
General Isar Proof Format

proof (method)
fix x
assume A0: formula0
from A0
have A1: formula1
by (method)
from A0 and A1

. . .
show formulan
proof (method)

. . .
qed

qed

Proves formula0 =⇒ formulan
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Basic Isar Syntax

proof = proof [method ] statement∗ qed
| by method

method = (simp . . . )|(auto . . . )|(blast . . . )|(rule . . . )| . . .

statement = fix variable+ (Λ)
| assume proposition (=⇒)
| [from name+] objective proof
| next (starts next subgoal)

objective = show proposition (next proof step)
| have proposition (local claim)
| obtain variable+ where proposition+

proposition = [name:] formula
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Proof Basics

Isabelle uses Natural Deduction proofs

Uses sequent encoding

Rule notation:

Rule Sequent Encoding
A1 . . . An

A
[|A1, . . . , An|] =⇒ A

A1 . . .

B
...
Ai . . . An

A

[|A1, . . . , B =⇒ Ai, . . . , An|] =⇒ A
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Natural Deduction

For each logical operator ⊕, have two kinds of rules:

Introduction: How can I prove A⊕ B?

?
A⊕ B

Elimination: What can I prove using A⊕ B?

. . .A⊕ B . . .

?
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Operational Reading

A1 . . .An

A

Introduction rule:
To prove A it suffices to prove A1 . . .An.

Elimination rule:
If we know A1 and we want to prove A

it suffices to prove A2 . . .An
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Natural Deduction for Propositional Logic

A B
conjI

A ∧ B

A ∧ B [|A; B|] =⇒ C
conjE

C

A

A ∨ B

B
disjI1/2

A ∨ B

A ∨ B A =⇒ C B =⇒ C
disjE

c

A =⇒ B
impI

A −→ B

A −→ B A B =⇒ C
impE

C
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Natural Deduction for Propositional Logic

A =⇒ B B =⇒ A
iffI

A = B

A = B A
iffD1

B

A = B B
iffD2

A

A =⇒ False
notI

¬A

¬A A
notE

B
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Equality

refl
t = t

s = t
sym

t = s

r = s s = t
trans

r = t

s = t A(s)
subst

A(t)

subst rarely needed explicitly – used implicitly by simp
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More Rules

A ∧ B
conjunct1

A

A ∧ B
conjunct2

B

A −→ B A
mp

B

Compare to elimination rules:

A ∧ B [|A; B|] =⇒ C
conjE

C

A −→ B A B =⇒ C
impE

C
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“Classical” Rules

¬A =⇒ False
ccontr

A

¬A =⇒ A
classical

A

ccontr and classical are not derivable from the Natural Deduction
rules.

They make the logic “classical”, i.e. “non-constructive or
“non-intuitionistic”.
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Proof by Assumption

In classical Natural Deduction,

A1 . . . Ai . . . An

Ai

If we know a bunch of things, including Ai , then we know Ai

In Isabelle

[|A|] =⇒ A
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Rule Application: The Rough Idea

Applying rule [|A1; . . . ;An|] =⇒ A to subgoal C :

Unify A and C

Replace C with n new subgoals: A′1 . . . A′n

Backwards reduction, like in Prolog

Example: rule: [|?P; ?Q|] =⇒?P∧?Q

subgoal: 1. A ∧ B

Result: 1. A

2. B
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Rule Application: More Complete Idea

Applying rule [|A1; . . . ;An|] =⇒ A to subgoal C :

Unify A and C with (meta)-substitution σ

Specialize goal to σ(C )

Replace C with n new subgoals: σ(A1) . . . σ(An)
Note: schematic variables in C treated as existential variables

Does there exist value for ?X in C that makes C true?

