General Isar Proof Format Basic Isar Syntax

proof (method)
fix x
assume AO: formulag
from AO
have Al: formula;
by (method)
from AO and Al

show formula,
proof (method)

qed
qed

Proves formulag = formula,

Elsa L Gunter CS576 Topics in Automated Deduction

proof = proof [method] statement* qed
| by method

method = (simp...)|(auto ...)|(blast ...)|(zule...)]|...
statement = fix variable™ (N)

| assume proposition (=)

| [from name™] objective proof

| next (starts next subgoal)
objective = show proposition (next proof step)

| have proposition (local claim)

| obtain variable™ where proposition™
proposition = [name:] formula

Elsa L Gunter CS576 Topics in Automated Deduction

For each logical operator &, have two kinds of rules:

o Isabelle uses Natural Deduction proofs
o Uses sequent encoding

@ Rule notation:
Sequent Encoding

Rule
Ay...A
% lA1, ... A =4
B
N A; JAs,...,B= As,..., Ay = A
. n
A
Elsa L Gunter CS576 Topics in Automated Deduction /29
Operational Reading
Ar...An
A

Introduction rule:
To prove A it suffices to prove A; ... A,.

Elimination rule:
If we know A; and we want to prove A

it suffices to prove Ay... A,

CS576 Topics in Automated Deduction

Elsa L Gunter

Introduction: How can | prove A® B?

A®B

Elimination: What can | prove using A&¢ B?

A®B...
?

CS576 Topics in Automated Deduction

Elsa L Gunter
Natural Deduction for Propositional Logic
A B AAB [AB]=C
conjI conjE
c

A B AVB A=—C B=C
—— ——adisjT1/2 disjE
AVB AVB c
A—B A—B A B=C
——— impI impE
A—B c

Elsa L Gunter CS576 Topics in Automated Deduction

Natural Deduction for Propositional Logic Equality

s=1 r=s s=t
refl sym trans
t=t t=s r=t
A—B B=—A A=B A
— iffI ——— iffD1
A=B B
s=t A(s
A= B subst
if£D2 A(t)
subst rarely needed explicitly — used implicitly by sim;
A = False —-A A Yy p y p y by p
notI notE
—A

Elsa L Gunter CS576 Topics in Automated Deduction / 2 Elsa L Gunter CS576 Topics in Automated Deduction iy / 2

More Rules “Classical” Rules
ANB ANB
conjunctl conjunct2
—A — False —A = A
A—B A —— ccontr —— classical
——— mp A A
B

Compare to elimination rules: . . .
P @ ccontr and classical are not derivable from the Natural Deduction

rules.
AAB [ABl=C A—B A B=C i :
— conjE impE o They make the logic ‘“classical”, i.e. “non-constructive or
C ¢ “non-intuitionistic”.

Proof by Assumption Rule Application: The Rough Idea

Applying rule |As;...; Ap] = A to subgoal C:

In classical Natural Deduction,
o Unify Aand C

Ao By Ay
A @ Replace C with n new subgoals: A} ... A}
Backwards reduction, like in Prolog

If we know a bunch of things, including A;, then we know A; Example: rule: [?P; 7Q] =>7PA?Q
In Isabelle subgoal: 1. AAB

Result: 1. A

[A] = A
2. B

Elsa L Gunter CS576 Topics in Automated Deduction . / Elsa L Gunter CS576 Topics in Automated Deduction /29

Rule Application: More Complete Idea Application

Applying rule [A1;...; A,] = A to subgoal C: Rule: [A. . A = A

e Unify A and C with (meta)-substitution o Subgoal: L [Bii-oiBml = C

o Specialize goal to o(C) Substitution: o (A) = o(C)

@ Replace C with n new subgoals: (A1) ... o(As) New subgoals: 1. [o(B1);...;0(Bm)] = 0(A1)
Note: schematic variables in C treated as existential variables :
Does there exist value for 7X in C that makes C true? n. [o(Bi);...;0(Bm)] = o(An)
(Still not the whole story) Proves: [0(By): .. 0(Bu)] — o(C)

Command: apply (rule <rulename>)

