
CS576 Topics in Automated Deduction

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipkow
January 30, 2015

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 1

/ 30

Theory = Module

Syntax:

theory MyTh
imports ImpTh1 . . . ImpThn
begin

declarations, definitions, theorems, proofs, . . .

end

MyTh: name of theory being built. Must live in file MyTh.thy.

ImpThi : name of imported theories. Importing is transitive.

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 2

/ 30

Isabelle Syntax

Distinct from HOL syntax

Contains HOL syntax within it

Mirrors HOL syntax - need to not confuse them

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 3

/ 30

Meta-logic: Basic Constructs

Implication: =⇒ (==>)
For separating premises and conclusion of theorems / rules

Equality: ≡ (==)
For definitions

Universal Quantifier: Λ (!!)
Usually inserted and removed by Isabelle automatically

Do not use inside HOL formulae

Isabelle HOL Meaning

=⇒ −→ Implies

≡ = Equality

Λ ∀ Universal Quantification, For All

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 4

/ 30

Variables

Three kinds of variables in Isabelle:

bound: ∀x. x = x Λx . x > 3 =⇒ x > 0

free: x = x (only in HOL terms)

schematic : ?x =?x
(“unknown”, a.k.a. meta-variables)

Can be mixed in term or formula: ∀b. ∃y . f ?a y = b

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 5

/ 30

Variables

Logically: free = bound at meta-meta-level

Operationally:

free variabes are fixed
schematic variables are instantiated by substitutions

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 6

/ 30

From x to ?x

State lemmas with free variables:
lemma app Nil2 [simp]: "xs @ [] = xs"...
done

After the proof: Isabelle changes xs to ?xs (internally):

?xs @ [] = ?xs

Now usable with arbitrary values for ?xs
Example: rewriting

rev(a @ []) = rev a

using app Nil2 with σ = {?xs 7→ a}

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 7

/ 30

Rule/Goal Notation

[|A1; . . . ;An|] =⇒ B

abbreviates
A1 =⇒ . . . =⇒ An =⇒ B

and means the rule (or potential rule):

A1; . . . ;An

B

; ≈ “and”

Note: A theorem is a rule; a rule is a theorem.

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 8

/ 30

The Proof/Goal State

1. Λx1 . . . xm. [|A1; . . . ;An|] =⇒ B

x1 . . . xm Local constants (fixed variables)

A1 . . .An Local assumptions

B Actual (sub)goal

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 9

/ 30

Proofs - Method 1

General schema:

lemma name: " ..."

apply (method)
...

done

If the lemma is suitable as a simplification rule:

lemma name[simp]: " ..."

Adds lemma name to future simplifications

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 10

/ 30

Proof - Method 2

General schema:

lemma lemma name: " ..."

proof (method)
fix x y z
assume hyp1 name: " ..."

from hyp1 name
show : " ..."

proof method
...
qed

qed

Will try to use only Method 2 (Isar) in lectures in class

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 11

/ 30

Proof Methods

Simplification and a bit of logic

auto Effect: tries to solve as many subgoals as possible using simplification
and basic logical reasoning

simp Effect: relatively intelligent rewriting with database of theorem, extra
given theorems, and assumptions.

More specialized tactics to come

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 12

/ 30

Top-down Proofs

sorry

“completes” any proof (by giving up, and accepting it)
Suitable for top-down development of theories:
Assume lemmas first, prove them later.

Only allowed for interactive proof!

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 13

/ 30

Defining Things

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 14

/ 30

Introducing New Types

Keywords:

typedecl: Pure declaration; New type with no properties (except
that it is non-empty)

typedef: Primitive for type definitions; Only real way of introducing
a new type with new properties
Must build a model and prove it nonempty
More on this later

type synonym: Abbreviation - used only to make theory files more
readable

datatype: Defines recursive data-types; solutions to free algebra
specifications
Basis for primitive recursive function definitions

record: introduces a record type scheme, introducing its fields. To
be covered later.

