
Demo: Application of Introduction Rule
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Applying Elimination Rules

apply (erule <elim-rule>)

Like rule but also

unifies first premise of rule with an assumption

eliminates that assumption instead of conclusion

proof (rule ...) generally does the work of erule in Isar.
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Example

Rule: [|?P∧?Q; [|?P; ?Q|] =⇒?R|] =⇒?R

Subgoal: 1. [|X; A ∧ B; Y|] =⇒ Z

Unification: ?P∧?Q ≡ A ∧ B and ?R ≡ Z

New subgoal: 1. [|X; Y|] =⇒ [|A; B|] =⇒ Z

Same as: 1.[|X; Y; A; B|] =⇒ Z
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How to Prove in Natural Deduction

Intro rules decompose formulae to the right of =⇒
apply (rule <intro-rule>)
proof (rule <intro-rule>)

Elim rules decompose formulae to the left of =⇒
apply (erule <elim-rule>)
proof (rule <elim-rule>)
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Demo: Examples
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Safe and Unsafe Rules

Safe rules preserve provability:

conjI, impI, notI, iffI, refl, ccontr, classical, conjE, disjE

Unsafe rules can reduce a provable goal to one that is not:

disjI1, disjI2, impE, iffD1, iffD2, notE

Try safe rules before unsafe ones
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=⇒ vs −→

Theorems usually more useful written as

[|A1; . . . ;An|] =⇒ A

instead of A1 ∧ . . . ∧ An −→ A (easier to apply)

Exception: (in apply-style): induction variable must not occur in
premises

Example: For induction on x , transform:

[|A;B(x)|] =⇒ C (x) ; A =⇒ B(x) −→ C (x)

Reverse transformation (after proof):

lemma abc [rule format]: A =⇒ B(x) −→ C (x)
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Demo: Further Techniques
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α-Conversion and Scope of Variables

∀x. P x: x can appear in P x.
Example: ∀x. x = x is obtained by P 7→ λu. u = u

∀x. P: x cannot appear in P

Example: P 7→ x = x yields ∀x′. x = x

Bound variables are renamed automatically to avoid name clashes with
other variables.
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Natural Deduction Rules for Quantifiers

Λx. P x
allI

∀x.P x

∀x. P x P ?x =⇒ R
allE

R

P ?x
exI

∃x. P x

∃x. P x Λx. P x =⇒ R
exE

R

allI and exE introduce new parameters (Λx)

allE and exI introduce new unknowns (?x)
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Safe and Unsafe Rules

Safe: allI, exE

Unsafe: allE, exI

Create parameters first, unknowns later

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 11

/ 32

Instantiating Variables in Rules

proof (rule tac x = "term" in rule)

Like rule, but ?x in rule is instantiated with term before application.
?x must be schematic variable occurring in statement of rule.

Similar: erule tac

! x is in rule, not in goal !
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Three Apply-Style Successful Proofs

1. ∀x. ∃y. x = y

apply (rule allI)

1. Λx .∃y . x = y

Better practice: Exploration:
apply(rule tac x = "x" in exI) apply (rule exI)

1. Λx. x = x 1. Λx. x =?yx
apply (rule refl) apply (rule refl)

?y 7→ λu. u

simpler & cleaner shorter & trickier
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Successful Attempt in Isar

lemma shows "∀ (x::’a). ∃ y. x = y"

proof (rule allI)

fix x::’a

show "∃ y. x = y"

proof (rule exI)

show "x = x" by (rule refl)

qed

qed
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Two Unsuccessful Apply-Style Proof Attempts

1. ∃y. ∀x. x = y

apply(rule tac apply (rule exI)

x = ??? in exI) 1. ∀x . x =?y
apply(rule allI)

1. Λx . x =?y
apply(rule refl)

?y 7→ x yields Λx′. x′ = x

Principles: ?f x1 . . . xn can only be replaced by term t if
params(t) ⊆ {x1,. . . ,xn}
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Parameter Names

Parameter names are chosen by Isabelle

1. ∀x. ∃y. x = y

apply(rule allI)

1. Λx. ∃y. x = y

apply(rule tac x = "x" in exI)

Works, but is brittle!!

Better to use Isar, where you choose the name.
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Forward Proofs: frule and drule

“Forward” rule: A1 =⇒ A

Subgoal: 1. [|B1; . . . ; Bn|] =⇒ C

Substitution: σ(Bi ) ≡ σ(A1)
New subgoal: 1. σ([|B1; . . . ; Bn; A|] =⇒ C)

Command:

apply(frule < rulename >)

Like frule but also deletes Bi :

apply(drule < rulename >)
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frule and drule: The General Case

Rule: [|A1; . . . ; Am|] =⇒ A

Creates additional subgoals:

1. σ([|B1; . . . ; Bn|] =⇒ A2)
...

m − 1. σ([|B1; . . . ; Bn|] =⇒ Am)
m. σ([|B1; . . . ; Bn; A|] =⇒ C)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 18

/ 32



Forward Proofs: OF

r [OF r1 . . . rn]

Prove assumption 1 of theorem r with theorem r1, and assumption 2 with
theorem r2, etc.