Elsa L Gunter CS576 Topics in Automated Deduction / 2 Elsa L Gunter CS576 Topics in Automated Deduction

apply assumption

proves:

1 1Bii.. B = C Demo: Application of Introduction Rule

by unifying C with one of the B;

Applying Elimination Rules Example
Rule: [?PA?Q; [?P; ?7Q] =7R] =R
apply (erule <elim-rule>)
Subgoal: 1. [X;AAB Y] =2
Like rule but also Unification: ~ ?PA?Q = AA B and ?R = Z
o unifies first premise of rule with an assumption New subgoal: 1. [X;Y] = [A;B] = Z
@ eliminates that assumption instead of conclusion Same as: 1[X;Y;4;B] = Z

o proof (rule ...) generally does the work of erule in Isar.

Elsa L Gunter CS576 Topics in Automated Deduction . / Elsa L Gunter CS576 Topics in Automated Deduction

How to Prove in Natural Deduction

@ Intro rules decompose formulae to the right of =
apply (rule <intro-rule>)
proof (rule <intro-rule>)

o Elim rules decompose formulae to the left of —
apply (erule <elim-rule>)
proof (rule <elim-rule>)

Elsa L Gunter CS576 Topics in Automated Deduction

Safe and Unsafe Rules

Safe rules preserve provability:

conjI, impI, notI, iffI, refl, ccontr, classical, conjE, disjE

Unsafe rules can reduce a provable goal to one that is not:

disjI1, disjI2, impE, iffD1, iffD2, notE

Try safe rules before unsafe ones

Elsa L Gunter CS576 Topics in Automated Deduction /29
Demo: Further Techniques
Elsa L Gunter CS576 Topics in Automated Deduction

Demo: Examples

Elsa L Gunter

CS576 Topics in Automated Deduction

— VS —

@ Theorems usually more useful written as
(A1 .. A=A
instead of A; A ... A A, — A (easier to apply)

@ Exception: (in apply-style): induction variable must not occur in
premises

o Example: For induction on x, transform:
[A; B(x)] = C(x)~» A= B(x) — C(x)
Reverse transformation (after proof):
lemma abc [rule format]: A= B(x) — C(x)

Elsa L Gunter CS576 Topics in Automated Deduction

Parameters

Subgoal:
1. Axqy..

. Xpn. Formula

The x; are called parameters of the subgoal
Intuition: local constants, i.e. arbitrary fixed values

Rules are automatically lifted passed Ax; ... x, and applied directly to
Formula

Elsa L Gunter

CS576 Topics in Automated Deduction

@ Scope of parameters: whole subgoal @ Vx. P x: x can appear in P x.
o Scope of V, 3, ...: ends with ; or =, Example: Vx. x = x is obtained by P — Au. u = u
or enclosing) @ Vx. P: x cannot appear in P

Example: P x = x yields Vx'. x = x
Axy. [Vy.Py — Qzy, Qxy]=3Ix.Q xy
means

Axy. [(W1. Py1 — Qzy); Qxy]=3x1. Qx1 y

Bound variables are renamed automatically to avoid name clashes with
other variables.

Elsa L Gunter CS576 Topics in Automated Deduction / 2 Elsa L Gunter CS576 Topics in Automated Deduction

Natural Deduction Rules for Quantifiers Safe and Unsafe Rules

Safe: alll, exE

Ax. P x Vx.Px P 7x =R
11T —
Vx.P x @ R allk Unsafe: allE, exI
P 7x Jx.Px Ax.Px—=—R Create parameters first, unknowns later
exI exE
Jx. P x R

@ alll and exE introduce new parameters (Ax)
@ allE and exI introduce new unknowns (?x)

Elsa L Gunter CS576 Topics in Automated Deduction ’ /20 Elsa L Gunter CS576 Topics in Automated Deduction ’ /29
Instantiating Variables in Rules
proof (rule_tac x = "term" in rule)

Like rule, but ?x in rule is instantiated with term before application.
7x must be schematic variable occurring in statement of rule.

Similar: erule_tac

I' xis in rule, not in goal !

Elsa L Gunter CS576 Topics in Automated Deduction