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 15

/ 30

typedecl

typedecl name
Introduces new “opaque” name without definition
Serves similar role for generic reasoning as polymorphism, but can’t be
specialized

Example:

typedecl addr — An abstract type of addresses

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 16

/ 30

type synonym

type synonym 〈tyvars〉 name = τ
Introduces an abbreviation 〈tyvars〉 name for type τ

Examples:

type synonym name = string

type synonym (’a,’b)foo = "’a list * ’b"

Type abbreviations are expanded immediately after parsing

Not present in internal representation and Isabelle output

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 17

/ 30

datatype: An Example

datatype ’a list = Nil | Cons ’a "’a list"

Properties:

Type constructors: list of one argument

Term constructors: Nil :: ’a list

Cons :: ’a ⇒ ’a list ⇒ ’a list

Distinctness: Nil 6= Cons x xs

Injectivity:
(Cons x xs = Cons y ys) = (x = y ∧ xs = ys)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 18

/ 30

Structural Induction on Lists

P xs holds for all lists xs if

P Nil, and

for arbitrary a and list, P list implies
P (Cons a list)

P Nil

P ys
...

P (Cons y ys)

P xs
In Isabelle:

[| ?P[]; Λ a list. ?P list =⇒?P(a# list) |] =⇒ ?P ?list

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 19

/ 30

datatype: The General Case

datatype (α1, . . . , αm)τ = C1 τ1,1 . . . τ1,n1
| ...

| Ck τk,1 . . . τk,nk
Term Constructors:
Ci :: τi ,1 ⇒ . . .⇒ τi ,ni ⇒ (α1, . . . , αm)τ

Distinctness: Ci xi . . . xi ,ni 6= Cj yj . . . yj ,nj if i 6= j

Injectivity: (Ci x1 . . . xni = Ci y1 . . . yni) =
(x1 = y1 ∧ . . . ∧ xni = yni)

Distinctness and Injectivity are applied by simp

Induction must be applied explicitly

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 20

/ 30

Proof Method

Structural Induction

Syntax: (induct x)

x must be a free variable in the first subgoal

The type of x must be a datatype

Effect: Generates 1 new subgoal per constructor

Type of x determines which induction principle to use

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 21

/ 30

case

Every datatype introduces a case construct, e.g.

(case xs of [] ⇒...| y#ys ⇒ ...y ...ys ...)

In general:

case Arbitrarily nested pattern ⇒ Expression using pattern variables
| Another pattern ⇒ Another expression
| . . .

Patterns may be non-exhaustive, or overlapping
Order of clauses matters - early clause takes precedence.

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 22

/ 30

Case Distinctions

apply / proof (case tac t)

creates k subgoals:
t = Ci x1 . . . xni =⇒ . . .

one for each constructor Ci

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 23

/ 30

Demo: Another Datatype Example

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 24

/ 30

Definitions by Example

Definition:

definition lot size::"nat * nat" where

"lot size ≡ (62, 103)"

definition sq::"nat ⇒ nat" where

sq def: "sq n ≡ n * n"

The ASCII for ≡ is ==.

Definitions of form f x1 . . . xn ≡ t where t only uses x1 . . . xn and
previously defined constants.

Creates theorem with default name f def

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 25

/ 30

Definition Restrictions

definition prime :: "nat ⇒ bool" where

"prime p ≡ 1<p ∧ (m dvd p −→ m = 1 ∨ m = p)"

Not a definition: m free, but not on left

! Every free variable on rhs must occur as argument on lhs !

"prime p ≡ 1<p ∧ (∀ m. m dvd p −→ m = 1 ∨ m = p)"

Note: no recursive definitions with definition

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 26

/ 30

Using Definitions

Definitions are not used automatically

Unfolding of definition of sq:

proof (unfold sq def)

Rewriting definition of sq out of current goal:

proof (simp add: sq def)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 27

/ 30

HOL Functions are Total

Why nontermination can be harmful:

If f x is undefined, is f x = f x?

Excluded Middle says it must be True or False

Reflexivity says it’s True

How about f x = 0? f x = 1? f x = y?

If f x 6= y then ∀y. f x 6= y. Then fx 6= fx #

! All functions in HOL must be total !

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 28

/ 30

Function Definition in Isabelle/HOL

Non-recursive definitions with definition

No problem

Primitive-recursive (over datatypes) with primrec

Termination proved automatically internally

Well-founded recursion with fun

Proved automatically, but user must take care that recursive calls are
on “obviously” smaller arguments

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 29

/ 30

Function Definition in Isabelle/HOL

Well-founded recursion with function

User must (help to) prove termination
(; later)

Role your own, via definition of the functions graph
use of choose operator, and other tedious approaches, but can work
when built-in methods don’t.

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 30, 2015 30

/ 30

