CS576 Topics in Automated Deduction

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu

http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipkow

February 11, 2015

Rewriting: More Formally

substitution = mapping of variables to terms

- l=r is applicable to term t[s] if there is a substitution σ such that $\sigma(l)=s$
 - s is an instance of /
- Result: $t[\sigma(r)]$
- Also have theorem: $t[s] = t[\sigma(r)]$

Example

- Equation: 0 + n = n
- Term: a + (0 + (b + c))
- Substitution: $\sigma = \{n \mapsto b + c\}$
- Result: a + (b + c)
- Theorem: a + (0 + (b + c)) = a + (b + c)

Conditional Rewriting

Rewrite rules can be conditional:

$$[\![P_1;\ldots;P_n]\!] \Longrightarrow I = r$$

is applicable to term t[s] with substitution σ if:

- $\sigma(I) = s$ and
- $\sigma(P_1), \ldots, \sigma(P_n)$ are provable (possibly again by rewriting)

Variables

Three kinds of variables in Isabelle:

```
• bound: \forall x. \ x = x
```

• free: x = x

schematic: ?x =?x("unknown", a.k.a. meta-variables)

Can be mixed in term or formula: $\forall b$. $\exists y$. f ?a y = b

Variables

- Logically: free = bound at meta-level
- Operationally:
 - free variabes are fixed
 - schematic variables are instantiated by substitutions

From x to ?x

State lemmas with free variables:

```
lemma app_Nil2 [simp]: "xs @ [] = xs"
:
done
```

After the proof: Isabelle changes xs to ?xs (internally):

$$?xs @ [] = ?xs$$

Now usable with arbitrary values for ?xs Example: rewriting

using app_Ni12 with $\sigma = \{?xs \mapsto a\}$

Basic Simplification

```
Goal: 1. [P_1; ...; P_m] \Longrightarrow C
proof (simp add: eq_-thm_1 ... eq_-thm_n)
```

Simplify (mostly rewrite) $P_1; ...; P_m$ and C using

- lemmas with attribute simp
- rules from primrec, fun and datatype
- additional lemmas eq_thm₁ ... eq_thm_n
- assumptions $P_1; \ldots; P_m$

Variations:

- (simp ...del: ...) removes simp-lemmas
- add and del are optional

auto versus simp

- auto acts on all subgoals
- simp acts only on subgoal 1
- auto applies simp and more
 - simp concentrates on rewriting
 - auto combines rewriting with resolution

Termination

Simplification may not terminate.

Isabelle uses simp-rules (almost) blindly left to right.

Example: f(x) = g(x), g(x) = f(x) will not terminate.

$$[\![P_1,\ldots P_n]\!] \Longrightarrow I = r$$

is only suitable as a simp-rule only if I is "bigger" than r and each P_i .

$$(n < m) = (Suc n < Suc m)$$
 NO
 $(n < m) \Longrightarrow (n < Suc m) = True$ YES
 $Suc n < m \Longrightarrow (n < m) = True$ NO

Assumptions and Simplification

Simplification of $[A_1, \ldots, A_n] \Longrightarrow B$:

- Simplify A_1 to A'_1
- Simplify $[\![A_2,\ldots,A_n]\!] \Longrightarrow B$ using A_1'

Ignoring Assumptions

```
Sometimes need to ignore assumptions; can introduce non-termination. How to exclude assumptions from simp:

proof (simp (no_asm_simp)...)

Simplify only the conclusion, but use assumptions

proof (simp (no_asm_use)...)

Simplify all, but do not use assumptions

proof (simp (no_asm)...)

Ignore assumptions completely
```

Rewriting with Definitions (definition)

Definitions do not have the simp attirbute.

They must be used explicitly:

```
proof (simp add: f_def...)
```

Ordered Rewriting

Problem: ?x+?y = ?y+?x does not terminate

Solution: Permutative simp-rules are used only if the term becomes lexicographically smaller.

Example: $b + a \rightarrow a + b$ but not $a + b \rightarrow b + a$.

For types nat, int, etc., commutative, associative and distributive laws built in.

Example: proof simp yields:

$$((B+A)+((2::nat)*C))+(A+B) \sim$$

... $\sim 2*A+(2*B+2*C)$

Preprocessing

simp-rules are preprocessed (recursively) for maximal simplification power:

$$\begin{array}{cccc}
\neg A & \mapsto & A = \texttt{False} \\
A \longrightarrow B & \mapsto & A \Longrightarrow B \\
A \land B & \mapsto & A, B \\
\forall x. A(x) & \mapsto & A(?x) \\
A & \mapsto & A = \texttt{True}
\end{array}$$

Example:

$$(\mathtt{p} \longrightarrow \mathtt{q} \wedge \neg \mathtt{r}) \wedge \mathtt{s} \mapsto p \Longrightarrow r = \mathtt{False}, \\ s = \mathit{True}$$

Demo: Simplification through Rewriting

General Isar Proof Format

```
proof (method)
     fix x
     assume A0: formula<sub>0</sub>
     from AO
     have A1: formula<sub>1</sub>
     by (method)
     from A0 and A1
        . . .
       show formulan
       proof (method)
       qed
qed
```

Proves $formula_0 \Longrightarrow formula_n$

Basic Isar Syntax

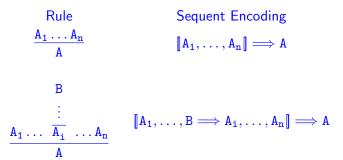
```
proof = proof [method] statement* qed
         by method
method = (simp...)|(auto...)|(blast...)|(rule...)|...
             assume proposition ( )

[from name<sup>+</sup>] objective proof

next.
statement = fix variable^+
                                                      (starts next subgoal)
objective = show proposition
                                                      (next proof step)
             | have proposition (loc
| obtain variable<sup>+</sup> where proposition<sup>+</sup>
                                                      (local claim)
proposition = [name:] formula
```

Proof Basics

- Isabelle uses Natural Deduction proofs
 - Uses sequent encoding
- Rule notation:



Natural Deduction

For each logical operator \oplus , have two kinds of rules:

Introduction: How can I prove $A \oplus B$?

$$\frac{?}{A \oplus B}$$

Elimination: What can I prove using $A \oplus B$?

$$\frac{\ldots A \oplus B \ldots}{?}$$

Operational Reading

$$\frac{A_1 \dots A_n}{A}$$

Introduction rule:

To prove A it suffices to prove $A_1 \dots A_n$.

Elimination rule:

If we know A_1 and we want to prove A it suffices to prove $A_2 \dots A_n$

Natural Deduction for Propositional Logic

$$\frac{A \ B}{A \wedge B} \operatorname{conj} I$$

$$\frac{A}{A \vee B}$$
 $\frac{B}{A \vee B}$ disjI1/2

$$\frac{A \Longrightarrow B}{A \longrightarrow B} \text{impI}$$

$$\frac{A \land B \ \|A; B\| \Longrightarrow C}{C} \operatorname{conj} E$$

$$\frac{\texttt{A} \vee \texttt{B} \quad \texttt{A} \Longrightarrow \texttt{C} \quad \texttt{B} \Longrightarrow \texttt{C}}{\texttt{c}} \, \texttt{disjE}$$

$$\frac{A \longrightarrow B \ A \ B \Longrightarrow C}{C}$$
 impE

Natural Deduction for Propositional Logic

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \text{ iffD1}$$

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \text{ iffI}$$

$$\frac{A \Longrightarrow False}{\neg A} \text{ notI}$$

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{\neg A} \text{ iffD2}$$

$$\frac{A \Longrightarrow A}{\neg A} \text{ notE}$$