CS576 Topics in Automated Deduction

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipkow $_{\tt January\ 30,\ 2015}$

CS576 Topics in Automated Dedu

Theory = Module

Syntax:

theory MyThimports $ImpTh_1 \ldots ImpTh_n$ begin

declarations, definitions, theorems, proofs, ...

end

• MyTh: name of theory being built. Must live in file MyTh.thy.

CS576 Topics in Automated De

• *ImpTh_i*: name of *imported* theories. Importing is transitive.

Isabelle Syntax

Elsa L Gu

Elsa I. Gunter

- Distinct from HOL syntax
- Contains HOL syntax within it
- Mirrors HOL syntax need to not confuse them

Meta-logic: Basic Constructs

Implication: ⇒> (=>)
For separating premises and conclusion of theorems / rules
Equality: ≡ (==)
For definitions

Universal Quantifier: Λ (!!)

Usually inserted and removed by Isabelle automatically

Do not use inside HOL formulae

Isabelle	HOL	Meaning
\Rightarrow	\longrightarrow	Implies
≡	=	Equality
٨	A	Universal Quantification, For All

 Variables
 Variables

 Three kinds of variables in Isabelle:
 • bound: $\forall x. x \equiv x \quad Ax. x > 3 \Longrightarrow x > 0$ • Logically: free = bound at meta-meta-level

 • free: $x \equiv x$ (only in HOL terms)
 • Schematic: ?x = ?x("unknown", a.k.a. meta-variables)
 • Logically: free = bound at meta-meta-level

 Can be mixed in term or formula: $\forall b. \exists y. f ?a y = b$ • schematic variables are instantiated by substitutions

From x to ?x

CS576 Topics in Automated Dedu

using app_Nil2 with $\sigma = \{ ?xs \mapsto a \}$

Rule/Goal Notation

abbreviates

 $A_1 \Longrightarrow \ldots \Longrightarrow A_n \Longrightarrow B$

and means the rule (or potential rule):

$$\frac{A_1;\ldots;A_n}{B}$$

CS576 Topics in Automated Dec

 $\llbracket A_1;\ldots;A_n \rrbracket \Longrightarrow B$

; $\ \approx \ \ \mbox{``and''}$ Note: A theorem is a rule; a rule is a theorem.

The Proof/Goal State

Elsa L Gunte

1. $\Lambda x_1 \ldots x_m$. $[A_1; \ldots; A_n] \Longrightarrow B$

<i>x</i> ₁ <i>x</i> _m	Local constants (fixed variables)
$A_1 \dots A_n$	Local assumptions
В	Actual (sub)goal

Proofs - Method 1

Proof - Method 2

General schema:					
<pre>lemma lemma_name: "" proof (method)</pre>					
fixxyz					
assume hyp1_name: ""					
<pre>from hyp1_name</pre>					
show : ""					
proof method					
qed					
qed					
Will try to use only Method 2 (Isar) in lectures in class					

Proof Methods

- Simplification and a bit of logic
- auto Effect: tries to solve as many subgoals as possible using simplification and basic logical reasoning
- simp Effect: relatively intelligent rewriting with database of theorem, extra given theorems, and assumptions.

CS576 Topics in Automated Dedu

• **#** •

< ₹

• More specialized tactics to come

Top-down Proofs

sorry

"completes" any proof (by giving up, and accepting it) Suitable for top-down development of theories: Assume lemmas first, prove them later.

Only allowed for interactive proof!

Introducing New Types

Keywords:

Elsa I. Gi

• typedec1: Pure declaration; New type with no properties (except that it is non-empty)

CS576 Topics in Automated Dedu

- typedef: Primitive for type definitions; Only real way of introducing a new type with new properties Must build a model and prove it nonempty
- More on this later
- type_synonym: Abbreviation used only to make theory files more readable
- datatype: Defines recursive data-types; solutions to free algebra specifications
 - Basis for primitive recursive function definitions
- record: introduces a record type scheme, introducing its fields. To be covered later.

CS576 Topics in Auton

(日) (ヨ) (ヨ) (ヨ) (ヨ)

typedecl

typedecl name Introduces new "opaque" name without definition Serves similar role for generic reasoning as polymorphism, but can't be specialized

efining Things

Example:

typedecl addr — An abstract type of addresses

type_synonym

Elsa L Gunter

 $\label{eq:type_synonym} \begin{array}{l} \langle \textit{tyvars} \rangle ~\textit{name} = \tau \\ \\ \mbox{Introduces an abbreviation} ~ \langle \textit{tyvars} \rangle ~\textit{name} ~\mbox{for type} ~\tau \end{array}$

Examples:

type_synonym name = string

type_synonym ('a,'b)foo = "'a list * 'b"

