datatype: An Example

datatype ’a list = Nil | Cons ’a "’a list"

CS576 Topics in Automated Deduction

Properties:

o Type constructors: list of one argument

Elsa L Gunter o Term constructors: Nil :: ’a list
2112 SC, UIUC Cons :: ’a = ’a list = ’a list
egunter@illinois.edu o Distinctness: Nil # Cons x xs

http://courses.engr.illinois.edu/csb576 o Injectivity:

(Cons x xs = Cons y ys) = (x =y A xs = ys)

Slides based in part on slides by Tobias Nipkow

February 4, 2015

Elsa L Gunter CS576 Topics in Automated Deduction /3 Elsa L Gunter CS576 Topics in Automated Deduction iy /37

Structural Induction on Lists datatype: The General Case
P xs holds for all lists xs if datatype (ai,...,am)7 = G Ti1...7T1n
e P Nil, and ‘
o for arbitrary a and list, P list implies | G Tka - Thme
P (Cons a list) @ Term Constructors:
Pys C::mii=...=Tin = (a1,...,0m)T
. o Distinctness: Ci Xj... X, # G Yj- .. Yjm if 1 # ]
P Nil P (Cons y ys) o Injectivity: (Ci x1...xp, = Ciy1...¥n) =
P xs (X1:y1/\~-</\xn,-*)’n,-)
In Isabelle:
Distinctness and Injectivity are applied by simp
[ ?P[]; Nalist. 2P list =7P(a# list) | = 7P ?list Induction must be applied explicitly

o Structural Induction Every datatype introduces a case construct, e.g.

(case xs of [ ] =...| y#ys = ...y ...ys ...)
o Syntax: (induct x) Y#Y y y

x must be a free variable in the first subgoal In general:

The type of x must be a datatype , . , . .
yp x P case Arbitrarily nested pattern = Expression using pattern variables

o Effect: Generates 1 new subgoal per constructor | Another pattern = Another expression

o Type of x determines which induction principle to use
Patterns may be non-exhaustive, or overlapping
Order of clauses matters - early clause takes precedence.

Elsa L Gunter CS576 Topics in Automated Deduction . / Elsa L Gunter CS576 Topics in Automated Deduction




Case Distinctions

apply / proof (case_tac t)

creates k subgoals:
t=Cix1...Xp, = ...

one for each constructor C;

Elsa L Gunter CS576 Topics in Automated Deduction

Demo: Another Datatype Example

Elsa L Gunter

CS576 Topics in Automated Deduction

Definition:

definition lot_size::"nat * nat" where

"lot_size = (62, 103)"

definition sq::"nat = nat" where
sqdef: "sqgn =n *x n"

The ASCII for = is ==.

Definitions of form f xj...x, = t where t only uses x; ... x, and
previously defined constants.

Creates theorem with default name f_def

Elsa L Gunter CS576 Topics in Automated Deduction i / 37

definition prime "nat = bool" where
"prime p = 1<p A (mdvd p — m =1V m=p)"

Not a definition: m free, but not on left

! Every free variable on rhs must occur as argument on lhs !

"prime p = 1<p A (Y m. mdvdp — m=1Vm=p)"
Note: no recursive definitions with definition

Using Definitions HOL Functions are Total

Definitions are not used automatically
Unfolding of definition of sq:
proof (unfold sq-def)
Rewriting definition of sq out of current goal:

proof (simp add: sq.def)

Elsa L Gunter CS576 Topics in Automated Deduction

Why nontermination can be harmful:

If £ x is undefined, is f x = f x?

Excluded Middle says it must be True or False
Reflexivity says it's True
How about £ x = 07

If fxz#y then

fx=17 fx=y?
Vy. f x #y. Then fx # fx #

I All functions in HOL must be total !

Elsa L Gunter

CS576 Topics in Automated Deduction



Function Definition in Isabelle/HOL Function Definition in Isabelle/HOL

@ Non-recursive definitions with definition
No problem

@ Primitive-recursive (over datatypes) with primrec
Termination proved automatically internally

o Well-founded recursion with fun

Proved automatically, but user must take care that recursive calls are
on “obviously” smaller arguments

Elsa L Gunter CS576 Topics in Automated Deduction

@ Well-founded recursion with function
User must (help to) prove termination
(~ later)
@ Role your own, via definition of the functions graph
use of choose operator, and other tedious approaches, but can work
when built-in methods don't.

Elsa L Gunter

CS576 Topics in Automated Deduction i /31

primrec Example primrec: The General Case

primrec app "’a list = ’a list = ’a list
where
"app Nil ys = ys" |

"app (Cons x xs) ys = Cons x (app xs ys)"

Elsa L Gunter CS576 Topics in Automated Deduction i / 37

If 7 is a datatype with constructors Cy,...,Cy, then f :: - = 7= 7/

can be defined by primitive recursion by:
fxi.. (Gyire - Yim) - Xm=r |

fxeo (G vt Yin) - Xm = Ik

The recursive calls in r; must be structurally smaller, i.e. of the form
f a...Yij---am-

Elsa L Gunter CS576 Topics in Automated Deduction i E

datatype nat = 0 | Suc nat
Functions on nat are definable by primrec!
primrec f::nat= ... where

f0=...1
f (Suc n) = ...fn

Elsa L Gunter CS576 Topics in Automated Deduction

datatype ’a option = None | Some ’a

Important application:

...= ’a option partial function:
no result

result of x

None

QN

Some x

Elsa L Gunter

CS576 Topics in Automated Deduction



primrec lookup :: °’k = (’kx’v)list = ’v option Term rewriting means . ..
where

lookup k [ ] = None |

lookup k (x#xs) =

(if fst x = k then Some(snd x) else lookup k xs)

Terminology: equation becomes rewrite rule

Using a set of equations / = r from left to right

As long as possible (possibly forever!)

