Demo: Application of Introduction Rule

Elsa L Gunter

CS576 Topics in Automated Deduction

Applying Elimination Rules

apply (erule <elim-rule>)

Like rule but also

@ unifies first premise of rule with an assumption

@ eliminates that assumption instead of conclusion

o proof (rule ...) generally does the work of erule in Isar.

Elsa L Gunter CS576 Topics in Automated Deduction

Rule: [?PA?Q; [?P; ?Q] =R =R
Subgoal: 1. [X;AAB Y| =2
Unification: PN\ Q=AANBand?R=7
New subgoal: 1. [X;Y] = [A;B] = Z
Same as: 1.[XY;4B] = 2
Elsa L Gunter CS576 Topics in Automated Deduction i /32

Demo: Examples

Elsa L Gunter

o Intro rules decompose formulae to the right of =
apply (rule <intro-rule>)
proof (rule <intro-rule>)

@ Elim rules decompose formulae to the left of =
apply (erule <elim-rule>)
proof (rule <elim-rule>)

Elsa L Gunter CS576 Topics in Automated Deduction i / 32

Safe and Unsafe Rules

Safe rules preserve provability:

conjI, impI, notI, iffI, refl, ccontr, classical, conjE, disjE

Unsafe rules can reduce a provable goal to one that is not:

disjI1, disjI2, impE, iffD1, iffD2, notE

Try safe rules before unsafe ones

Elsa L Gunter

CS576 Topics in Automated Deduction

CS576 Topics in Automated Deduction

— VS —

@ Theorems usually more useful written as
(A A=A

instead of A; A... A A, — A (easier to apply)

@ Exception: (in apply-style): induction variable must not occur in
premises

o Example: For induction on x, transform:

[AB(x)] = C(x) ~ A= B(x) — C(x)

@ Reverse transformation (after proof):

lemma abc [rule_formatl: A= B(x) — C(x)

Elsa L Gunter

CS576 Topics in Automated Deduction

Demo: Further Techniques

Elsa L Gunter

a-Conversion and Scope of Variables

@ Vx. P x: x can appear in P x.
Example: Vx. x = x is obtained by P — Au. u =u
@ Vx. P: x cannot appear in P
Example: P+ x = x yields Vx'. x = x
Bound variables are renamed automatically to avoid name clashes with
other variables.

Elsa L Gunter CS576 Topics in Automated Deduction i /32

Safe and Unsafe Rules

Safe: alll, exE

Unsafe: allE, exI

Create parameters first, unknowns later

Elsa L Gunter CS576 Topics in Automated Deduction

CS576 Topics in Automated Deduction

Natural Deduction Rules for Quantifiers

Ax. P x Vx.Px P7?7x=—R

alll

———allE
Vx.P x R

P 7?x Jx.Px Ax.Px=—R

exI exE

Jx. P x R

@ alll and exE introduce new parameters (Ax)

@ allE and exI introduce new unknowns (?x)

Elsa L Gunter CS576 Topics in Automated Deduction i / 32

Instantiating Variables in Rules

proof (rule_tac x = "term" in rule)

Like rule, but ?x in rule is instantiated with term before application.
?x must be schematic variable occurring in statement of rule.

Similar: erule_tac

I x is in rule, not in goal !

Elsa L Gunter

CS576 Topics in Automated Deduction

Three Apply-Style Successful Proofs Successful Attempt in Isar

1. Vx. Jy. x=y

apply (rule alll)

1. Axdy. x=y
Better practice: Exploration:
apply(rule_tac x = "x" in exI) apply (rule exI)
1. Ax. x=x 1. Ax. x =7yx
apply (rule refl) apply (rule refl)

7y — Au. u

simpler & cleaner shorter & trickier

Elsa L Gunter CS576 Topics in Automated Deduction

lemma shows "V (x::’a). Jy. x =y
proof (rule alll)
fix x::’a
show "Jy. x = y"
proof (rule exI)
show "x = x" by (rule refl)
qed
qed

Elsa L Gunter CS576 Topics in Automated Deduction

Two Unsuccessful Apply-Style Proof Attempts

1. Jy. Vx. x=y

apply (rule_tac apply (rule exI)

x = 7?77 in exI) 1. Vx. x =7y
apply(rule alll)
1. Ax. x =7y

apply(rule refl)
7y — x yields AX. ¥’ =x

Principles: 7f x;...x, can only be replaced by term t if
params(t) C {x1,...,xn}

Elsa L Gunter CS576 Topics in Automated Deduction i /32

Parameter Names

Parameter names are chosen by Isabelle

1. Vx. Jy. x=y
apply(rule alll)
1. Ax. Jy. x=y
apply(rule_tac x = "x" in exI)

Works, but is brittle!!

Better to use Isar, where you choose the name.

