CS576 Topics in Automated Deduction

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu

http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipkow

January 30, 2015

Theory = Module

Syntax:

```
theory MyTh imports ImpTh_1 \dots ImpTh_n begin
```

declarations, definitions, theorems, proofs, ...

end

- MyTh: name of theory being built. Must live in file MyTh.thy.
- *ImpTh_i*: name of *imported* theories. Importing is transitive.

Isabelle Syntax

- Distinct from HOL syntax
- Contains HOL syntax within it
- Mirrors HOL syntax need to not confuse them

Meta-logic: Basic Constructs

Implication: \Longrightarrow (= \Longrightarrow)

For separating premises and conclusion of theorems / rules

Equality: \equiv (==) For definitions

Universal Quantifier: ∧ (!!)

Usually inserted and removed by Isabelle automatically

Do not use inside HOL formulae

Isabelle	HOL	Meaning
\Longrightarrow	\longrightarrow	Implies
	=	Equality
Λ	A	Universal Quantification, For All

Variables

Three kinds of variables in Isabelle:

- bound: $\forall x. \ x = x$ $\Lambda x. \ x > 3 \Longrightarrow x > 0$
- free: x = x (only in HOL terms)
- schematic: ?x =?x ("unknown", a.k.a. meta-variables)

Can be mixed in term or formula: $\forall b$. $\exists y$. f ?a y = b

Variables

- Logically: free = bound at meta-meta-level
- Operationally:
 - free variabes are fixed
 - schematic variables are instantiated by substitutions

From x to ?x

```
State lemmas with free variables:
lemma app_Nil2 [simp]: "xs @ [] = xs"
done
After the proof: Isabelle changes xs to ?xs (internally):
                           ?xs @ [] = ?xs
Now usable with arbitrary values for ?xs
Example: rewriting
                        rev(a @ [ ]) = rev a
using app_Nil2 with \sigma = \{?xs \mapsto a\}
```

Rule/Goal Notation

$$[\![A_1;\ldots;A_n]\!] \Longrightarrow B$$

abbreviates

$$A_1 \Longrightarrow \ldots \Longrightarrow A_n \Longrightarrow B$$

and means the rule (or potential rule):

$$\frac{A_1;\ldots;A_n}{B}$$

;
$$\approx$$
 "and"

Note: A theorem is a rule; a rule is a theorem.

The Proof/Goal State

1.
$$\Lambda x_1 \dots x_m$$
. $[A_1; \dots; A_n] \Longrightarrow B$

 $x_1 \dots x_m$ Local constants (fixed variables)

 $A_1 \dots A_n$ Local assumptions

B Actual (sub)goal

Proofs - Method 1

```
General schema:

lemma name: " ..."

apply (method)

i

done

If the lemma is suitable as a simplification rule:

lemma name[simp]: " ..."

Adds lemma name to future simplifications
```

Proof - Method 2

General schema:

```
lemma lemma name: " ..."
proof (method)
fix x y z
assume hyp1_name: " ..."
from hyp1_name
show: " ..."
 proof method
 qed
qed
```

Will try to use only Method 2 (Isar) in lectures in class

Proof Methods

- Simplification and a bit of logic
- auto Effect: tries to solve as many subgoals as possible using simplification and basic logical reasoning
- **Simp Effect:** relatively intelligent rewriting with database of theorem, extra given theorems, and assumptions.
- More specialized tactics to come

Top-down Proofs

sorry

"completes" any proof (by giving up, and accepting it) Suitable for top-down development of theories: Assume lemmas first, prove them later.

Only allowed for interactive proof!

Defining Things

Introducing New Types

Keywords:

- typedecl: Pure declaration; New type with no properties (except that it is non-empty)
- typedef: Primitive for type definitions; Only real way of introducing a new type with new properties
 Must build a model and prove it nonempty
 More on this later
- type_synonym: Abbreviation used only to make theory files more readable
- datatype: Defines recursive data-types; solutions to free algebra specifications
 Basis for primitive recursive function definitions
- record: introduces a record type scheme, introducing its fields. To be covered later.

typedecl

typedecl name

Introduces new "opaque" name without definition Serves similar role for generic reasoning as polymorphism, but can't be specialized

Example:

typedecl addr — An abstract type of addresses

$type_synonym$

```
\label{type_synonym} $$\langle \textit{tyvars} \rangle$ name = \tau$$ Introduces an abbreviation $$\langle \textit{tyvars} \rangle$ name for type $\tau$$
```

