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Rewriting: More Formally

substitution = mapping of variables to terms

l = r is applicable to term t[s] if there is a substitution σ such that
σ(l) = s

s is an instance of l

Result: t[σ(r)]

Also have theorem: t[s] = t[σ(r)]
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Example

Equation: 0 + n = n

Term: a + (0 + (b + c))

Substitution: σ = {n 7→ b + c}
Result: a + (b + c)

Theorem: a + (0 + (b + c)) = a + (b + c)
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Conditional Rewriting

Rewrite rules can be conditional:

[|P1; . . . ;Pn|] =⇒ l = r

is applicable to term t[s] with substitution σ if:

σ(l) = s and

σ(P1), . . . , σ(Pn) are provable (possibly again by rewriting)
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Variables

Three kinds of variables in Isabelle:

bound: ∀x. x = x

free: x = x

schematic : ?x =?x
(“unknown”, a.k.a. meta-variables)

Can be mixed in term or formula: ∀b. ∃y . f ?a y = b
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Variables

Logically: free = bound at meta-level

Operationally:

free variabes are fixed
schematic variables are instantiated by substitutions
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From x to ?x

State lemmas with free variables:

lemma app Nil2 [simp]: "xs @ [ ] = xs"
...
done

After the proof: Isabelle changes xs to ?xs (internally):

?xs @ [ ] = ?xs

Now usable with arbitrary values for ?xs
Example: rewriting

rev(a @ [ ]) = rev a

using app Nil2 with σ = {?xs 7→ a}
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Basic Simplification

Goal: 1. [|P1; . . . ; Pm|] =⇒ C

proof (simp add: eq thm1 . . . eq thmn)

Simplify (mostly rewrite) P1; . . . ;Pm and C using

lemmas with attribute simp

rules from primrec, fun and datatype

additional lemmas eq thm1 . . . eq thmn

assumptions P1; . . . ;Pm

Variations:

(simp . . . del: . . . ) removes simp-lemmas

add and del are optional
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auto versus simp

auto acts on all subgoals

simp acts only on subgoal 1

auto applies simp and more

simp concentrates on rewriting

auto combines rewriting with resolution
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Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly left to right.
Example: f (x) = g(x), g(x) = f (x) will not terminate.

[|P1, . . .Pn|] =⇒ l = r

is only suitable as a simp-rule only if l is “bigger” than r and each Pi .

(n < m) = (Suc n < Suc m) NO
(n < m) =⇒ (n < Suc m) = True YES
Suc n < m =⇒ (n < m) = True NO

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 11, 2015 10

/ 23



Assumptions and Simplification

Simplification of [|A1, . . . ,An|] =⇒ B:

Simplify A1 to A′1
Simplify [|A2, . . . ,An|] =⇒ B using A′1
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Ignoring Assumptions

Sometimes need to ignore assumptions; can introduce non-termination.
How to exclude assumptions from simp:
proof (simp (no asm simp). . . )

Simplify only the conclusion, but use assumptions

proof (simp (no asm use). . . )
Simplify all, but do not use assumptions

proof (simp (no asm). . . )
Ignore assumptions completely
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Rewriting with Definitions (definition)

Definitions do not have the simp attirbute.

They must be used explicitly:

proof (simp add: f def . . . )
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Ordered Rewriting

Problem: ?x+?y =?y+?x does not terminate
Solution: Permutative simp-rules are used only if the term becomes
lexicographically smaller.
Example: b + a ; a + b but not a + b ; b + a.
For types nat, int, etc., commutative, associative and distributive laws
built in.
Example: proof simp yields:

((B + A) + ((2 :: nat) ∗ C )) + (A + B) ;
. . .; 2 ∗ A + (2 ∗ B + 2 ∗ C )
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Preprocessing

simp-rules are preprocessed (recursively) for maximal simplification power:

¬A 7→ A = False

A −→ B 7→ A =⇒ B
A ∧ B 7→ A, B
∀x .A(x) 7→ A(?x)

A 7→ A = True

Example:

(p −→ q ∧ ¬r) ∧ s 7→
p =⇒ q = True,
p =⇒ r = False,
s = True
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Demo: Simplification through Rewriting
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General Isar Proof Format

proof (method)
fix x
assume A0: formula0
from A0
have A1: formula1
by (method)
from A0 and A1

. . .
show formulan
proof (method)

. . .
qed

qed

Proves formula0 =⇒ formulan
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Basic Isar Syntax

proof = proof [method ] statement∗ qed
| by method

method = (simp . . . )|(auto . . . )|(blast . . . )|(rule . . . )| . . .

statement = fix variable+ (Λ)
| assume proposition (=⇒)
| [from name+] objective proof
| next (starts next subgoal)

objective = show proposition (next proof step)
| have proposition (local claim)
| obtain variable+ where proposition+

proposition = [name:] formula
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Proof Basics

Isabelle uses Natural Deduction proofs

Uses sequent encoding

Rule notation:

Rule Sequent Encoding
A1 . . . An

A
[|A1, . . . , An|] =⇒ A

A1 . . .

B
...
Ai . . . An

A

[|A1, . . . , B =⇒ Ai, . . . , An|] =⇒ A
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Natural Deduction

For each logical operator ⊕, have two kinds of rules:

Introduction: How can I prove A⊕ B?

?
A⊕ B

Elimination: What can I prove using A⊕ B?

. . .A⊕ B . . .

?
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Operational Reading

A1 . . .An

A

Introduction rule:
To prove A it suffices to prove A1 . . .An.

Elimination rule:
If we know A1 and we want to prove A

it suffices to prove A2 . . .An

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 11, 2015 21

/ 23



Natural Deduction for Propositional Logic

A B
conjI

A ∧ B

A ∧ B [|A; B|] =⇒ C
conjE

C

A

A ∨ B

B
disjI1/2

A ∨ B

A ∨ B A =⇒ C B =⇒ C
disjE

c

A =⇒ B
impI

A −→ B

A −→ B A B =⇒ C
impE

C
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Natural Deduction for Propositional Logic

A =⇒ B B =⇒ A
iffI

A = B

A = B A
iffD1

B

A = B B
iffD2

A
A =⇒ False

notI
¬A

¬A A
notE

B
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