
Demo: Application of Introduction Rule

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 1

/ 32

Applying Elimination Rules

apply (erule <elim-rule>)

Like rule but also

unifies first premise of rule with an assumption

eliminates that assumption instead of conclusion

proof (rule ...) generally does the work of erule in Isar.

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 2

/ 32

Example

Rule: [|?P∧?Q; [|?P; ?Q|] =⇒?R|] =⇒?R

Subgoal: 1. [|X; A ∧ B; Y|] =⇒ Z

Unification: ?P∧?Q ≡ A ∧ B and ?R ≡ Z

New subgoal: 1. [|X; Y|] =⇒ [|A; B|] =⇒ Z

Same as: 1.[|X; Y; A; B|] =⇒ Z

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 3

/ 32

How to Prove in Natural Deduction

Intro rules decompose formulae to the right of =⇒
apply (rule <intro-rule>)
proof (rule <intro-rule>)

Elim rules decompose formulae to the left of =⇒
apply (erule <elim-rule>)
proof (rule <elim-rule>)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 4

/ 32

Demo: Examples

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 5

/ 32

Safe and Unsafe Rules

Safe rules preserve provability:

conjI, impI, notI, iffI, refl, ccontr, classical, conjE, disjE

Unsafe rules can reduce a provable goal to one that is not:

disjI1, disjI2, impE, iffD1, iffD2, notE

Try safe rules before unsafe ones

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 6

/ 32



=⇒ vs −→

Theorems usually more useful written as

[|A1; . . . ;An|] =⇒ A

instead of A1 ∧ . . . ∧ An −→ A (easier to apply)

Exception: (in apply-style): induction variable must not occur in
premises

Example: For induction on x , transform:

[|A;B(x)|] =⇒ C (x) ; A =⇒ B(x) −→ C (x)

Reverse transformation (after proof):

lemma abc [rule format]: A =⇒ B(x) −→ C (x)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 7

/ 32

Demo: Further Techniques

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 8

/ 32

α-Conversion and Scope of Variables

∀x. P x: x can appear in P x.
Example: ∀x. x = x is obtained by P 7→ λu. u = u

∀x. P: x cannot appear in P

Example: P 7→ x = x yields ∀x′. x = x

Bound variables are renamed automatically to avoid name clashes with
other variables.

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 9

/ 32

Natural Deduction Rules for Quantifiers

Λx. P x
allI

∀x.P x

∀x. P x P ?x =⇒ R
allE

R

P ?x
exI

∃x. P x

∃x. P x Λx. P x =⇒ R
exE

R

allI and exE introduce new parameters (Λx)

allE and exI introduce new unknowns (?x)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 10

/ 32

Safe and Unsafe Rules

Safe: allI, exE

Unsafe: allE, exI

Create parameters first, unknowns later

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 11

/ 32

Instantiating Variables in Rules

proof (rule tac x = "term" in rule)

Like rule, but ?x in rule is instantiated with term before application.
?x must be schematic variable occurring in statement of rule.

Similar: erule tac

! x is in rule, not in goal !

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 12

/ 32



Three Apply-Style Successful Proofs

1. ∀x. ∃y. x = y

apply (rule allI)

1. Λx .∃y . x = y

Better practice: Exploration:
apply(rule tac x = "x" in exI) apply (rule exI)

1. Λx. x = x 1. Λx. x =?yx
apply (rule refl) apply (rule refl)

?y 7→ λu. u

simpler & cleaner shorter & trickier

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 13

/ 32

Successful Attempt in Isar

lemma shows "∀ (x::’a). ∃ y. x = y"

proof (rule allI)

fix x::’a

show "∃ y. x = y"

proof (rule exI)

show "x = x" by (rule refl)

qed

qed

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 14

/ 32

Two Unsuccessful Apply-Style Proof Attempts

1. ∃y. ∀x. x = y

apply(rule tac apply (rule exI)

x = ??? in exI) 1. ∀x . x =?y
apply(rule allI)

1. Λx . x =?y
apply(rule refl)

?y 7→ x yields Λx′. x′ = x

Principles: ?f x1 . . . xn can only be replaced by term t if
params(t) ⊆ {x1,. . . ,xn}

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 15

/ 32

Parameter Names

Parameter names are chosen by Isabelle

1. ∀x. ∃y. x = y

apply(rule allI)

1. Λx. ∃y. x = y

apply(rule tac x = "x" in exI)

Works, but is brittle!!

Better to use Isar, where you choose the name.

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 16

/ 32

Forward Proofs: frule and drule

“Forward” rule: A1 =⇒ A

Subgoal: 1. [|B1; . . . ; Bn|] =⇒ C

Substitution: σ(Bi ) ≡ σ(A1)
New subgoal: 1. σ([|B1; . . . ; Bn; A|] =⇒ C)

Command:

apply(frule < rulename >)

Like frule but also deletes Bi :

apply(drule < rulename >)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 17

/ 32

frule and drule: The General Case

Rule: [|A1; . . . ; Am|] =⇒ A

Creates additional subgoals:

1. σ([|B1; . . . ; Bn|] =⇒ A2)
...

m − 1. σ([|B1; . . . ; Bn|] =⇒ Am)
m. σ([|B1; . . . ; Bn; A|] =⇒ C)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 18

/ 32



Forward Proofs: OF

r [OF r1 . . . rn]

Prove assumption 1 of theorem r with theorem r1, and assumption 2 with
theorem r2, etc.

