier
elimination. They do not notice that in many special cases (as studied in this
paper) quantifier elimination is not required. Thus, our results encompass some
important theories (such as those of queues in Bjørner [3]) not covered by the
results of Delzanno and Podelski.

An approach to formalizing reachability for hybrid systems using first-order
logic is presented by Lafferriere, Pappas, and Yovine [14]. They also note that one
can use arbitrary first-order formulas (over reals) due to quantifier elimination.
Henzinger and Majumdar [10] present a classification of state transition systems,
but over the reals.

Lemma 16 which observes that for GAS backward reachability algorithms
do not introduce extra variables is similar to the axiom of assignment for the
weakest preconditions. This property is heavily used in BRAIN [18]. It is possible
that it has been exploited in other backward reachability symbolic search tools
but we could not find papers which observe this property.

Non-local reachability procedures for model checking were already formulated
in Emerson and Clarke [8], Queille and Sifakis [17]. Delzanno and Podelski [7]
studied algorithms based on local entailment in the framework of symbolic model
checking. They do not consider the behaviour of local algorithms for different
selection functions. Local algorithms could be traced to early works in automated
reasoning and later works on logic programming with tabulation (e.g., Warren
[19]), constraint logic programming, and constraint databases (e.g., Kanellakis,
Kuper, and Revesz [11]).

Kesten, Maler, Marcus, Pnueli, and Shahar [12] present a general approach to
symbolic model checking of infinite-state systems, but based on a single language
rather than different languages for different structures.

Guarded assignment systems (under various names) are studied in many
other papers, too numerous to be mentioned here. There are also many papers
on (un)decidability results for infinite-state systems, both over integers and other
structures, not mentioned here.

Our paper, as well as Delzanno and Podelski’s [7], was inspired by works
of Bultan, Gerber and Pugh (e.g., [5]) on symbolic model checking for systems



236 T. Rybina and A. Voronkov

with unbounded integer variables using decision procedures for Presburger arith-
metic. Delzanno and Podelski observe that the implementation of constraint-
based model checking in their system DMC is by an order of magnitude faster
than that of [5]. We implemented GAS and backward reachability algorithms
based on the results of our paper in the integer symbolic model checker BRAIN
[18]. The experimental results reported in [18] show that on difficult problems
BRAIN is several orders of magnitude faster than DMC. In particular, there are
several protocols which are currently only solved by BRAIN.

Acknowledgments. We thank Howard Barringer, Giorgio Delzanno, and An-
dreas Podelski for their comments on earlier versions of this paper.

References

1. P.A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. Algorithmic analysis of
programs with well quasi-ordered domains. Information and Computation, 160(1-
2):109–127, 2000.

2. P.A. Abdulla and B. Jonsson. Ensuring completeness of symbolic verification meth-
ods for infinite-state systems. Theoretical Computer Science, 256:145–167, 2001.

3. N.S. Bjørner. Integrating Decision Procedures for Temporal Verification. PhD
thesis, Computer Science Department, Stanford University, 1998.

4. N.S. Bjørner. Reactive verification with queues. In ARO/ONR/NSF/DARPA
Workshop on Engineering Automation for Computer-Based Systems, pages 1–8,
Carmel, CA, 1998.

5. T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with
unbounded integer variables: symbolic representations, approximations, and ex-
perimental results. ACM Transactions on Programming Languages and Systems,
21(4):747–789, 1999.

6. G. Delzanno. Automatic verification of parametrized cache coherence protocols. In
A.E. Emerson and A.P. Sistla, editors, Computer Aided Verification, 12th Interna-
tional Conference, CAV 2000, volume 1855 of Lecture Notes in Computer Science,
pages 53–68. Springer Verlag, 2000.

7. G. Delzanno and A. Podelski. Constraint-based deductive model checking. Inter-
national Journal on Software Tools for Technology Transfer, 3(3):250–270, 2001.

8. E.A. Emerson and E.M. Clarke. Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming, 2(3):241–266, 1982.

9. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols.
In 14th Annual IEEE Symposium on Logic in Computer Science (LICS’99), pages
352–359, Trento, Italy, 1999. IEEE Computer Society.

10. T.A. Henzinger and R. Majumdar. A classification of symbolic state transition
systems. In H. Reichel and S. Tison, editors, STACS 2000, volume 1770 of Lecture
Notes in Computer Science, pages 13–34. Springer Verlag, 2000.

11. P. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query languages. Journal
of Computer and System Sciences, 51:26–52, 1995.

12. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model
checking with rich assertional languages. Theoretical Computer Science, 256(1-
2):93–112, 2001.



A Logical Reconstruction of Reachability 237

13. O. Kupferman and M. Vardi. Model checking of safety properties. Formal Methods
in System Design, 19(3):291–314, 2001.

14. G. Lafferriere, G.J. Pappas, and S. Yovine. Symbolic reachability computation for
families of linear vector fields. Journal of Symbolic Computations, 32(3):231–253,
2001.

15. A. Podelski. Model checking as constraint solving. In J. Palsberg, editor, Static
Analysis, 7th International Symposium, SAS 2000, volume 1924 of Lecture Notes
in Computer Science, pages 22–37. Springer Verlag, 2000.

16. W. Pugh. Counting solutions to Presburger formulas: how and why. ACM SIG-
PLAN Notices, 29(6):121–134, June 1994. Proceedings of the ACM SIGPLAN’94
Conference on Programming Languages Design and Implementation (PLDI).

17. J.P Queille and J. Sifakis. Specification and verification of concurrent systems in
Cesar. In M. Dezani-Ciancaglini and M. Montanari, editors, International Sympo-
sium on Programming, volume 137 of Lecture Notes in Computer Science, pages
337–351. Springer Verlag, 1982.

18. T. Rybina and A. Voronkov. Using canonical representations of solutions to speed
up infinite-state model checking. In E. Brinksma and K.G. Larsen, editors, Com-
puter Aided Verification, 14th International Conference, CAV 2002, pages 386–400,
2002.

19. D.S. Warren. Memoing for logic programs. Communications of the ACM, 35(3):93–
111, 1992.

20. T. Yavuz-Kahveci, M. Tuncer, and T. Bultan. A library for composite symbolic
representations. In T. Margaria, editor, Tools and Algorithms for Construction and
Analysis of Systems, 7th International Conference, TACAS 2001, volume 1384 of
Lecture Notes in Computer Science, pages 52–66, Genova, Italy, 2001. Springer
Verlag.


	Introduction
	Preliminaries
	Transition Systems and Reachability: A Formalization in Logic
	Guarded Assignment Transition Systems
	Local Algorithms
	Related Work



