
CS576 Topics in Automated Deduction

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipkow
February 4, 2015

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 1

/ 37

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

datatype: An Example

datatype ’a list = Nil | Cons ’a "’a list"

Properties:

Type constructors: list of one argument

Term constructors: Nil :: ’a list

Cons :: ’a ⇒ ’a list ⇒ ’a list

Distinctness: Nil 6= Cons x xs

Injectivity:
(Cons x xs = Cons y ys) = (x = y ∧ xs = ys)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 2

/ 37

Structural Induction on Lists

P xs holds for all lists xs if

P Nil, and

for arbitrary a and list, P list implies
P (Cons a list)

P Nil

P ys
...

P (Cons y ys)

P xs
In Isabelle:

[| ?P[]; Λ a list. ?P list =⇒?P(a# list) |] =⇒ ?P ?list

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 3

/ 37

datatype: The General Case

datatype (α1, . . . , αm)τ = C1 τ1,1 . . . τ1,n1
| ...

| Ck τk,1 . . . τk,nk
Term Constructors:
Ci :: τi ,1 ⇒ . . .⇒ τi ,ni ⇒ (α1, . . . , αm)τ

Distinctness: Ci xi . . . xi ,ni 6= Cj yj . . . yj ,nj if i 6= j

Injectivity: (Ci x1 . . . xni = Ci y1 . . . yni) =
(x1 = y1 ∧ . . . ∧ xni = yni)

Distinctness and Injectivity are applied by simp

Induction must be applied explicitly

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 4

/ 37

Proof Method

Structural Induction

Syntax: (induct x)

x must be a free variable in the first subgoal

The type of x must be a datatype

Effect: Generates 1 new subgoal per constructor

Type of x determines which induction principle to use

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 5

/ 37

case

Every datatype introduces a case construct, e.g.

(case xs of [] ⇒...| y#ys ⇒ ...y ...ys ...)

In general:

case Arbitrarily nested pattern ⇒ Expression using pattern variables
| Another pattern ⇒ Another expression
| . . .

Patterns may be non-exhaustive, or overlapping
Order of clauses matters - early clause takes precedence.

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 6

/ 37

Case Distinctions

apply / proof (case tac t)

creates k subgoals:
t = Ci x1 . . . xni =⇒ . . .

one for each constructor Ci

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 7

/ 37

Demo: Another Datatype Example

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 8

/ 37

Definitions by Example

Definition:

definition lot size::"nat * nat" where

"lot size ≡ (62, 103)"

definition sq::"nat ⇒ nat" where

sq def: "sq n ≡ n * n"

The ASCII for ≡ is ==.

Definitions of form f x1 . . . xn ≡ t where t only uses x1 . . . xn and
previously defined constants.

Creates theorem with default name f def

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 9

/ 37

Definition Restrictions

definition prime :: "nat ⇒ bool" where

"prime p ≡ 1<p ∧ (m dvd p −→ m = 1 ∨ m = p)"

Not a definition: m free, but not on left

! Every free variable on rhs must occur as argument on lhs !

"prime p ≡ 1<p ∧ (∀ m. m dvd p −→ m = 1 ∨ m = p)"

Note: no recursive definitions with definition

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 10

/ 37

Using Definitions

Definitions are not used automatically

Unfolding of definition of sq:

proof (unfold sq def)

Rewriting definition of sq out of current goal:

proof (simp add: sq def)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 11

/ 37

HOL Functions are Total

Why nontermination can be harmful:

If f x is undefined, is f x = f x?

Excluded Middle says it must be True or False

Reflexivity says it’s True

How about f x = 0? f x = 1? f x = y?

If f x 6= y then ∀y. f x 6= y. Then fx 6= fx #

! All functions in HOL must be total !

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 12

/ 37

Function Definition in Isabelle/HOL

Non-recursive definitions with definition

No problem

Primitive-recursive (over datatypes) with primrec

Termination proved automatically internally

Well-founded recursion with fun

Proved automatically, but user must take care that recursive calls are
on “obviously” smaller arguments

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 13

/ 37

Function Definition in Isabelle/HOL

Well-founded recursion with function

User must (help to) prove termination
(; later)

Role your own, via definition of the functions graph
use of choose operator, and other tedious approaches, but can work
when built-in methods don’t.

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 14

/ 37

primrec Example

primrec app :: "’a list ⇒ ’a list ⇒ ’a list

where

"app Nil ys = ys" |

"app (Cons x xs) ys = Cons x (app xs ys)"

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 15

/ 37

primrec: The General Case

If τ is a datatype with constructors C1, . . . ,Ck , then f :: · · · ⇒ τ ⇒ τ ′

can be defined by primitive recursion by:

f x1 . . . (C1 y1,1 . . . y1,n1) . . . xm = r1 |
· · ·

f x1 . . . (Ck yk,1 . . . yk,nk) . . . xm = rk

The recursive calls in ri must be structurally smaller, i.e. of the form
f a1 . . . yi ,j . . . am.

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 16

/ 37

nat is a datatype

datatype nat = 0 | Suc nat

Functions on nat are definable by primrec!

primrec f::nat⇒ . . . where
f 0 = ... |

f (Suc n) = ...f n ...

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 17

/ 37

Type option

datatype ’a option = None | Some ’a

Important application:

. . .⇒ ’a option ≈ partial function:
None ≈ no result

Some x ≈ result of x

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 18

/ 37

option Example

primrec lookup :: ’k ⇒ (’k×’v)list ⇒ ’v option

where

lookup k [] = None |

lookup k (x#xs) =

(if fst x = k then Some(snd x) else lookup k xs)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 19

/ 37

Term Rewriting

Term rewriting means . . .