Elsa L Gunter CS576 Topics in Automated Deduction

Elsa L Gunter CS576 Topics in Automated Deduction

substitution = mapping of variables to terms
0Fn = n () I = r is applicable to term t[s] if there is a substituti h that
uations. (Suc m)+n = Suc(m+n) (2) ° _,r,IS applicable to term t[s] if there is a substitution o such tha
a ' (0<m) = True 3) o()=s
(Suc m<Sucn) = (m<n) (4) e s is an instance of /
@ Result: t[o(r)]
0+5uc0 < SucO+x Q @ Also have theorem: t[s] = t[o(r)]
Suc 0 < SucO+x @
Rewriting: Suc 0 < Suc(0+x) @
0 < 0+x @
True
Example Conditional Rewriting
o Equation: 0+ n=n Rewrite rules can be conditional:
o Term: a+ (0+ (b+c¢)) [Pi;. i Pal =1 =r
@ Substitution: o = {n+ b+ c} ) ) ) o )
o Result: a+ (b+ c) is apphjable to tcelzrm t[s] with substitution o if:
@ Theorem: a+ (0+(b+c¢))=a+ (b+c¢) o o) =san
@ o(P1),...,0(Py,) are provable (possibly again by rewriting)
Elsa L Gunter CS576 Topics in Automated Deduction . / Elsa L Gunter CS576 Topics in Automated Deduction



Three kinds of variables in Isabelle:
@ bound: Vx. x =x
o free: x =x

@ schematic: 7x =7x
(“unknown", a.k.a. meta-variables)

Can be mixed in term or formula: Vb. Jy. f 7ay = b

Elsa L Gunter CS576 Topics in Automated Deduction

o Logically: free = bound at meta-level
o Operationally:

o free variabes are fixed
o schematic variables are instantiated by substitutions

Elsa L Gunter

lemma app Nil2 [simp]: "xs @ [ ] = xs"

done
After the proof: Isabelle changes xs to ?xs (internally):

?xs @ [ ] = 7xs

Now usable with arbitrary values for ?xs
Example: rewriting

rev(a @ [ ]) = rev a
using app_Nil2 with 0 = {?xs > a}
Basic Simplification
Goal: 1. [Py;...;Py] =C
proof (simp add: eq_thm; ... eq_thm,)

Simplify (mostly rewrite) Ps;...; Py and C using
@ lemmas with attribute simp

@ rules from primrec and datatype

o additional lemmas eq_thm; ... eq_thm,
@ assumptions Pi;...; Pp
Variations:
o (simp ...del: ...) removes simp-lemmas

@ add and del are optional

Elsa L Gunter CS576 Topics in Automated Deduction

CS576 Topics in Automated Deduction

State lemmas with free variables:

Goal: 1. [Py;...;Py] =C
proof (simp add: eq_thmy ... eq_thmp)
Simplify (mostly rewrite) Py;...; Py and C using
@ lemmas with attribute simp
@ rules from primrec and datatype
o additional lemmas eq_thmy ... eq-thm,
@ assumptions Pi;...; Pp
Variations:
o (simp ...del: ...) removes simp-lemmas
@ add and del are optional

Versus

@ auto acts on all subgoals
@ simp acts only on subgoal 1
@ auto applies simp and more

e simp concentrates on rewriting
e auto combines rewriting with resolution

Elsa L Gunter

CS576 Topics in Automated Deduction



Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly left to right.
Example: f(x) = g(x), g(x) = f(x) will not terminate.

[Pi,...Pa = 1=
is only suitable as a simp-rule only if / is "bigger” than r and each P;.

(n < m) = (Sucn < Sucm) NO
(n <m) = (n < Sucm) = True YES
Sucn <m = (n <m) =True NO

Elsa L Gunter CS576 Topics in Automated Deduction

Simplification of [Aq, .
@ Simplify A; to A}
o Simplify [As, ..., As] = B using A}

LA = B:

Ignoring Assumptions

Sometimes need to ignore assumptions; can introduce non-termination.
How to exclude assumptions from simp:
proof (simp (no_asm_simp)...)

Simplify only the conclusion, but use assumptions

proof (simp (no_asm use)...)
Simplify all, but do not use assumptions

proof (simp (no_asm)...)
Ignore assumptions completely

Elsa L Gunter CS576 Topics in Automated Deduction i / 37

Ordered Rewriting

Problem: ?x+?y =?y+7x does not terminate

Solution: Permutative simp-rules are used only if the term becomes
lexicographically smaller.

Example: b+a~>a+bbutnota+b~>b+a.

For types nat, int, etc., commutative, associative and distributive laws
built in.

Example: proof simp yields:

(B+A)+((2::nat)« C))+ (A+ B) ~
2% A+ (2% B+2x%C)

Elsa L Gunter CS576 Topics in Automated Deduction

Elsa L Gunter

CS576 Topics in Automated Deduction

Rewriting with Definitions (definition)

Definitions do not have the simp attirbute.
They must be used explicitly:

proof (simp add: f.def...)

Elsa L Gunter CS576 Topics in Automated Deduction i E

Preprocessing

simp-rules are preprocessed (recursively) for maximal simplification power:

#A +— A=False
A—B — A=B
ANB — AB
Vx.A(x) — A(x)
A — A=True
Example:

(p —> g A —r) A s»p = q = True,r = True,s = True

Elsa L Gunter

CS576 Topics in Automated Deduction




Demo: Simplification through Rewriting

Topics in Automated Dedu:




