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Function Definition in Isabelle/HOL

Non-recursive definitions with definition

No problem

Primitive-recursive (over datatypes) with primrec

Termination proved automatically internally. Definition syntactically
restricted to only allow recursive subcalls on immediate recursive
subcomponents.

Well-founded recursion with fun

Proved automatically, but user must take care that recursive calls are
on “obviously” smaller arguments
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Function Definition in Isabelle/HOL

Well-founded recursion with function

User must (help to) prove termination
(; later)

Role your own, via definition of the functions graph
use of choose operator, and other tedious approaches, but can work
when built-in methods don’t.
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primrec Example

datatype ’a list = Nil | Cons ’a "’a list"

primrec app :: "’a list ⇒ ’a list ⇒ ’a list

where

"app Nil ys = ys" |

"app (Cons x xs) ys = Cons x (app xs ys)"
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datatype: The General Case

datatype (α1, . . . , αm)τ = C1 τ1,1 . . . τ1,n1
| ...

| Ck τk,1 . . . τk,nk
Term Constructors:
Ci :: τi ,1 ⇒ . . .⇒ τi ,ni ⇒ (α1, . . . , αm)τ

Distinctness: Ci xi . . . xi ,ni 6= Cj yj . . . yj ,nj if i 6= j

Injectivity: (Ci x1 . . . xni = Ci y1 . . . yni ) =
(x1 = y1 ∧ . . . ∧ xni = yni )

Distinctness and Injectivity are applied by simp

Induction must be applied explicitly
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primrec: The General Case

If τ is a datatype with constructors C1, . . . ,Ck , then f :: · · · ⇒ τ ⇒ τ ′

can be defined by primitive recursion by:

f x1 . . . (C1 y1,1 . . . y1,n1) . . . xm = r1 |
· · ·

f x1 . . . (Ck yk,1 . . . yk,nk ) . . . xm = rk

The recursive calls in ri must be structurally smaller, i.e. of the form
f a1 . . . yi ,j . . . am where yi ,j is a recursive subcomonent of (Ci yi ,1 . . . yi ,ni ).
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nat is a datatype

datatype nat = 0 | Suc nat

Functions on nat are definable by primrec!

primrec f::nat⇒ . . . where
f 0 = ... |

f (Suc n) = ...f n ...
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Type option

datatype ’a option = None | Some ’a

Important application:

. . .⇒ ’a option ≈ partial function:
None ≈ no result

Some x ≈ result of x
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option Example

primrec lookup :: ’k ⇒ (’k×’v)list ⇒ ’v option

where

lookup k [ ] = None |

lookup k (x#xs) =

(if fst x = k then Some(snd x) else lookup k xs)
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Recursive Function Definition with fun

Recursive definitions more generally may be defined by fun

Same basic syntax as primrec

May nest patterns arbitrarily

There must exist an “obvious” measure where all recursive calls are
done on (structurally) smaller values

fun finds measure automatically using mpstly structural size,
lexicagraphic orderings
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fun Example

fun fib :: nat ⇒ nat where

fib 0 = Suc 0 |

fib (Suc 0) = Suc 0 |

fib (Suc (Suc n) = fib n + fib (Suc n)
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Term Rewriting

Term rewriting means . . .

Using a set of equations l = r from left to right

As long as possible (possibly forever!)

Terminology: equation becomes rewrite rule
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Example

Equations:

0 + n = n (1)
(Suc m) + n = Suc(m + n) (2)

(0 ≤ m) = True (3)
(Suc m ≤ Suc n) = (m ≤ n) (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x (1)

Suc 0 ≤ Suc 0 + x (2)

Suc 0 ≤ Suc(0 + x) (4)

0 ≤ 0 + x (3)

True
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Rewriting: More Formally

substitution = mapping of variables to terms

l = r is applicable to term t[s] if there is a substitution σ such that
σ(l) = s

s is an instance of l

Result: t[σ(r)]

