Rewriting: More Formally

substitution = mapping of variables to terms

CS576 Topics in Automated Deduction e | = r is applicable to term t[s] if there is a substitution o such that
o(l)=s

e sis an instance of /
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o Equation: 0+n—n Rewrite rules can be conditional:

Term: a+ (0+ (b+¢)) 1P Pl =1 =r
Substitution: o = {n+ b+ c}

Result: a+ (b+ c)

Theorem: a+ (0+ (b+c))=a+(b+¢)

is applicable to term t[s] with substitution o if:

e (/) =sand

@ o(P1),...,0(Py,) are provable (possibly again by rewriting)
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Three kinds of variables in Isabelle: o Logically: free = bound at meta-level

@ bound: Vx. x =x o Operationally:

o free: x =x o free variabes are fixed

@ schematic: 7x =7x e schematic variables are instantiated by substitutions
(“unknown”, a.k.a. meta-variables)

Can be mixed in term or formula: Vb. Jy. f 7ay = b
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From x to 7x

State lemmas with free variables:

lemma app Nil2 [simp]: "xs @ [ ] = xs"

done
After the proof: Isabelle changes xs to 7xs (internally):

7xs @ [ ] = 7xs
Now usable with arbitrary values for ?xs
Example: rewriting
rev(a @ [ ]) = rev a

using app_Nil2 with o = {?xs +— a}
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Basic Simplification

Goal: 1. [Py;...;Py] = C

proof (simp add: eq-thmy ... eq_thm,)
Simplify (mostly rewrite) Ps;...; Py and C using
@ lemmas with attribute simp

o rules from primrec, fun and datatype

o additional lemmas eq_thm; ... eq_thm,
@ assumptions Pi;...; Py
Variations:
o (simp ...del: ...) removes simp-lemmas

@ add and del are optional
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auto versus simp Termination

@ auto acts on all subgoals
@ simp acts only on subgoal 1
@ auto applies simp and more
e simp concentrates on rewriting

e auto combines rewriting with resolution
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Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly left to right.
Example: f(x) = g(x), g(x) = f(x) will not terminate.

[P1y... Pl = 1=
is only suitable as a simp-rule only if / is “bigger” than r and each P;.

(n<m)=(Sucn<Sucm) NO
(n <m) = (n < Sucm)=True YES
Sucn<m= (n<m)=True NO

Assumptions and Simplification Ignoring Assumptions

Simplification of [Aq,.
e Simplify A; to A}
o Simplify [Az,..

LA = B:

., Ap] = B using A}
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Sometimes need to ignore assumptions; can introduce non-termination.
How to exclude assumptions from simp:
proof (simp (no_asm_simp)...)

Simplify only the conclusion, but use assumptions

proof (simp (no_asm_use)...)
Simplify all, but do not use assumptions

proof (simp (no_asm)...)
Ignore assumptions completely

Elsa L Gunter CS576 Topics in Automated Deduction /23



Rewriting with Definitions (definition) Ordered Rewriting

Problem: 7x+7y =7y+7x does not terminate

Solution: Permutative simp-rules are used only if the term becomes

.. lexicographically smaller.

They must be used explicitly: Example: b+a~»a+bbutnota+b~ b+ a.

For types nat, int, etc., commutative, associative and distributive laws
built in.

Example: proof simp yields:

Definitions do not have the simp attirbute.

proof (simp add: f.def...)

((B+A)+((2:: nat) « C)) + (A+ B) ~
oo 25xA+(2xB+2%C)
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Preprocessing

simp-rules are preprocessed (recursively) for maximal simplification power:

-A — A=False
A—B = A=2B8 Demo: Simplification through Rewriting
ANB — A, B
Vx.A(x) — A(?x)
A — A=True

Example:
p = q = True,
(p—qA-T)As +— p=—>r=False,
s = True
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General Isar Proof Format Basic Isar Syntax
proof = proof [method| statement* ged
proof (method) | by method
fix x
assume AQ: formulag method = (simp...)|(auto ...)|(blast ...)|(rule...)]|...
from AO
have Al: formula; statement = fix variable™ (/\)
by (method) |  assume proposition (=)
from AQ and Al | [from name™] objective proof
o | next (starts next subgoal)
show formula,
proof (method) objective = show proposition (next proof step)
o |  have proposition (local claim)
qed | obtain variable™ where proposition™
qed ..
proposition = [name:] formula
Proves formula; = formula,
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o Isabelle uses Natural Deduction proofs For each logical operator &, have two kinds of rules:

e Uses sequent encoding

® Rule notation: Introduction: How can | prove A& B?

Rule Sequent Encoding
Ay.. . Ay ?
St Ap,.. A=A L
A A1y A®B
B Elimination: What can | prove using A ¢ B?
: LAGB. L.
- [A1,...,B==As,....As] = A —_——
Ar... B, Ay /
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Operational Reading Natural Deduction for Propositional Logic
Ar...An
_— AB AAB[A;B] =C
A conjI —————— conjE
ANB C
Introduction rule:
To prove A it suffices to prove Aj ... Ap.
A B AVB A= C B=C
—  ——disjI1/2 disjE
. AVB AVB c
Elimination rule:
If we know A; and we want to prove A
it suffices to prove Ay ... A, A=B A—BAB=—C
— impI ——— impE
A—B C
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Natural Deduction for Propositional Logic

A=B
iffD1

A—B B—A
— iffI
A=B
A=B B
iffD2
A = False —A

notl
—A B

notE
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