CS576 Topics in Automated Deduction

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipkow

January 30, 2015

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Theory = Module

Syntax:

theory MyTh

imports ImpThy ... ImpTh,
begin

declarations, definitions, theorems, proofs, ...

end

@ MyTh: name of theory being built. Must live in file MyTh.thy.
@ ImpTh;: name of imported theories. Importing is transitive.

Elsa L Gunter CS576 Topics in Automated Deduction / 30

Isabelle Syntax

@ Distinct from HOL syntax
@ Contains HOL syntax within it

@ Mirrors HOL syntax - need to not confuse them

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

Meta-logic: Basic Constructs

Implication: — (==>)

For separating premises and conclusion of theorems / rules
Equality: = (==)

For definitions
Universal Quantifier: A (!!)

Usually inserted and removed by Isabelle automatically

Do not use inside HOL formulae

Isabelle | HOL Meaning
= — Implies
= = Equality
A A Universal Quantification, For All

Elsa L Gunter CS576 Topics in Automated Deduction

Three kinds of variables in Isabelle:
@ bound: Vx. x =x Ax.x >3 =—=x>0
e free: x = x (only in HOL terms)

@ schematic: 7x =7x
(“unknown”, a.k.a. meta-variables)

Can be mixed in term or formula: Vb. dy. f 7ay =b

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

Variables

o Logically: free = bound at meta-meta-level
@ Operationally:

o free variabes are fixed
e schematic variables are instantiated by substitutions

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

From x to 7x

State lemmas with free variables:
lemma app-Nil2 [simp]l: "xs @ [] = xs"

done
After the proof: Isabelle changes xs to 7xs (internally):

?7xs @ [] = ?xs

Now usable with arbitrary values for 7xs
Example: rewriting

rev(a @ []) = rev a

using app-Nil2 with o = {?xs > a}

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

Rule/Goal Notation

l1A;;...;A 1l = B

abbreviates
Al— ... — A, — B

and means the rule (or potential rule):

Ai; ... A,
B

; ~ uandn

Note: A theorem is a rule; a rule is a theorem.

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

The Proof/Goal State

1.Ax1 ... Xm. [A1;...;Al = B

X1 ... Xm Local constants (fixed variables)
Al.. A, Local assumptions
B Actual (sub)goal

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

Proofs - Method 1

General schema:

lemma name: " ..."
apply (method)

done
If the lemma is suitable as a simplification rule:
lemma name([simp]: " ..."

Adds lemma name to future simplifications

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

Proof - Method 2

General schema:

lemma lemma_name: " ..."
proof (method)
fixxyz
assume hypl_name: " ..."
from hypl_name
show : " ..."

proof method

ged
qed

Will try to use only Method 2 (lIsar) in lectures in class

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

Proof Methods

o Simplification and a bit of logic
auto Effect: tries to solve as many subgoals as possible using simplification
and basic logical reasoning

simp Effect: relatively intelligent rewriting with database of theorem, extra
given theorems, and assumptions.

@ More specialized tactics to come

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

Top-down Proofs

sorry
“completes” any proof (by giving up, and accepting it)
Suitable for top-down development of theories:

Assume lemmas first, prove them later.

Only allowed for interactive proof!

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

Defining Things

Elsa L Gunter CS576 Topics in Automated Deduction

Introducing New Types

Keywords:

typedecl: Pure declaration; New type with no properties (except
that it is non-empty)

typedef: Primitive for type definitions; Only real way of introducing
a new type with new properties

Must build a model and prove it nonempty

More on this later

type_synonym: Abbreviation - used only to make theory files more
readable

datatype: Defines recursive data-types; solutions to free algebra
specifications

Basis for primitive recursive function definitions

record: introduces a record type scheme, introducing its fields. To
be covered later.