Rule r [|A1; . . . ; Am|] =⇒ A

Rule r1 [|B1; . . . ; Bn|] =⇒ B

Substitution σ(B) ≡ σ(A1)
r [OF r1] σ([|B1; . . . ; Bn; A2; . . . ; Am|] =⇒ A)
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Forwards Proofs: THEN

r1[THEN r2] means r2[OF r1]
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Forward Proofs: of
Given a theorem like gcd mult distrib2:

?k * gcd (?m, ?n) = gcd (?k * ?m, ?k * ?n)
We want to replace ?m by 1.
of instantiates variables left to right
In above the order is ?k, ?m, and ?n

[of k 1] replaces ?k by k, and ?m by 1.
gcd mult distrib2 [of k 1] yields

k * gcd (1, ?n) = gcd (k * 1, k * ?n)
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Forward Proofs: where

Alternately, with where you can specify the variable to get the term:
gcd mult distrib2 [where m = "1"] yields

?k * gcd (1, ?n) = gcd (?k * 1, ?k * ?n)
Same result given by gcd mult distrib2 [of 1]

and gcd mult distrib2 [where m = "1" and k = "k"] yields
k * gcd (1, ?n) = gcd (k * 1, k * ?n)

Caution: of and where cannot use goal parameters
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Forward Proofs: lemmas

Can use lemmas to capture result of forward proof:
lemmas gcd mult0 = gcd mult distrib2 [of k 1]

Can follow on with more forward reasoning:
lemmas gcd mult1 = gcd mult0 [simplified] yields
k = gcd (k, k * ?n)

[simplified] applies simp to theorem
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Forward Proofs: lemmas

Can combine multiple steps together:
lemmas gcd mult =

gcd mult distrib2 [of 1, simplified, THEN sym]

yields
gcd (?k, ?k * ?n) = ?k
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Adding Assumptions to Goals

insert thm insert thm as new assumption to current subgoallemma relprime dvd mult:

"[|gcd(k, n) = 1; k dvd m ∗ n|] =⇒ k dvd m”
apply (insert gcd mult distrib2 [of m k n])

yields:
[|gcd(k, n) = 1; k dvd m ∗ n; m ∗ gcd(k, n) = gcd(m ∗ k, m ∗ n)|] =⇒ k dvd m
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Adding Assumptions to Goals

Note: of and where can use only original user variables, but not Isabelle
generated parameters

cut tac k="m" and m="k" and n="n" in gcd mult distrib2 yields
same result as above

cut tac can use parameters
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Adding Assumptions to Goals: subgoal tac

Can always add assumption asm to current subgoal with
apply (subgoal tac "asm")

Statement can use Isabelle parameters

Adds new subgoal asm with same assumptions as current subgoal
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Adding Assumptions to Goals: subgoal tac

1. [|A1; . . . ; An|] =⇒ A

apply (subgoal tac "asm")

yields

1. [|A1; . . . ; An; asm|] =⇒ A

2. [|A1; . . . ; An|] =⇒ asm
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Removing Assumptions: thin tac

Can remove unwanted assumption asm from current subgoal with
apply (thin tac "asm")

1. [|A1; . . . ; Ai−1; Ai; Ai+1; . . . ; An|] =⇒ A

apply (thin tac "Ai")

yields

1. [|A1; . . . ; Ai−1; Ai+1; . . . ; An; asm|] =⇒ A
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“Clarifying” the Goal

proof (intro . . . )

Repeated application of intro rules
Example: proof (intro allI)

proof (elim . . . )

Repeated application of elim rules
Example: proof (elim conjE)

proof (clarify)

Repeated application of safe rules without splitting goal

proof (clarsimp simp add: . . . )

Combination of clarify and simp

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 30

/ 32



Other Automated Proof Methods

blast Isabelle’s most powerful classical reasoner.
Useful for goals stated using only predicate logic and set theory
Can be extended with rules (with [iff] attribute) to handler broader
classes of goals

auto

Applies to all subgoals.
Combines classical reasoning with simplification
Does what it can; leaves unfinished subgoals
Splits subgoals

force

Similar to auto, but only applies to one goal, and either finishes or
fails.

safe

Like clarify but also splits goals
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Demo: Proof Methods
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