CS576 Topics in Automated Deduction

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipkow

February 4, 2015

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

datatype: An Example

datatype ’a list = Nil | Cons ’a "’a list"

Properties:
@ Type constructors: list of one argument

@ Term constructors: Nil :: ’a list
Cons :: ’a = ’a list = ’a list

@ Distinctness: Nil # Cons x Xs
@ Injectivity:
(Cons x xs = Cons y ys) = (x =y A xs = ys)

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

Structural Induction on Lists

P xs holds for all lists xs if
@ P Nil, and

o for arbitrary a and list, P list implies
P (Cons a list)
P ys

P Nil P (Cons y ys)
P xs

In Isabelle:

[?P[]; Aalist. 7P list ==7P(a# list) | = 7P ?list

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

datatype: The General Case

datatype (o1,...,am)T G T -Tim

@ Term Constructors:
G::mi1=...=7Tip=(,...,am)T
@ Distinctness: C; x;...Xjn # G yj .. Yy 10 #J
o Injectivity: (Cix1...xp, = Ci y1...¥n;) =
(X1 =y1AN... AXn, = Yn,)

Distinctness and Injectivity are applied by simp
Induction must be applied explicitly

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

Proof Method

@ Structural Induction

e Syntax: (induct x)
x must be a free variable in the first subgoal

The type of x must be a datatype
o Effect: Generates 1 new subgoal per constructor

o Type of x determines which induction principle to use

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

case

Every datatype introduces a case construct, e.g.
(case xs of [] =...| y#ys = ...y ...ys ...)

In general:

case Arbitrarily nested pattern = Expression using pattern variables
| Another pattern = Another expression

Patterns may be non-exhaustive, or overlapping
Order of clauses matters - early clause takes precedence.

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

Case Distinctions

apply / proof (case_tac t)

creates k subgoals:
t=GC X1 .o Xp, = ...

one for each constructor C;

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

Elsa L Gunter

Demo: Another Datatype Example

CS576 Topics in Automated Deduction

Definitions by Example

Definition:

definition lot_size::"nat * nat" where
"lot_size = (62, 103)"

definition sq::"nat = nat" where
sqdef: "sqn =n *x n"

The ASCII for = is ==.

Definitions of form f x;...x, =t where t only uses xj ... x, and
previously defined constants.

Creates theorem with default name f_def

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

Definition Restrictions

definition prime :: '"nat = bool" where
nprimep51<p/\ (dedp—>m=1\/m=p)"

Not a definition: m free, but not on left

I Every free variable on rhs must occur as argument on |hs !

"prime p = 1<p A (VY m. mdvdp — m=1Vm=p)"

Note: no recursive definitions with definition

Elsa L Gunter CS576 Topics in Automated Deduction / 37

Using Definitions

Definitions are not used automatically

Unfolding of definition of sq:
proof (unfold sq._def)
Rewriting definition of sq out of current goal:

proof (simp add: sq.def)

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

HOL Functions are Total

Why nontermination can be harmful:

If £ x is undefined, is £ x = f x7

Excluded Middle says it must be True or False
Reflexivity says it's True

How about £ x = 07 fx=17 fx=y?

If fx#y then Vy.fx#y. Then fx # fx #

I All functions in HOL must be total !

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

Function Definition in Isabelle/HOL

@ Non-recursive definitions with definition
No problem
@ Primitive-recursive (over datatypes) with primrec
Termination proved automatically internally
o Well-founded recursion with fun
Proved automatically, but user must take care that recursive calls are
on “obviously” smaller arguments

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

Function Definition in Isabelle/HOL

@ Well-founded recursion with function

User must (help to) prove termination
(~ later)

@ Role your own, via definition of the functions graph

use of choose operator, and other tedious approaches, but can work
when built-in methods don't.

Elsa L Gunter CS576 Topics in Automated Deduction / 37

primrec Example

primrec app :: "’a list = ’a list = ’a list
where
"app Nil ys = ys" |

"app (Cons x xs) ys = Cons x (app xs ys)"

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

primrec: The General Case

If 7 is a datatype with constructors Cy,..., Cx, then f :: - = 7= 7/
can be defined by primitive recursion by:

le...(Cl y171...y1,,,1)...xm:r1 |

le...(Ck ykyl...yk’,,k)...xm: ry

The recursive calls in r; must be structurally smaller, i.e. of the form
f 31...y,'7j...am.

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

nat is a datatype

datatype nat = 0 | Suc nat
Functions on nat are definable by primrec!
primrec f::nat=- ... where

f0=...|
f (Suicn) =...fn ...

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

Type option

datatype ’a option = None | Some ’a

Important application:

...= ’a option ~ partial function:
None = no result

Some x result of x

/ 37

Elsa L Gunter CS576 Topics in Automated Deduction : /

option Example

primrec lookup ::
where
lookup k [] = None |
lookup k (x#xs) =
(if fst x =

’k = (Pkx’v)list = ’v option

k then Some(snd x) else lookup k xs)

Elsa L Gunter CS576 Topics in Automated Deduction

/37

Term rewriting means . ..
Terminology: equation becomes rewrite rule

Using a set of equations / = r from left to right

As long as possible (possibly forever!)

