
CS576 Topics in Automated Deduction

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipkow
February 6, 2015

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 1

/ 28

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Function Definition in Isabelle/HOL

Non-recursive definitions with definition

No problem

Primitive-recursive (over datatypes) with primrec

Termination proved automatically internally. Definition syntactically
restricted to only allow recursive subcalls on immediate recursive
subcomponents.

Well-founded recursion with fun

Proved automatically, but user must take care that recursive calls are
on “obviously” smaller arguments

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 2

/ 28

Function Definition in Isabelle/HOL

Well-founded recursion with function

User must (help to) prove termination
(; later)

Role your own, via definition of the functions graph
use of choose operator, and other tedious approaches, but can work
when built-in methods don’t.

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 3

/ 28

primrec Example

datatype ’a list = Nil | Cons ’a "’a list"

primrec app :: "’a list ⇒ ’a list ⇒ ’a list

where

"app Nil ys = ys" |

"app (Cons x xs) ys = Cons x (app xs ys)"

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 4

/ 28

datatype: The General Case

datatype (α1, . . . , αm)τ = C1 τ1,1 . . . τ1,n1
| ...

| Ck τk,1 . . . τk,nk
Term Constructors:
Ci :: τi ,1 ⇒ . . .⇒ τi ,ni ⇒ (α1, . . . , αm)τ

Distinctness: Ci xi . . . xi ,ni 6= Cj yj . . . yj ,nj if i 6= j

Injectivity: (Ci x1 . . . xni = Ci y1 . . . yni) =
(x1 = y1 ∧ . . . ∧ xni = yni)

Distinctness and Injectivity are applied by simp

Induction must be applied explicitly

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 5

/ 28

primrec: The General Case

If τ is a datatype with constructors C1, . . . ,Ck , then f :: · · · ⇒ τ ⇒ τ ′

can be defined by primitive recursion by:

f x1 . . . (C1 y1,1 . . . y1,n1) . . . xm = r1 |
· · ·

f x1 . . . (Ck yk,1 . . . yk,nk) . . . xm = rk

The recursive calls in ri must be structurally smaller, i.e. of the form
f a1 . . . yi ,j . . . am where yi ,j is a recursive subcomonent of (Ci yi ,1 . . . yi ,ni).

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 6

/ 28

nat is a datatype

datatype nat = 0 | Suc nat

Functions on nat are definable by primrec!

primrec f::nat⇒ . . . where
f 0 = ... |

f (Suc n) = ...f n ...

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 7

/ 28

Type option

datatype ’a option = None | Some ’a

Important application:

. . .⇒ ’a option ≈ partial function:
None ≈ no result

Some x ≈ result of x

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 8

/ 28

option Example

primrec lookup :: ’k ⇒ (’k×’v)list ⇒ ’v option

where

lookup k [] = None |

lookup k (x#xs) =

(if fst x = k then Some(snd x) else lookup k xs)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 9

/ 28

Recursive Function Definition with fun

Recursive definitions more generally may be defined by fun

Same basic syntax as primrec

May nest patterns arbitrarily

There must exist an “obvious” measure where all recursive calls are
done on (structurally) smaller values

fun finds measure automatically using mpstly structural size,
lexicagraphic orderings

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 10

/ 28

fun Example

fun fib :: nat ⇒ nat where

fib 0 = Suc 0 |

fib (Suc 0) = Suc 0 |

fib (Suc (Suc n) = fib n + fib (Suc n)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 11

/ 28

Term Rewriting

Term rewriting means . . .

Using a set of equations l = r from left to right

As long as possible (possibly forever!)

Terminology: equation becomes rewrite rule

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 12

/ 28

Example

Equations:

0 + n = n (1)
(Suc m) + n = Suc(m + n) (2)

(0 ≤ m) = True (3)
(Suc m ≤ Suc n) = (m ≤ n) (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x (1)

Suc 0 ≤ Suc 0 + x (2)

Suc 0 ≤ Suc(0 + x) (4)

0 ≤ 0 + x (3)

True

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 13

/ 28

Rewriting: More Formally

substitution = mapping of variables to terms

l = r is applicable to term t[s] if there is a substitution σ such that
σ(l) = s

s is an instance of l

Result: t[σ(r)]

