CS576 Topics in Automated Deduction

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipkow

February 6, 2015

Elsa L Gunter CS576 Topics in Automated Deduction : /28

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Function Definition in Isabelle/HOL

@ Non-recursive definitions with definition
No problem

@ Primitive-recursive (over datatypes) with primrec
Termination proved automatically internally. Definition syntactically
restricted to only allow recursive subcalls on immediate recursive
subcomponents.

@ Well-founded recursion with fun
Proved automatically, but user must take care that recursive calls are
on “obviously” smaller arguments

Elsa L Gunter CS576 Topics in Automated Deduction /28

Function Definition in Isabelle/HOL

@ Well-founded recursion with function

User must (help to) prove termination
(~ later)

@ Role your own, via definition of the functions graph

use of choose operator, and other tedious approaches, but can work
when built-in methods don't.

Elsa L Gunter CS576 Topics in Automated Deduction /28

primrec Example

datatype ’a list = Nil | Cons ’a "’a list"

primrec app :: "’a list = ’a list = ’a list
where
"app Nil ys = ys" |

"app (Cons x xs) ys = Cons x (app xs ys)"

Elsa L Gunter CS576 Topics in Automated Deduction : /28

datatype: The General Case

datatype (o1,...,am)T G T -Tim

@ Term Constructors:
G::mi1=...=7Tip=(,...,am)T
@ Distinctness: C; x;...Xjn # G yj .. Yy 10 #J
o Injectivity: (Cix1...xp, = Ci y1...¥n;) =
(X1 =y1AN... AXn, = Yn,)

Distinctness and Injectivity are applied by simp
Induction must be applied explicitly

Elsa L Gunter CS576 Topics in Automated Deduction : /28

primrec: The General Case

If 7 is a datatype with constructors Cy,..., Cx, then f :: - = 7= 7/
can be defined by primitive recursion by:

le...(Cl y171...y1,,,1)...xm:r1 |

le...(Ck ykyl...yk’,,k)...xm: ry

The recursive calls in r; must be structurally smaller, i.e. of the form
fai...yij...am where y;; is a recursive subcomonent of (G yi1---Yin)-

Elsa L Gunter CS576 Topics in Automated Deduction : /28

nat is a datatype

datatype nat = 0 | Suc nat
Functions on nat are definable by primrec!
primrec f::nat=- ... where

f0=...|
f (Suicn) =...fn ...

Elsa L Gunter CS576 Topics in Automated Deduction : /28

Type option

datatype ’a option = None | Some ’a

Important application:

...= ’a option ~ partial function:
None = no result

Some x result of x

/ 28

Elsa L Gunter CS576 Topics in Automated Deduction : /

option Example

primrec lookup ::
where
lookup k [] = None |
lookup k (x#xs) =
(if fst x =

’k = (Pkx’v)list = ’v option

k then Some(snd x) else lookup k xs)

Elsa L Gunter CS576 Topics in Automated Deduction

/ 28

Recursive Function Definition with fun

@ Recursive definitions more generally may be defined by fun

@ Same basic syntax as primrec

@ May nest patterns arbitrarily

@ There must exist an “obvious” measure where all recursive calls are
done on (structurally) smaller values

o fun finds measure automatically using mpstly structural size,

lexicagraphic orderings

Elsa L Gunter CS576 Topics in Automated Deduction /28

fun Example

fun £fib :: nat = nat where
fib 0 = Suc 0 |
fib (Suc 0) = Suc 0 |
fib (Suc (Suc n) = fib n + fib (Suc n)

Elsa L Gunter CS576 Topics in Automated Deduction : /28

Term rewriting means . ..
Terminology: equation becomes rewrite rule

Using a set of equations / = r from left to right

As long as possible (possibly forever!)

Elsa L Gunter CS576 Topics in Automated Deduction

/ 28

O+n = n (1)
o (Suc m)+n = Suc(m+n) (2)
Equations: (0<m) = True (3)
(Suc m<Sucn) = (m<n) (4)

0+Suc0 < SucO+x (1)

Suc0 < SucO0+x (2

Rewriting: Suc 0 < Suc(0+ x) @

0 < 0+x (3)

True o

Elsa L Gunter CS576 Topics in Automated Deduction : /28

Rewriting: More Formally

substitution = mapping of variables to terms
e | = ris applicable to term t[s] if there is a substitution o such that
o(ll)y=s
e s is an instance of /
@ Result: t[o(r)]
@ Also have theorem: t[s] = t[o(r)]

Elsa L Gunter CS576 Topics in Automated Deduction : /28

o Equation: 0+n=n

Term: a+ (0 + (b+ ¢))