(Still not the whole story)
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rule Application

Rule: [|A1; . . . ;An|] =⇒ A

Subgoal: 1. [|B1; . . . ;Bm|] =⇒ C

Substitution: σ(A) ≡ σ(C )

New subgoals: 1. [|σ(B1); . . . ;σ(Bm)|] =⇒ σ(A1)
...
n. [|σ(B1); . . . ;σ(Bm)|] =⇒ σ(An)

Proves: [|σ(B1); . . . ;σ(Bm)|] =⇒ σ(C )

Command: apply (rule <rulename>)
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Proof by assumption

apply assumption

proves:

1. [|B1; . . . ;Bm|] =⇒ C

by unifying C with one of the Bi
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Demo: Application of Introduction Rule
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Applying Elimination Rules

apply (erule <elim-rule>)

Like rule but also

unifies first premise of rule with an assumption

eliminates that assumption instead of conclusion

proof (rule ...) generally does the work of erule in Isar.
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Example

Rule: [|?P∧?Q; [|?P; ?Q|] =⇒?R|] =⇒?R

Subgoal: 1. [|X; A ∧ B; Y|] =⇒ Z

Unification: ?P∧?Q ≡ A ∧ B and ?R ≡ Z

New subgoal: 1. [|X; Y|] =⇒ [|A; B|] =⇒ Z

Same as: 1.[|X; Y; A; B|] =⇒ Z
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How to Prove in Natural Deduction

Intro rules decompose formulae to the right of =⇒
apply (rule <intro-rule>)
proof (rule <intro-rule>)

Elim rules decompose formulae to the left of =⇒
apply (erule <elim-rule>)
proof (rule <elim-rule>)
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Demo: Examples

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 18, 2015 20

/ 29



Safe and Unsafe Rules

Safe rules preserve provability:

conjI, impI, notI, iffI, refl, ccontr, classical, conjE, disjE

Unsafe rules can reduce a provable goal to one that is not:

disjI1, disjI2, impE, iffD1, iffD2, notE

Try safe rules before unsafe ones
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=⇒ vs −→

Theorems usually more useful written as
[|A1; . . . ;An|] =⇒ A
instead of A1 ∧ . . . ∧ An −→ A (easier to apply)

Exception: (in apply-style): induction variable must not occur in
premises

Example: For induction on x , transform:
[|A;B(x)|] =⇒ C (x); A =⇒ B(x) −→ C (x)

Reverse transformation (after proof):
lemma abc [rule format]: A =⇒ B(x) −→ C (x)
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Demo: Further Techniques
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Parameters

Subgoal:

1. Λx1 . . . xn. Formula

The xi are called parameters of the subgoal
Intuition: local constants, i.e. arbitrary fixed values

Rules are automatically lifted passed Λx1 . . . xn and applied directly to
Formula
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Scope

Scope of parameters: whole subgoal

Scope of ∀, ∃, . . .: ends with ; or =⇒,
or enclosing )

Λxy . [|∀y . P y −→ Q z y ; Q x y |] =⇒ ∃x . Q x y
means

Λxy . [|(∀y1. P y1 −→ Q z y1); Q x y |] =⇒ ∃x1. Q x1 y
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α-Conversion and Scope of Variables

∀x. P x: x can appear in P x.
Example: ∀x. x = x is obtained by P 7→ λu. u = u

∀x. P: x cannot appear in P

Example: P 7→ x = x yields ∀x′. x = x

Bound variables are renamed automatically to avoid name clashes with
other variables.
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Natural Deduction Rules for Quantifiers

Λx. P x
allI

∀x.P x

∀x. Px P ?x =⇒ R
allE

R

P ?x
exI

∃x. P x

∃x. Px Λx. P x =⇒ R
exE

R

allI and exE introduce new parameters (Λx)

allE and exI introduce new unknowns (?x)
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Safe and Unsafe Rules

Safe: allI, exE

Unsafe: allE, exI

Create parameters first, unknowns later
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Instantiating Variables in Rules

proof (rule tac x = "term" in rule)

Like rule, but ?x in rule is instantiated with term before application.
?x must be schematic variable occurring in statement of rule.

Similar: erule tac

! x is in rule, not in goal !
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