CS576 Topics in Automated Deduction

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu

http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipkow February 11, 2015

Rewriting: More Formally

 ${\it substitution} = {\it mapping} \ {\it of} \ {\it variables} \ {\it to} \ {\it terms}$

- \bullet I=r is applicable to term t[s] if there is a substitution σ such that
 - s is an instance of /
- Result: $t[\sigma(r)]$
- Also have theorem: $t[s] = t[\sigma(r)]$

Example

- Equation: 0 + n = n
- Term: a + (0 + (b + c))
- Substitution: $\sigma = \{n \mapsto b + c\}$
- Result: a + (b + c)
- Theorem: a + (0 + (b + c)) = a + (b + c)

Conditional Rewriting

Rewrite rules can be conditional:

$$[\![P_1;\ldots;P_n]\!] \Longrightarrow I = r$$

is applicable to term t[s] with substitution σ if:

- $\sigma(I) = s$ and
- \bullet $\sigma(P_1), \ldots, \sigma(P_n)$ are provable (possibly again by rewriting)

Variables

Three kinds of variables in Isabelle:

- bound: $\forall x. \ x = x$
- free: x = x
- schematic: ?x = ?x

("unknown", a.k.a. meta-variables)

Can be mixed in term or formula: $\forall b$. $\exists y$. f ?a y = b

Variables

- \bullet Logically: free = bound at meta-level
- Operationally:
 - free variabes are fixed
 - schematic variables are instantiated by substitutions

From x to ?x

State lemmas with free variables:

```
lemma app_Nil2 [simp]: "xs @ [ ] = xs"
:
```

After the proof: Isabelle changes xs to ?xs (internally):

Now usable with arbitrary values for ?xs

Example: rewriting

using app_Nil2 with $\sigma = \{?xs \mapsto a\}$

Basic Simplification

Goal: 1.
$$[P_1; ...; P_m] \Longrightarrow C$$

Simplify (mostly rewrite) $P_1; ...; P_m$ and C using

- lemmas with attribute simp
- rules from primrec, fun and datatype
- additional lemmas eq_thm₁ ... eq_thm_n
- assumptions $P_1; ...; P_m$

- (simp ...del: ...) removes simp-lemmas
- add and del are optional

auto versus simp

- auto acts on all subgoals
- \bullet simp acts only on subgoal 1
- auto applies simp and more
 - simp concentrates on rewriting
 - auto combines rewriting with resolution

Termination

Simplification may not terminate.

Isabelle uses simp-rules (almost) blindly left to right.

Example: f(x) = g(x), g(x) = f(x) will not terminate.

$$[P_1, \dots P_n] \Longrightarrow I = r$$

is only suitable as a simp-rule only if I is "bigger" than r and each P_i .

$$\begin{array}{c} (n < m) = (Suc \; n < Suc \; m) & \mbox{NO} \\ (n < m) \Longrightarrow (n < Suc \; m) = True & \mbox{YES} \\ Suc \; n < m \Longrightarrow (n < m) = True & \mbox{NO} \end{array}$$

Assumptions and Simplification

Simplification of $[\![A_1,\ldots,A_n]\!] \Longrightarrow B$:

- Simplify A_1 to A'_1
- ullet Simplify $[\![A_2,\ldots,A_n]\!]\Longrightarrow B$ using A_1'

Ignoring Assumptions

Sometimes need to ignore assumptions; can introduce non-termination.

How to exclude assumptions from simp:

proof (simp (no_asm_simp)...)

Simplify only the conclusion, but use assumptions

proof (simp (no_asm_use)...)

Simplify all, but do not use assumptions

proof (simp (no_asm)...)

Ignore assumptions completely

Rewriting with Definitions (definition)

Definitions do not have the simp attirbute.

They must be used explicitly:

```
proof (simp add: f_def...)
```

Elsa L Gunter

CS576 Topics in Automated Deduction

Ordered Rewriting

Problem: ?x+?y = ?y+?x does not terminate

Solution: Permutative ${\tt simp}$ -rules are used only if the term becomes

lexicographically smaller.

Example: $b + a \rightarrow a + b$ but not $a + b \rightarrow b + a$.

For types nat, int, etc., commutative, associative and distributive laws

built in.