Substitution: o = {n— b+ c}

Result: a+ (b+ ¢)

Theorem: a+ (0+(b+c¢))=a+ (b+)

Elsa L Gunter CS576 Topics in Automated Deduction : /28

Conditional Rewriting

Rewrite rules can be conditional:
[Pi;...;P| = I=r

is applicable to term t[s] with substitution o if:
e o(/)=sand

@ 0(P1),...,0(P,) are provable (possibly again by rewriting)

Elsa L Gunter CS576 Topics in Automated Deduction : /28

Three kinds of variables in Isabelle:
@ bound: Vx. x =x
o free: x =x

@ schematic: 7x =7x
(“unknown”, a.k.a. meta-variables)

Can be mixed in term or formula: Vb. dy. f 7ay = b

Elsa L Gunter CS576 Topics in Automated Deduction : /28

o Logically: free = bound at meta-level
@ Operationally:

o free variabes are fixed
e schematic variables are instantiated by substitutions

Elsa L Gunter CS576 Topics in Automated Deduction : /28

From x to 7x

State lemmas with free variables:
lemma app_Nil2 [simp]l: "xs @ [] = xs"
done
After the proof: Isabelle changes xs to 7xs (internally):
?7xs @ [] = 7xs

Now usable with arbitrary values for 7xs
Example: rewriting

rev(a @ []) = rev a

using app-Nil2 with o = {?xs > a}

Elsa L Gunter CS576 Topics in Automated Deduction : /28

Basic Simplification

Goal: 1. [Py;...;Py] =C
proof (simp add: eq_thmy ... eq_thm,)
Simplify (mostly rewrite) P1;...; Py and C using

@ lemmas with attribute simp

@ rules from primrec, fun and datatype

@ additional lemmas eq_thm; ... eq_thm,
@ assumptions Pq;...; Pm
Variations:
@ (simp ...del: ...) removes simp-lemmas

@ add and del are optional

Elsa L Gunter CS576 Topics in Automated Deduction : /28

auto versus simp

@ auto acts on all subgoals
@ simp acts only on subgoal 1
@ auto applies simp and more
e simp concentrates on rewriting

e auto combines rewriting with resolution

Elsa L Gunter CS576 Topics in Automated Deduction : /28

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly left to right.
Example: f(x) = g(x), g(x) = f(x) will not terminate.

[Pi,...Pa]l = 1=
is only suitable as a simp-rule only if / is “bigger” than r and each P;.
(n <m)=(Sucn < Sucm) NO

(n <m) = (n < Sucm) =True YES
Sucn<m= (n<m)=True NO

Elsa L Gunter CS576 Topics in Automated Deduction

/ 28

Assumptions and Simplification

Simplification of |A1,..., A = B:
e Simplify A; to A}
e Simplify [Az, ..., A,] = B using A}

Elsa L Gunter CS576 Topics in Automated Deduction : /28

lgnoring Assumptions

Sometimes need to ignore assumptions; can introduce non-termination.
How to exclude assumptions from simp:
proof (simp (no_asm_simp)...)

Simplify only the conclusion, but use assumptions

proof (simp (no_asm use)...)
Simplify all, but do not use assumptions

proof (simp (no_asm)...)
Ignore assumptions completely

Elsa L Gunter CS576 Topics in Automated Deduction : /28

Rewriting with Definitions (definition)

Definitions do not have the simp attirbute.

They must be used explicitly:

proof (simp add: f.def...)

Elsa L Gunter CS576 Topics in Automated Deduction : /28

Ordered Rewriting

Problem: ?x+7y =?7y+7x does not terminate
Solution: Permutative simp-rules are used only if the term becomes
lexicographically smaller.

Example: b+a~>a-+Dbbutnota+b~ b+ a.

For types nat, int, etc., commutative, associative and distributive laws
built in.

Example: proof simp yields:

(B+A)+((2::nat)« C))+ (A+ B) ~
oo 2x A+ (25 B+2xC)

Elsa L Gunter CS576 Topics in Automated Deduction : /28

Preprocessing

simp-rules are preprocessed (recursively) for maximal simplification power:

-A
A— B
AANB
Vx.A(x)

Example:

(p —qAT)As

111117

—

A = False
A=— B
A, B
A(7x)

A = True

p = q = True,
p —> r = False,
s = True

Elsa L Gunter CS576 Topics in Automated Deduction : /28

Elsa L Gunter

Demo: Simplification through Rewriting

CS576 Topics in Automated Deduction

	Function Definitions
	Term Rewriting