Elsa L Gunter CS576 Topics in Automated Deduction i / 32

Forward Proofs: frule and drule frule and drule: The General Case

“Forward” rule: A; — A

Subgoal: 1. [By;...;ByJ=C
Substitution: o(Bi) = o(A1)
New subgoal: 1. o([B1;...;Ba;Al = C)

Command:
apply(frule < rulename >)
Like frule but also deletes B;:

apply(drule < rulename >)

Rule: [A1;...; A = A
Creates additional subgoals:

1. (T(l]Bl;...;Bnu - AQ)

m—1. 0([Bs;...;Bn] = An)
m. o([By;...;Bn; Al = C)

Elsa L Gunter CS576 Topics in Automated Deduction

Elsa L Gunter CS576 Topics in Automated Deduction

Forward Proofs: OF Forwards Proofs: THEN

r [OF ri...r,]

Prove assumption 1 of theorem r with theorem rj, and assumption 2 with

r1 [THEN r5] means 1, [0F rq]
theorem r;, etc.
Rule r (A1 . A = A
Rule r1 [Bi;...;Ba]

Substitution o(B) = o(A1)
r [OF rq] ([B1;-.-:Bnihg;...; Ay = A)

Elsa L Gunter

CS576 Topics in Automated Deduction

Elsa L Gunter

CS576 Topics in Automated Deduction

Forward Proofs: of

Given a theorem like gcd mult_distrib2:

Alternately, with where you can
7k * gcd (?m, ?n) = gcd (7k * 7m, 7k * 7n)

specify the variable to get the term:
We want to replace ?m by 1.

gcd mult distrib2 [where m = "1"] yields
?k * gcd (1, 7n) = gcd (7k * 1, 7k * 7n)
of instantiates variables left to right Same result given gchuult _distrib2 [of _ 1]
In above the order is 7k, ?m, and 7n

and gcd mult_distrib2 [where m = "1" and k = "k"] yields
[of k 1] replaces 7k by k, and 7m by 1.

k * gcd (1, 7n) = ged (k * 1, k * 7n)
Caution: of and where cannot use goal parameters
gcd mult_distrib2 [of k 1] y|e|ds
k * gcd (1, "n) = gecd (k * 1, k * ?n)

Elsa L Gunter CS576 Topics in Automated Deduction i

Elsa L Gunter CS576 Topics in Automated Deduction .

Forward Proofs: lemmas Forward Proofs: 1lemmas

o Can use lemmas to capture result of forward proof: o Can combine multiple steps together:
lemmas gcd mult0 = gcd mult distrib2 [of k 1] lemmas gcd mult =

gcd mult_distrib2 [of _ 1

yields

ged (7k, 7k * 7n) = 7k

@ Can follow on with more forward reasoning:

lemmas gcdmultl = gcdmultO [simplified] yields
= gcd (k, k * ?n)

, simplified, THEN sym]

o [simplified] applies simp to theorem

Elsa L Gunter

CS576 Topics in Automated Deduction

Elsa L Gunter

CS576 Topics in Automated Deduction

Adding Assumptions to Goals Adding Assumptions to Goals

Note: of and where can use only original user variables, but not Isabelle

j i .as new assumption to current subgoal
1eRmbn ST botf2 189e tntf1p as new assumpti u ubg generated parameters

"lgcd(k,n) =1; k dvd m*n] =k dvd m"
apply (insert gcdmult distrib2 [of m k n])
yields: cut_tac k="m" and m="k" and n="n" in gcdmult_distrib2 yields
lgcd(k,n) = 1; k dvd m#*n; m#*ged(k,n) = gcd(m*k,m*n)] = k dvd same result as above

cut_tac can use parameters

Elsa L Gunter CS576 Topics in Automated Deduction /3 Elsa L Gunter CS576 Topics in Automated Deduction iy /

Adding Assumptions to Goals: subgoal_tac Adding Assumptions to Goals: subgoal_tac
@ Can always add assumption asm to current subgoal with 1. Ay A=A
apply (subgoal tac "asm") apply (subgoal tac "asm")
o Statement can use Isabelle parameters
o Adds new subgoal asm with same assumptions as current subgoal yields
1. [Ag;...;Ap asm] = A
2. [Ay;...;Ay] = asm
Elsa L Gunter CS576 Topics in Automated Deduction i / 32 Elsa L Gunter CS576 Topics in Automated Deduction i / 32
Removing Assumptions: thin tac “Clarifying” the Goal
o Can remove unwanted assumption asm from current subgoal with @ proof (intro ...)
apply (thin tac "asm") Repeated application of intro rules

Example: proof (intro alll)
1. [A . A 1A A A=A

@ proof (elim ...)
apply (thin_tac "A;")

Repeated application of elim rules

Example: proof (elim conjE)

yields @ proof (clarify)

Repeated application of safe rules without splitting goal

o proof (clarsimp simp add: ...)

1. Ay, . ;A3 1;Ai4q;...;Ap;asm| — A T
[4: R " [l Combination of clarify and simp

Elsa L Gunter CS576 Topics in Automated Deduction . / Elsa L Gunter CS576 Topics in Automated Deduction

Other Automated Proof Methods

@ blast Isabelle’s most powerful classical reasoner.
Useful for goals stated using only predicate logic and set theory
Can be extended with rules (with [iff] attribute) to handler broader
classes of goals

Demo: Proof Methods

@ auto
Applies to all subgoals.
Combines classical reasoning with simplification
Does what it can; leaves unfinished subgoals
Splits subgoals
@ force
Similar to auto, but only applies to one goal, and either finishes or
fails.
@ safe
Like clarify but also splits goals

Elsa L Gunter CS576 Topics in Automated Deduction Vi Elsa L Gunter CS576 Topics in Automated Deduction iy /