Also have theorem: t[s] = t[σ(r)]

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 14

/ 28

Example

Equation: 0 + n = n

Term: a + (0 + (b + c))

Substitution: σ = {n 7→ b + c}
Result: a + (b + c)

Theorem: a + (0 + (b + c)) = a + (b + c)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 15

/ 28

Conditional Rewriting

Rewrite rules can be conditional:

[|P1; . . . ;Pn|] =⇒ l = r

is applicable to term t[s] with substitution σ if:

σ(l) = s and

σ(P1), . . . , σ(Pn) are provable (possibly again by rewriting)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 16

/ 28

Variables

Three kinds of variables in Isabelle:

bound: ∀x. x = x

free: x = x

schematic : ?x =?x
(“unknown”, a.k.a. meta-variables)

Can be mixed in term or formula: ∀b. ∃y . f ?a y = b

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 17

/ 28

Variables

Logically: free = bound at meta-level

Operationally:

free variabes are fixed
schematic variables are instantiated by substitutions

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 18

/ 28

From x to ?x

State lemmas with free variables:

lemma app Nil2 [simp]: "xs @ [] = xs"
...
done

After the proof: Isabelle changes xs to ?xs (internally):

?xs @ [] = ?xs

Now usable with arbitrary values for ?xs
Example: rewriting

rev(a @ []) = rev a

using app Nil2 with σ = {?xs 7→ a}

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 19

/ 28

Basic Simplification

Goal: 1. [|P1; . . . ; Pm|] =⇒ C

proof (simp add: eq thm1 . . . eq thmn)

Simplify (mostly rewrite) P1; . . . ;Pm and C using

lemmas with attribute simp

rules from primrec, fun and datatype

additional lemmas eq thm1 . . . eq thmn

assumptions P1; . . . ;Pm

Variations:

(simp . . . del: . . .) removes simp-lemmas

add and del are optional

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 20

/ 28

auto versus simp

auto acts on all subgoals

simp acts only on subgoal 1

auto applies simp and more

simp concentrates on rewriting

auto combines rewriting with resolution

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 21

/ 28

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly left to right.
Example: f (x) = g(x), g(x) = f (x) will not terminate.

[|P1, . . .Pn|] =⇒ l = r

is only suitable as a simp-rule only if l is “bigger” than r and each Pi .

(n < m) = (Suc n < Suc m) NO
(n < m) =⇒ (n < Suc m) = True YES
Suc n < m =⇒ (n < m) = True NO

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 22

/ 28

Assumptions and Simplification

Simplification of [|A1, . . . ,An|] =⇒ B:

Simplify A1 to A′
1

Simplify [|A2, . . . ,An|] =⇒ B using A′
1

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 23

/ 28

Ignoring Assumptions

Sometimes need to ignore assumptions; can introduce non-termination.
How to exclude assumptions from simp:
proof (simp (no asm simp). . .)

Simplify only the conclusion, but use assumptions

proof (simp (no asm use). . .)
Simplify all, but do not use assumptions

proof (simp (no asm). . .)
Ignore assumptions completely

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 24

/ 28

Rewriting with Definitions (definition)

Definitions do not have the simp attirbute.

They must be used explicitly:

proof (simp add: f def . . .)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 25

/ 28

Ordered Rewriting

Problem: ?x+?y =?y+?x does not terminate
Solution: Permutative simp-rules are used only if the term becomes
lexicographically smaller.
Example: b + a ; a + b but not a + b ; b + a.
For types nat, int, etc., commutative, associative and distributive laws
built in.
Example: proof simp yields:

((B + A) + ((2 :: nat) ∗ C)) + (A + B) ;
. . .; 2 ∗ A + (2 ∗ B + 2 ∗ C)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 26

/ 28

Preprocessing

simp-rules are preprocessed (recursively) for maximal simplification power:

¬A 7→ A = False

A −→ B 7→ A =⇒ B
A ∧ B 7→ A, B
∀x .A(x) 7→ A(?x)

A 7→ A = True

Example:

(p −→ q ∧ ¬r) ∧ s 7→
p =⇒ q = True,
p =⇒ r = False,
s = True

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 27

/ 28

Demo: Simplification through Rewriting

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 6, 2015 28

/ 28

	Function Definitions
	Term Rewriting