Example: proof simp yields:

$$((B+A)+((2::nat)*C))+(A+B) \sim$$

... $\sim 2*A+(2*B+2*C)$

lea I Cumter

CS576 Topics in Automated Deduction

Preprocessing

simp-rules are preprocessed (recursively) for maximal simplification power:

$$\begin{array}{cccc} \neg A & \mapsto & A = \mathtt{False} \\ A \longrightarrow B & \mapsto & A \Longrightarrow B \\ A \land B & \mapsto & A, & B \\ \forall \mathsf{x}.A(\mathsf{x}) & \mapsto & A(?\mathsf{x}) \\ A & \mapsto & A = \mathtt{True} \end{array}$$

Example:

$$\begin{array}{ccc} & p \Longrightarrow q = \mathit{True}, \\ \left(p \longrightarrow q \land \neg r \right) \land s & \mapsto & p \Longrightarrow r = \mathsf{False}, \\ & s = \mathit{True} \end{array}$$

Elsa L Gunter

6 Topics in Automated Deduction

Demo: Simplification through Rewriting

Sunter CS576 Topics in Auto

S576 Topics in Automated Deduction

General Isar Proof Format

```
proof (method)

fix x

assume A0: formula0

from A0

have A1: formula1

by (method)

from A0 and A1

...

show formulan

proof (method)

...

qed

qed

Proves formulan ⇒ formulan
```

Basic Isar Syntax

```
proof = proof [method] statement* qed
| by method

method = (simp ...)|(auto ...)|(blast ...)|(rule ...)| ...

statement = fix variable+ (∧)
| assume proposition (⇒)
| [from name+] objective proof
| next (starts next subgoal)

objective = show proposition (next proof step)
| have proposition (local claim)
| obtain variable+ where proposition+

proposition = [name:] formula
```

Proof Basics

- Isabelle uses Natural Deduction proofs
 - Uses *sequent* encoding
- Rule notation:

$$\begin{array}{ll} \text{Rule} & \text{Sequent Encoding} \\ \frac{A_1 \dots A_n}{A} & & \|A_1, \dots, A_n\| \Longrightarrow A \end{array}$$

$$\llbracket A_1, \ldots, A_n \rrbracket \Longrightarrow A$$

$$\frac{\underbrace{A_1 \ldots \ \frac{\vdots}{A_i} \ \ldots A_n}}{A}$$

$$\underbrace{\frac{\vdots}{\mathtt{A_1}\,\ldots\,\mathtt{A_n}}}_{\mathtt{A}}\quad \ \ \llbracket\mathtt{A_1},\ldots,\mathtt{B}\Longrightarrow\mathtt{A_1},\ldots,\mathtt{A_n}\rrbracket\Longrightarrow\mathtt{A}$$

Natural Deduction

For each logical operator \oplus , have two kinds of rules:

Introduction: How can I prove $A \oplus B$?

Elimination: What can I prove using $A \oplus B$?

$$\frac{\ldots A \oplus B \ldots}{?}$$

Operational Reading

$$\frac{A_1 \dots A_n}{A}$$

Introduction rule:

To prove A it suffices to prove $A_1 \dots A_n$.

Elimination rule:

If we know A_1 and we want to prove Ait suffices to prove $A_2 \dots A_n$

Natural Deduction for Propositional Logic

$$\frac{A \ B}{A \wedge B} \operatorname{conj} I$$

$$\frac{\mathtt{A} \wedge \mathtt{B} \ \llbracket \mathtt{A} ; \mathtt{B} \rrbracket \Longrightarrow \mathtt{C}}{\mathtt{C}} \mathtt{conjE}$$

$$\frac{A}{A \vee B}$$
 $\frac{B}{A \vee B}$ dis

$$\frac{\mathtt{A}}{\mathtt{A} \vee \mathtt{B}} \qquad \frac{\mathtt{B}}{\mathtt{A} \vee \mathtt{B}} \, \mathtt{disjI1/2} \qquad \frac{\mathtt{A} \vee \mathtt{B} \quad \mathtt{A} \Longrightarrow \mathtt{C} \quad \mathtt{B} \Longrightarrow \mathtt{C}}{\mathtt{c}} \, \mathtt{disjE}$$

$$\frac{A \Longrightarrow B}{A \longrightarrow B} impI$$

$$\frac{A \longrightarrow B \ A \ B \Longrightarrow C}{C} \ \text{impE}$$

Natural Deduction for Propositional Logic

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \quad \text{iffI}$$

$$\frac{A \Longrightarrow \text{False}}{\neg A} \quad \text{notI} \qquad \frac{A = B \quad B}{B} \quad \text{iffD2}$$

$$\frac{\texttt{A} \Longrightarrow \texttt{False}}{\neg \texttt{A}} \, \texttt{notl}$$

$$\frac{A=B}{B}$$
 iffD1

$$\frac{A=B\quad B}{\qquad \qquad }$$
 iffD2