Type abbreviations are expanded immediately after parsing

Not present in internal representation and Isabelle output

datatype: An Example

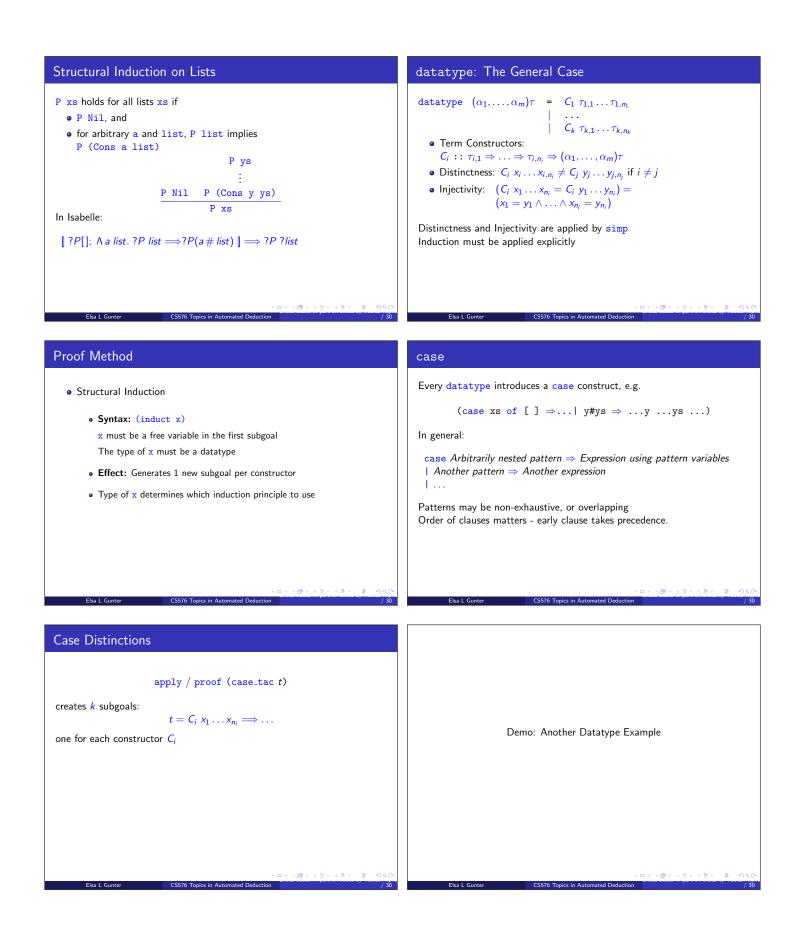
datatype 'a list = Nil | Cons 'a "'a list"

Properties:

- Type constructors: list of one argument
- Term constructors: Nil :: 'a list
- $\texttt{Cons} \ :: \ \texttt{'a} \ \Rightarrow \ \texttt{'a} \ \texttt{list} \ \Rightarrow \ \texttt{'a} \ \texttt{list}$

Topics in Automated Dedu

- Distinctness: Nil \neq Cons x xs
- Injectivity: (Cons x xs = Cons y ys) = (x = y \land xs = ys)



Definitions by Example

Definition:

definition lot_size::"nat * nat" where "lot_size \equiv (62, 103)"

definition sq::"nat \Rightarrow nat" where sq_def: "sq n \equiv n * n"

The ASCII for \equiv is ==. Definitions of form $f x_1 \dots x_n \equiv t$ where t only uses $x_1 \dots x_n$ and previously defined constants. Creates theorem with default name f_def

Definition Restrictions

Not a definition: m free, but not on left

! Every free variable on rhs must occur as argument on lhs !

"prime p \equiv 1\land (\forall m. m dvd p \longrightarrow m = 1 \lor m = p)"

CS576 Topics in Automated Dec

Note: no recursive definitions with definition

Using Definitions

Elsa L Gunte

Definitions are not used automatically

CS576 Topics in Automated Ded

Unfolding of definition of sq:

proof (unfold sq_def)

Rewriting definition of sq out of current goal:

proof (simp add: sq_def)

HOL Functions are Total

Why nontermination can be harmful:

If f x is undefined, is f x = f x?

Excluded Middle says it must be True or False

Reflexivity says it's True

How about f x = 0? f x = 1? f x = y? If $f x \neq y$ then $\forall y. f x \neq y$. Then $f x \neq f x$

! All functions in HOL must be total !

#

Function Definition in Isabelle/HOL

- Non-recursive definitions with definition No problem
- Primitive-recursive (over datatypes) with primrec Termination proved automatically internally
- Well-founded recursion with fun Proved automatically, but user must take care that recursive calls are on "obviously" smaller arguments

Function Definition in Isabelle/HOL

- Well-founded recursion with function User must (help to) prove termination (~ later)
- Role your own, via definition of the functions graph use of choose operator, and other tedious approaches, but can work when built-in methods don't.