Also have theorem: t[s] = t[σ(r)]
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Example

Equation: 0 + n = n

Term: a + (0 + (b + c))

Substitution: σ = {n 7→ b + c}
Result: a + (b + c)

Theorem: a + (0 + (b + c)) = a + (b + c)
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Conditional Rewriting

Rewrite rules can be conditional:

[|P1; . . . ;Pn|] =⇒ l = r

is applicable to term t[s] with substitution σ if:

σ(l) = s and

σ(P1), . . . , σ(Pn) are provable (possibly again by rewriting)
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Variables

Three kinds of variables in Isabelle:

bound: ∀x. x = x

free: x = x

schematic : ?x =?x
(“unknown”, a.k.a. meta-variables)

Can be mixed in term or formula: ∀b. ∃y . f ?a y = b
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Variables

Logically: free = bound at meta-level

Operationally:

free variabes are fixed
schematic variables are instantiated by substitutions

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 18

/ 28



From x to ?x

State lemmas with free variables:

lemma app Nil2 [simp]: "xs @ [ ] = xs"
...
done

After the proof: Isabelle changes xs to ?xs (internally):

?xs @ [ ] = ?xs

Now usable with arbitrary values for ?xs
Example: rewriting

rev(a @ [ ]) = rev a

using app Nil2 with σ = {?xs 7→ a}
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Basic Simplification

Goal: 1. [|P1; . . . ; Pm|] =⇒ C

proof (simp add: eq thm1 . . . eq thmn)

Simplify (mostly rewrite) P1; . . . ;Pm and C using

lemmas with attribute simp

rules from primrec, fun and datatype

additional lemmas eq thm1 . . . eq thmn

assumptions P1; . . . ;Pm

Variations:

(simp . . . del: . . . ) removes simp-lemmas

add and del are optional
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auto versus simp

auto acts on all subgoals

simp acts only on subgoal 1

auto applies simp and more

simp concentrates on rewriting

auto combines rewriting with resolution
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Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly left to right.
Example: f (x) = g(x), g(x) = f (x) will not terminate.

[|P1, . . .Pn|] =⇒ l = r

is only suitable as a simp-rule only if l is “bigger” than r and each Pi .

(n < m) = (Suc n < Suc m) NO
(n < m) =⇒ (n < Suc m) = True YES
Suc n < m =⇒ (n < m) = True NO
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Assumptions and Simplification

Simplification of [|A1, . . . ,An|] =⇒ B:

Simplify A1 to A′
1

Simplify [|A2, . . . ,An|] =⇒ B using A′
1
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Ignoring Assumptions

Sometimes need to ignore assumptions; can introduce non-termination.
How to exclude assumptions from simp:
proof (simp (no asm simp). . . )

Simplify only the conclusion, but use assumptions

proof (simp (no asm use). . . )
Simplify all, but do not use assumptions

proof (simp (no asm). . . )
Ignore assumptions completely
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Rewriting with Definitions (definition)

Definitions do not have the simp attirbute.

They must be used explicitly:

proof (simp add: f def . . . )
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Ordered Rewriting

Problem: ?x+?y =?y+?x does not terminate
Solution: Permutative simp-rules are used only if the term becomes
lexicographically smaller.
Example: b + a ; a + b but not a + b ; b + a.
For types nat, int, etc., commutative, associative and distributive laws
built in.
Example: proof simp yields:

((B + A) + ((2 :: nat) ∗ C )) + (A + B) ;
. . .; 2 ∗ A + (2 ∗ B + 2 ∗ C )
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Preprocessing

simp-rules are preprocessed (recursively) for maximal simplification power:

¬A 7→ A = False

A −→ B 7→ A =⇒ B
A ∧ B 7→ A, B
∀x .A(x) 7→ A(?x)

A 7→ A = True

Example:

(p −→ q ∧ ¬r) ∧ s 7→
p =⇒ q = True,
p =⇒ r = False,
s = True
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Demo: Simplification through Rewriting
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