Examples:

```
type_synonym name = string
type_synonym ('a,'b)foo = "'a list * 'b"
```

Type abbreviations are expanded immediately after parsing

Not present in internal representation and Isabelle output

datatype: An Example

```
datatype 'a list = Nil | Cons 'a "'a list"
```

Properties:

- Type constructors: list of one argument
- Term constructors: Nil :: 'a list ${\sf Cons}$:: 'a ${\sf p}$ 'a list ${\sf p}$ 'a list
- Distinctness: $Nil \neq Cons \times xs$
- Injectivity:

```
(Cons x xs = Cons y ys) = (x = y \land xs = ys)
```

Structural Induction on Lists

- P xs holds for all lists xs if
 - P Nil, and
 - for arbitrary a and list, P list implies

```
P (Cons a list)
```

In Isabelle:

$$[?P[]; \land a \text{ list. }?P \text{ list} \Longrightarrow ?P(a \# \text{ list})] \Longrightarrow ?P? \text{list}$$

datatype: The General Case

datatype
$$(\alpha_1, \dots, \alpha_m)\tau = C_1 \tau_{1,1} \dots \tau_{1,n_1}$$

 $\mid \dots \mid$
 $\mid C_k \tau_{k,1} \dots \tau_{k,n_k}$

• Term Constructors:

$$C_i :: \tau_{i,1} \Rightarrow \ldots \Rightarrow \tau_{i,n_i} \Rightarrow (\alpha_1, \ldots, \alpha_m)\tau$$

- Distinctness: $C_i \ x_i \dots x_{i,n_i} \neq C_j \ y_j \dots y_{j,n_i}$ if $i \neq j$
- Injectivity: $(C_i \ x_1 \dots x_{n_i} = C_i \ y_1 \dots y_{n_i}) = (x_1 = y_1 \wedge \dots \wedge x_{n_i} = y_{n_i})$

Distinctness and Injectivity are applied by simp Induction must be applied explicitly

Proof Method

- Structural Induction
 - Syntax: (induct x)
 x must be a free variable in the first subgoal
 The type of x must be a datatype
 - Effect: Generates 1 new subgoal per constructor
 - Type of x determines which induction principle to use

case

Every datatype introduces a case construct, e.g.

```
(case xs of [ ] \Rightarrow...| y#ys \Rightarrow ...y ...ys ...)
```

In general:

```
case Arbitrarily nested pattern \Rightarrow Expression using pattern variables | Another pattern \Rightarrow Another expression | ...
```

Patterns may be non-exhaustive, or overlapping Order of clauses matters - early clause takes precedence.

Case Distinctions

creates *k* subgoals:

$$t = C_i x_1 \dots x_{n_i} \Longrightarrow \dots$$

one for each constructor C_i

Demo: Another Datatype Example

Definitions by Example

Definition:

```
definition lot_size::"nat * nat" where "lot_size \equiv (62, 103)" definition sq::"nat \Rightarrow nat" where sq_def: "sq n \equiv n * n" The ASCII for \equiv is ==. Definitions of form f \times_1 \dots \times_n \equiv t where t only uses x_1 \dots x_n and previously defined constants. Creates theorem with default name f_def
```

Definition Restrictions

```
definition prime :: "nat ⇒ bool" where
"prime p ≡ 1
```

Note: no recursive definitions with definition

Using Definitions

Definitions are not used automatically

Unfolding of definition of sq:

```
proof (unfold sq_def)
```

Rewriting definition of sq out of current goal:

```
proof (simp add: sq_def)
```

HOL Functions are Total

Why nontermination can be harmful:

```
If f x is undefined, is f x = f x?

Excluded Middle says it must be True or False

Reflexivity says it's True

How about f x = 0? f x = 1? f x = y?

If f x \neq y then \forall y. f x \neq y. Then fx \neq fx #

! All functions in HOL must be total!
```

Function Definition in Isabelle/HOL

- Non-recursive definitions with definition No problem
- Primitive-recursive (over datatypes) with primrec
 Termination proved automatically internally
- Well-founded recursion with fun
 Proved automatically, but user must take care that recursive calls are
 on "obviously" smaller arguments

Function Definition in Isabelle/HOL

- Well-founded recursion with function User must (help to) prove termination (→ later)
- Role your own, via definition of the functions graph use of choose operator, and other tedious approaches, but can work when built-in methods don't.