Using a set of equations l = r from left to right

As long as possible (possibly forever!)

Terminology: equation becomes rewrite rule

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 20

/ 37

Example

Equations:

0 + n = n (1)
(Suc m) + n = Suc(m + n) (2)

(0 ≤ m) = True (3)
(Suc m ≤ Suc n) = (m ≤ n) (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x (1)

Suc 0 ≤ Suc 0 + x (2)

Suc 0 ≤ Suc(0 + x) (4)

0 ≤ 0 + x (3)

True

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 21

/ 37

Rewriting: More Formally

substitution = mapping of variables to terms

l = r is applicable to term t[s] if there is a substitution σ such that
σ(l) = s

s is an instance of l

Result: t[σ(r)]

Also have theorem: t[s] = t[σ(r)]

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 22

/ 37

Example

Equation: 0 + n = n

Term: a + (0 + (b + c))

Substitution: σ = {n 7→ b + c}
Result: a + (b + c)

Theorem: a + (0 + (b + c)) = a + (b + c)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 23

/ 37

Conditional Rewriting

Rewrite rules can be conditional:

[|P1; . . . ;Pn|] =⇒ l = r

is applicable to term t[s] with substitution σ if:

σ(l) = s and

σ(P1), . . . , σ(Pn) are provable (possibly again by rewriting)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 24

/ 37

Variables

Three kinds of variables in Isabelle:

bound: ∀x. x = x

free: x = x

schematic : ?x =?x
(“unknown”, a.k.a. meta-variables)

Can be mixed in term or formula: ∀b. ∃y . f ?a y = b

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 25

/ 37

Variables

Logically: free = bound at meta-level

Operationally:

free variabes are fixed
schematic variables are instantiated by substitutions

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 26

/ 37

From x to ?x

State lemmas with free variables:

lemma app Nil2 [simp]: "xs @ [] = xs"
...
done

After the proof: Isabelle changes xs to ?xs (internally):

?xs @ [] = ?xs

Now usable with arbitrary values for ?xs
Example: rewriting

rev(a @ []) = rev a

using app Nil2 with σ = {?xs 7→ a}

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 27

/ 37

Basic Simplification

Goal: 1. [|P1; . . . ; Pm|] =⇒ C

proof (simp add: eq thm1 . . . eq thmn)

Simplify (mostly rewrite) P1; . . . ;Pm and C using

lemmas with attribute simp

rules from primrec and datatype

additional lemmas eq thm1 . . . eq thmn

assumptions P1; . . . ;Pm

Variations:

(simp . . . del: . . .) removes simp-lemmas

add and del are optional

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 28

/ 37

Basic Simplification

Goal: 1. [|P1; . . . ; Pm|] =⇒ C

proof (simp add: eq thm1 . . . eq thmn)

Simplify (mostly rewrite) P1; . . . ;Pm and C using

lemmas with attribute simp

rules from primrec and datatype

additional lemmas eq thm1 . . . eq thmn

assumptions P1; . . . ;Pm

Variations:

(simp . . . del: . . .) removes simp-lemmas

add and del are optional

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 29

/ 37

auto versus simp

auto acts on all subgoals

simp acts only on subgoal 1

auto applies simp and more

simp concentrates on rewriting
auto combines rewriting with resolution

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 30

/ 37

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly left to right.
Example: f (x) = g(x), g(x) = f (x) will not terminate.

[|P1, . . .Pn|] =⇒ l = r

is only suitable as a simp-rule only if l is “bigger” than r and each Pi .

(n < m) = (Sucn < Sucm) NO
(n < m) =⇒ (n < Sucm) = True YES
Sucn < m =⇒ (n < m) = True NO

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 31

/ 37

Assumptions and Simplification

Simplification of [|A1, . . . ,An|] =⇒ B:

Simplify A1 to A′
1

Simplify [|A2, . . . ,An|] =⇒ B using A′
1

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 32

/ 37

Ignoring Assumptions

Sometimes need to ignore assumptions; can introduce non-termination.
How to exclude assumptions from simp:
proof (simp (no asm simp). . .)

Simplify only the conclusion, but use assumptions

proof (simp (no asm use). . .)
Simplify all, but do not use assumptions

proof (simp (no asm). . .)
Ignore assumptions completely

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 33

/ 37

Rewriting with Definitions (definition)

Definitions do not have the simp attirbute.
They must be used explicitly:

proof (simp add: f def . . .)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 34

/ 37

Ordered Rewriting

Problem: ?x+?y =?y+?x does not terminate
Solution: Permutative simp-rules are used only if the term becomes
lexicographically smaller.
Example: b + a ; a + b but not a + b ; b + a.
For types nat, int, etc., commutative, associative and distributive laws
built in.
Example: proof simp yields:

((B + A) + ((2 :: nat) ∗ C)) + (A + B) ;
. . .; 2 ∗ A + (2 ∗ B + 2 ∗ C)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 35

/ 37

Preprocessing

simp-rules are preprocessed (recursively) for maximal simplification power:
6= A 7→ A = False

A −→ B 7→ A =⇒ B
A ∧ B 7→ A,B
∀x .A(x) 7→ A(?x)

A 7→ A = True
Example:

(p −→ q ∧ ¬r) ∧ s7→p =⇒ q = True, r = True, s = True

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 36

/ 37

Demo: Simplification through Rewriting

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 4, 2015 37

/ 37

	Definitions
	Term Rewriting