Elsa L Gunter CS576 Topics in Automated Deduction

/37

O+n = n (1)
o (Suc m)+n = Suc(m+n) (2)
Equations: (0<m) = True (3)
(Suc m<Sucn) = (m<n) (4)

0+Suc0 < SucO+x (1)

Suc0 < SucO0+x (2

Rewriting: Suc 0 < Suc(0+ x) @

0 < 0+x (3)

True o

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

Rewriting: More Formally

substitution = mapping of variables to terms
e | = ris applicable to term t[s] if there is a substitution o such that
o(ll)y=s
e s is an instance of /
@ Result: t[o(r)]
@ Also have theorem: t[s] = t[o(r)]

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

o Equation: 0+n=n

Term: a+ (0 + (b+ ¢))

Substitution: o = {n— b+ c}

Result: a+ (b+ ¢)

Theorem: a+ (0+(b+c¢))=a+ (b+)

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

Conditional Rewriting

Rewrite rules can be conditional:
[Pi;...;P| = I=r

is applicable to term t[s] with substitution o if:
e o(/)=sand

@ 0(P1),...,0(P,) are provable (possibly again by rewriting)

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

Three kinds of variables in Isabelle:
@ bound: Vx. x =x
o free: x =x

@ schematic: 7x =7x
(“unknown”, a.k.a. meta-variables)

Can be mixed in term or formula: Vb. dy. f 7ay = b

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

o Logically: free = bound at meta-level
@ Operationally:

o free variabes are fixed
e schematic variables are instantiated by substitutions

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

From x to 7x

State lemmas with free variables:
lemma app_Nil2 [simp]l: "xs @ [] = xs"
done
After the proof: Isabelle changes xs to 7xs (internally):
?7xs @ [] = 7xs

Now usable with arbitrary values for 7xs
Example: rewriting

rev(a @ []) = rev a

using app-Nil2 with o = {?xs > a}

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

Basic Simplification

Goal: 1. [Py;...;Py] =C

proof (simp add: eq_-thm; ... eq_thm,)

Simplify (mostly rewrite) Pi;...; Pn and C using
@ lemmas with attribute simp

@ rules from primrec and datatype

@ additional lemmas eq_thmy ... eq_thm,
@ assumptions Pi;...; Pp
Variations:
@ (simp ...del: ...) removes simp-lemmas

@ add and del are optional

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

Basic Simplification

Goal: 1. [Py;...;Py] =C

proof (simp add: eq_-thm; ... eq_thm,)

Simplify (mostly rewrite) Pi;...; Pn and C using
@ lemmas with attribute simp

@ rules from primrec and datatype

@ additional lemmas eq_thmy ... eq_thm,
@ assumptions Pi;...; Pp
Variations:
@ (simp ...del: ...) removes simp-lemmas

@ add and del are optional

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

VErsus

@ auto acts on all subgoals
@ simp acts only on subgoal 1
@ auto applies simp and more

e simp concentrates on rewriting
e auto combines rewriting with resolution

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly left to right.
Example: f(x) = g(x), g(x) = f(x) will not terminate.

[Pi,...Pa]l = 1=
is only suitable as a simp-rule only if / is “bigger” than r and each P;.
(n <m) = (Sucn < Sucm) NO

(n <m) = (n < Sucm) = True YES
Sucn <m = (n <m) =True NO

Elsa L Gunter CS576 Topics in Automated Deduction

/37

Assumptions and Simplification

Simplification of |A1,..., A = B:
e Simplify A; to A}
e Simplify [Az, ..., A,] = B using A}

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

lgnoring Assumptions

Sometimes need to ignore assumptions; can introduce non-termination.
How to exclude assumptions from simp:
proof (simp (no_asm_simp)...)

Simplify only the conclusion, but use assumptions

proof (simp (no_asm use)...)
Simplify all, but do not use assumptions

proof (simp (no_asm)...)
Ignore assumptions completely

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

Rewriting with Definitions (definition)

Definitions do not have the simp attirbute.
They must be used explicitly:

proof (simp add: f.def...)

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

Ordered Rewriting

Problem: ?x+7y =?7y+7x does not terminate
Solution: Permutative simp-rules are used only if the term becomes
lexicographically smaller.

Example: b+a~>a-+Dbbutnota+b~ b+ a.

For types nat, int, etc., commutative, associative and distributive laws
built in.

Example: proof simp yields:

(B+A)+((2::nat)« C))+ (A+ B) ~
oo 2x A+ (25 B+2xC)

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

Preprocessing

simp-rules are preprocessed (recursively) for maximal simplification power:

#A — A=False
A—B —» A=—B
AANB — AB
Vx.A(x) — A(7x)
A — A=True
Example:

(p — 9 A —r) As—p = q = True,r = True,s = True

Elsa L Gunter CS576 Topics in Automated Deduction : / 37

Elsa L Gunter

Demo: Simplification through Rewriting

CS576 Topics in Automated Deduction

	Definitions
	Term Rewriting