Elsa L Gunter CS576 Topics in Automated Deduction / 30

typedecl

typedecl name
Introduces new “opaque” name without definition

Serves similar role for generic reasoning as polymorphism, but can't be
specialized

Example:

typedecl addr — An abstract type of addresses

Elsa L Gunter CS576 Topics in Automated Deduction / 30

type_synonym

type_synonym (tyvars) name = T
Introduces an abbreviation (tyvars) name for type 7

Examples:

type_synonym name = string

type_synonym (’a,’b)foo = "’a list * ’b"

Type abbreviations are expanded immediately after parsing

Not present in internal representation and Isabelle output

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

datatype: An Example

datatype ’a list = Nil | Cons ’a "’a list"

Properties:
@ Type constructors: list of one argument

@ Term constructors: Nil :: ’a list
Cons :: ’a = ’a list = ’a list

@ Distinctness: Nil # Cons x Xs
@ Injectivity:
(Cons x xs = Cons y ys) = (x =y A xs = ys)

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

Structural Induction on Lists

P xs holds for all lists xs if
@ P Nil, and

o for arbitrary a and list, P list implies
P (Cons a list)
P ys

P Nil P (Cons y ys)
P xs

In Isabelle:

[?P[]; Aalist. 7P list ==7P(a# list) | = 7P ?list

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

datatype: The General Case

datatype (o1,...,am)T G T -Tim

@ Term Constructors:
G::mi1=...=7Tip=(,...,am)T
@ Distinctness: C; x;...Xjn # G yj .. Yy 10 #J
o Injectivity: (Cix1...xp, = Ci y1...¥n;) =
(X1 =y1AN... AXn, = Yn,)

Distinctness and Injectivity are applied by simp
Induction must be applied explicitly

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

Proof Method

@ Structural Induction

e Syntax: (induct x)
x must be a free variable in the first subgoal

The type of x must be a datatype
o Effect: Generates 1 new subgoal per constructor

o Type of x determines which induction principle to use

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

case

Every datatype introduces a case construct, e.g.
(case xs of [] =...| y#ys = ...y ...ys ...)

In general:

case Arbitrarily nested pattern = Expression using pattern variables
| Another pattern = Another expression

Patterns may be non-exhaustive, or overlapping
Order of clauses matters - early clause takes precedence.

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

Case Distinctions

apply / proof (case_tac t)

creates k subgoals:
t=GC X1 .o Xp, = ...

one for each constructor C;

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

Elsa L Gunter

Demo: Another Datatype Example

CS576 Topics in Automated Deduction

Definitions by Example

Definition:

definition lot_size::"nat * nat" where
"lot_size = (62, 103)"

definition sq::"nat = nat" where
sqdef: "sqn =n *x n"

The ASCII for = is ==.

Definitions of form f x;...x, =t where t only uses xj ... x, and
previously defined constants.

Creates theorem with default name f_def

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

Definition Restrictions

definition prime :: '"nat = bool" where
nprimep51<p/\ (dedp—>m=1\/m=p)"

Not a definition: m free, but not on left

I Every free variable on rhs must occur as argument on |hs !

"prime p = 1<p A (VY m. mdvdp — m=1Vm=p)"

Note: no recursive definitions with definition

Elsa L Gunter CS576 Topics in Automated Deduction / 30

Using Definitions

Definitions are not used automatically

Unfolding of definition of sq:
proof (unfold sq._def)
Rewriting definition of sq out of current goal:

proof (simp add: sq.def)

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

HOL Functions are Total

Why nontermination can be harmful:

If £ x is undefined, is £ x = f x7

Excluded Middle says it must be True or False
Reflexivity says it's True

How about £ x = 07 fx=17 fx=y?

If fx#y then Vy.fx#y. Then fx # fx #

I All functions in HOL must be total !

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

Function Definition in Isabelle/HOL

@ Non-recursive definitions with definition
No problem
@ Primitive-recursive (over datatypes) with primrec
Termination proved automatically internally
o Well-founded recursion with fun
Proved automatically, but user must take care that recursive calls are
on “obviously” smaller arguments

Elsa L Gunter CS576 Topics in Automated Deduction : / 30

Function Definition in Isabelle/HOL

@ Well-founded recursion with function

User must (help to) prove termination
(~ later)

@ Role your own, via definition of the functions graph

use of choose operator, and other tedious approaches, but can work
when built-in methods don't.

Elsa L Gunter CS576 Topics in Automated Deduction / 30

	Isabelle Syntax
	Definitions

