General Isar Proof Format

```
proof (method)
     fix x
     assume A0: formula<sub>0</sub>
     from AO
     have A1: formula<sub>1</sub>
     by (method)
     from A0 and A1
        . . .
       show formulan
       proof (method)
       qed
qed
```

Proves $formula_0 \Longrightarrow formula_n$

Basic Isar Syntax

```
proof = proof [method] statement* qed
         by method
method = (simp...)|(auto...)|(blast...)|(rule...)|...
             assume proposition ( )

[from name<sup>+</sup>] objective proof

next.
statement = fix variable^+
                                                      (starts next subgoal)
objective = show proposition
                                                      (next proof step)
             | have proposition (loc
| obtain variable<sup>+</sup> where proposition<sup>+</sup>
                                                      (local claim)
proposition = [name:] formula
```

Proof Basics

- Isabelle uses Natural Deduction proofs
 - Uses sequent encoding
- Rule notation:

$$\begin{array}{ccc} \text{Rule} & \text{Sequent Encoding} \\ \frac{A_1 \dots A_n}{A} & & \|A_1, \dots, A_n\| \Longrightarrow A \\ \\ \frac{B}{\underbrace{A_1 \dots A_i}} & \vdots & \\ \underbrace{A_1 \dots A_n} & & \|A_1, \dots, B \Longrightarrow A_i, \dots, A_n\| \Longrightarrow A \end{array}$$

Natural Deduction

For each logical operator \oplus , have two kinds of rules:

Introduction: How can I prove $A \oplus B$?

$$\frac{?}{A \oplus B}$$

Elimination: What can I prove using $A \oplus B$?

$$\frac{\ldots A \oplus B \ldots}{\textbf{7}}$$

Operational Reading

$$\frac{A_1 \dots A_n}{A}$$

Introduction rule:

To prove A it suffices to prove $A_1 \dots A_n$.

Elimination rule:

If we know A_1 and we want to prove A it suffices to prove $A_2 \dots A_n$

Natural Deduction for Propositional Logic

$$\frac{A}{A \wedge B} \operatorname{conj} I$$

$$\frac{A \wedge B \quad [\![A;B]\!] \Longrightarrow C}{C} \operatorname{conj} E$$

$$\frac{A}{A \vee B}$$
 $\frac{B}{A \vee B}$ disjI1/2

$$\frac{\texttt{A} \vee \texttt{B} \quad \texttt{A} \Longrightarrow \texttt{C} \quad \texttt{B} \Longrightarrow \texttt{C}}{\texttt{c}} \, \texttt{disjE}$$

$$\frac{\mathtt{A} \Longrightarrow \mathtt{B}}{\mathtt{A} \longrightarrow \mathtt{B}} \, \mathtt{impI}$$

$$\frac{\texttt{A} \longrightarrow \texttt{B} \quad \texttt{A} \quad \texttt{B} \Longrightarrow \texttt{C}}{\texttt{C}} \texttt{impE}$$

Natural Deduction for Propositional Logic

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \text{ iffI} \qquad \frac{A = B \quad A}{B} \text{ iffD1}$$

$$\frac{A = B \quad B}{A} \text{ iffD2}$$

$$\frac{A \Longrightarrow \text{False}}{\neg A} \text{ notI} \qquad \frac{\neg A \quad A}{B} \text{ notE}$$

Equality

$$rac{ extsf{s} = extsf{t} \quad extsf{A(s)}}{ extsf{A(t)}} \, ext{subst}$$

subst rarely needed explicitly - used implicitly by simp

More Rules

$$\frac{\frac{A \wedge B}{A} \text{ conjunct1}}{\frac{A \longrightarrow B}{B}} \frac{A \wedge B}{B} \text{ conjunct2}$$

$$\frac{A \longrightarrow B}{B} \frac{A}{B} \text{ mp}$$

Compare to elimination rules:

$$\frac{\texttt{A} \land \texttt{B} \quad \llbracket \texttt{A}; \texttt{B} \rrbracket \Longrightarrow \texttt{C}}{\texttt{C}} \; \texttt{conjE} \quad \frac{\texttt{A} \longrightarrow \texttt{B} \quad \texttt{A} \quad \texttt{B} \Longrightarrow \texttt{C}}{\texttt{C}} \; \texttt{impE}$$

"Classical" Rules

$$\frac{\neg A \Longrightarrow False}{A} \ ccontr \qquad \frac{\neg A \Longrightarrow A}{A} \ classical$$

- ccontr and classical are not derivable from the Natural Deduction rules.
- They make the logic "classical", i.e. "non-constructive or "non-intuitionistic".

Proof by Assumption

In classical Natural Deduction,

$$\frac{A_1 \dots A_i \dots A_n}{A_i}$$

If we know a bunch of things, including A_i , then we know A_i

In Isabelle

$$[\![A]\!] \Longrightarrow A$$

Rule Application: The Rough Idea

Applying rule $[A_1; ...; A_n] \Longrightarrow A$ to subgoal C:

- Unify A and C
- Replace C with n new subgoals: $A'_1 \ldots A'_n$

Backwards reduction, like in Prolog

```
Example: rule: [?P; ?Q] \Longrightarrow ?P \land ?Q
```

subgoal: 1. $A \wedge B$

Result: 1. A

o 5

2. B

Rule Application: More Complete Idea

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

- ullet Unify A and C with (meta)-substitution σ
- Specialize goal to $\sigma(C)$
- Replace C with n new subgoals: $\sigma(A_1) \ldots \sigma(A_n)$

Note: schematic variables in C treated as existential variables

Does there exist value for ?X in C that makes C true?

(Still not the whole story)

cule Application

Rule:
$$[A_1; \ldots; A_n] \Longrightarrow A$$

Subgoal: 1.
$$[B_1; ...; B_m] \Longrightarrow C$$

Substitution:
$$\sigma(A) \equiv \sigma(C)$$

New subgoals: 1.
$$\llbracket \sigma(B_1); \ldots; \sigma(B_m) \rrbracket \Longrightarrow \sigma(A_1)$$

:

$$n. \|\sigma(B_1); \ldots; \sigma(B_m)\| \Longrightarrow \sigma(A_n)$$

Proves:
$$[\![\sigma(B_1);\ldots;\sigma(B_m)]\!] \Longrightarrow \sigma(C)$$

Proof by assumption

apply assumption

proves:

1.
$$[B_1; \ldots; B_m] \Longrightarrow C$$

by unifying C with one of the B_i

Demo: Application of Introduction Rule

Applying Elimination Rules

apply (erule <elim-rule>)

Like rule but also

- unifies first premise of rule with an assumption
- eliminates that assumption instead of conclusion
- proof (rule ...) generally does the work of erule in Isar.

Example

$$\mathsf{Rule} \colon \qquad [\![?\mathsf{P} \land ?\mathsf{Q}; [\![?\mathsf{P}; ?\mathsf{Q}]\!] \Longrightarrow ?\mathsf{R}]\!] \Longrightarrow ?\mathsf{R}$$

Subgoal: 1.
$$[X; A \land B; Y] \Longrightarrow Z$$

Unification:
$$?P \land ?Q \equiv A \land B \text{ and } ?R \equiv Z$$

New subgoal: 1.
$$[X; Y] \Longrightarrow [A; B] \Longrightarrow Z$$

Same as:
$$1.[X; Y; A; B] \Longrightarrow Z$$

How to Prove in Natural Deduction

Intro rules decompose formulae to the right of ⇒
 apply (rule <intro-rule>)
 proof (rule <intro-rule>)

Elim rules decompose formulae to the left of ⇒
 apply (erule <elim-rule>)

```
proof (rule < elim-rule>)
```

Demo: Examples

Safe and Unsafe Rules

Safe rules preserve provability:

```
conjI, impI, notI, iffI, refl, ccontr, classical, conjE, disjE
```

Unsafe rules can reduce a provable goal to one that is not:

```
disjI1, disjI2, impE, iffD1, iffD2, notE
```

Try safe rules before unsafe ones

- Theorems usually more useful written as $[A_1; ...; A_n] \Longrightarrow A$ instead of $A_1 \land ... \land A_n \longrightarrow A$ (easier to apply)
- Exception: (in apply-style): induction variable must not occur in premises
- Example: For induction on x, transform: $||A; B(x)|| \Longrightarrow C(x) \leadsto A \Longrightarrow B(x) \longrightarrow C(x)$ Reverse transformation (after proof):

lemma abc [rule_format]: $A \Longrightarrow B(x) \longrightarrow C(x)$

Demo: Further Techniques

Parameters

Subgoal:

1. $\Lambda x_1 \dots x_n$. Formula

The x_i are called *parameters* of the subgoal Intuition: local constants, i.e. arbitrary fixed values

Rules are automatically lifted passed $\Lambda x_1 \dots x_n$ and applied directly to *Formula*

Scope

- Scope of parameters: whole subgoal
- Scope of \forall , \exists , ...: ends with ; or \Longrightarrow , or enclosing)

α -Conversion and Scope of Variables

- $\forall x$. P x: x can appear in P x. Example: $\forall x$. x = x is obtained by P $\mapsto \lambda u$. u = u
- $\forall x$. P: x cannot appear in P Example: $P \mapsto x = x$ yields $\forall x'$. x = x

Bound variables are renamed automatically to avoid name clashes with other variables.

Natural Deduction Rules for Quantifiers

- allI and exE introduce new parameters (Λx)
- allE and exI introduce new unknowns (?x)

Safe and Unsafe Rules

Safe: allI, exE

Unsafe: allE, exI

Create parameters first, unknowns later

Instantiating Variables in Rules

```
proof (rule_tac x = "term" in rule)
```

Like rule, but ?x in *rule* is instantiated with *term* before application. ?x must be schematic variable occurring in statement of *rule*.

```
Similar: erule_tac
```

```
! x is in rule, not in goal!
```