Rule r [|A1; . . . ; Am|] =⇒ A

Rule r1 [|B1; . . . ; Bn|] =⇒ B

Substitution σ(B) ≡ σ(A1)
r [OF r1] σ([|B1; . . . ; Bn; A2; . . . ; Am|] =⇒ A)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 19

/ 32

Forwards Proofs: THEN

r1[THEN r2] means r2[OF r1]

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 20

/ 32

Forward Proofs: of
Given a theorem like gcd mult distrib2:

?k * gcd (?m, ?n) = gcd (?k * ?m, ?k * ?n)
We want to replace ?m by 1.
of instantiates variables left to right
In above the order is ?k, ?m, and ?n

[of k 1] replaces ?k by k, and ?m by 1.
gcd mult distrib2 [of k 1] yields

k * gcd (1, ?n) = gcd (k * 1, k * ?n)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 21

/ 32

Forward Proofs: where

Alternately, with where you can specify the variable to get the term:
gcd mult distrib2 [where m = "1"] yields

?k * gcd (1, ?n) = gcd (?k * 1, ?k * ?n)
Same result given by gcd mult distrib2 [of 1]

and gcd mult distrib2 [where m = "1" and k = "k"] yields
k * gcd (1, ?n) = gcd (k * 1, k * ?n)

Caution: of and where cannot use goal parameters

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 22

/ 32

Forward Proofs: lemmas

Can use lemmas to capture result of forward proof:
lemmas gcd mult0 = gcd mult distrib2 [of k 1]

Can follow on with more forward reasoning:
lemmas gcd mult1 = gcd mult0 [simplified] yields
k = gcd (k, k * ?n)

[simplified] applies simp to theorem

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 23

/ 32

Forward Proofs: lemmas

Can combine multiple steps together:
lemmas gcd mult =

gcd mult distrib2 [of 1, simplified, THEN sym]

yields
gcd (?k, ?k * ?n) = ?k

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 24

/ 32



Adding Assumptions to Goals

insert thm insert thm as new assumption to current subgoallemma relprime dvd mult:

"[|gcd(k, n) = 1; k dvd m ∗ n|] =⇒ k dvd m”
apply (insert gcd mult distrib2 [of m k n])

yields:
[|gcd(k, n) = 1; k dvd m ∗ n; m ∗ gcd(k, n) = gcd(m ∗ k, m ∗ n)|] =⇒ k dvd m

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 25

/ 32

Adding Assumptions to Goals

Note: of and where can use only original user variables, but not Isabelle
generated parameters

cut tac k="m" and m="k" and n="n" in gcd mult distrib2 yields
same result as above

cut tac can use parameters

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 26

/ 32

Adding Assumptions to Goals: subgoal tac

Can always add assumption asm to current subgoal with
apply (subgoal tac "asm")

Statement can use Isabelle parameters

Adds new subgoal asm with same assumptions as current subgoal

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 27

/ 32

Adding Assumptions to Goals: subgoal tac

1. [|A1; . . . ; An|] =⇒ A

apply (subgoal tac "asm")

yields

1. [|A1; . . . ; An; asm|] =⇒ A

2. [|A1; . . . ; An|] =⇒ asm

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 28

/ 32

Removing Assumptions: thin tac

Can remove unwanted assumption asm from current subgoal with
apply (thin tac "asm")

1. [|A1; . . . ; Ai−1; Ai; Ai+1; . . . ; An|] =⇒ A

apply (thin tac "Ai")

yields

1. [|A1; . . . ; Ai−1; Ai+1; . . . ; An; asm|] =⇒ A

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 29

/ 32

“Clarifying” the Goal

proof (intro . . . )

Repeated application of intro rules
Example: proof (intro allI)

proof (elim . . . )

Repeated application of elim rules
Example: proof (elim conjE)

proof (clarify)

Repeated application of safe rules without splitting goal

proof (clarsimp simp add: . . . )

Combination of clarify and simp

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 30

/ 32



Other Automated Proof Methods

blast Isabelle’s most powerful classical reasoner.
Useful for goals stated using only predicate logic and set theory
Can be extended with rules (with [iff] attribute) to handler broader
classes of goals

auto

Applies to all subgoals.
Combines classical reasoning with simplification
Does what it can; leaves unfinished subgoals
Splits subgoals

force

Similar to auto, but only applies to one goal, and either finishes or
fails.

safe

Like clarify but also splits goals

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 31

/ 32

Demo: Proof Methods

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 32

/ 32


