CS576 Topics in Automated Deduction

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu

http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipow January 28, 2015

λ -calculus in a nutshell

Informal notation: t[x]

term t with 0 or more free occurrences of x

• Function application:

f a is the function f called with argument a.

• Function abstraction:

 $\lambda x.t[x]$ is the function with formal parameter x and body/result t[x], i.e. $x \mapsto t[x]$.

λ -calculus in a nutshell

• Computation:

Replace formal parameter by actual value

(" β -reduction"): $(\lambda x.t[x])a \leadsto_{\beta} t[a]$

Example: $(\lambda x. x + 5) \ 3 \sim_{\beta} (3 + 5)$

Isabelle performs β -reduction automatically

Isabelle considers $(\lambda x.t[x])a$ and t[a] equivalent

Terms and Types

Terms must be well-typed!

The argument of every function call must be of the right type

Notation: t :: au means t is well-typed term of type au

Type Inference

- Isabelle automatically computes ("infers") the type of each variable in
- In the presence of *overloaded* functions (functions with multiple, unrelated types) not always possible.
- User can help with type annotations inside the term.
- Example: f(x::nat)

Currying

- Curried: $f :: \tau_1 \Rightarrow \tau_2 \Rightarrow \tau$
- Tupled: $f :: \tau_1 \times \tau_2 \Rightarrow \tau$

Advantage: partial application f a_1 with a_1 :: au

Moral: Thou shalt curry your functions (most of the time :-)).

```
Terms: Syntactic Sugar

Some predefined syntactic sugar:

• Infix: +, -, \#, @, ...
• Mixfix: if_then_else_, case_of_, ...
• Binders: \forall x.P \ x means (\forall)(\lambda x.P \ x)

Prefix binds more strongly than infix:

! f \ x + y \equiv (f \ x) + y \not\equiv f \ (x + y) !
```

```
Type bool

Formulae = terms of type bool

True::bool

False::bool

\neg :: bool \Rightarrow bool

\land, \lor, \ldots :: bool \Rightarrow bool

\vdots

if-and-only-if: = but binds more tightly
```

```
0::nat
Suc :: nat ⇒ nat
+, ×, ... :: nat ⇒ nat ⇒ nat
::
```

Type nat

```
Overloading
! Numbers and arithmetic operations are overloaded:
0, 1, 2, ...:: nat or real (or others)
+:: nat ⇒ nat ⇒ nat and
+:: real ⇒ real ⇒ real (and others)
You need type annotations: 1:: nat, x + (y :: nat)
... unless the context is unambiguous: Suc 0
```

When writing terms and types in .thy files Types and terms need to be enclosed in "..." Except for single identifiers, e.g. 'a " ... " won't always be shown on slides

```
P xs holds for all lists xs if
P []
and for arbitrary y and ys, P ys implies P (y # ys)
P ys
:
P (y # ys)
P xs
```

```
Definition by primitive recursion:

primrec app :: "'a list ⇒ 'a list ⇒ 'a list

where

app [] ys = ____
app (x # xs) ys = ___app xs ...___

One rule per constructor

Recursive calls only applied to constructor arguments

Guarantees termination (total function)
```

```
Demo: Append and Reverse
```

```
General schema:

lemma name: " ..."
apply (method)

idone

If the lemma is suitable as a simplification rule:
lemma name[simp]: " ..."

Adds lemma name to future simplifications
```

```
General schema:

lemma lemma_name: " ..."

proof (method)

fix x y z

assume hyp1_name: " ..."

from hyp1_name

show: " ..."

proof method

i qed

qed

Will try to use only Method 2 (Isar) in lectures in class
```

Top-down Proofs

sorry

- "completes" any proof (by giving up, and accepting it)
- Suitable for top-down development of theories:
- Assume lemmas first, prove them later.

Only allowed for interactive proof!

Isabelle Syntax

- Distinct from HOL syntax
- Contains HOL syntax within it
- Also the same as HOL need to not confuse them

$\mathsf{Theory} = \mathsf{Module}$

Syntax:

theory MyTh imports $ImpTh_1 \dots ImpTh_n$ begin

declarations, definitions, theorems, proofs, ...

end

- MyTh: name of theory being built. Must live in file MyTh.thy.
- ImpTh_i: name of imported theories. Importing is transitive.

Meta-logic: Basic Constructs

Implication: \Longrightarrow (= \Longrightarrow)

For separating premises and conclusion of theorems / rules

Equality: \equiv (==) For definitions

Universal Quantifier: Λ (!!)

Usually inserted and removed by Isabelle automatically

Do not use inside HOL formulae

Rule/Goal Notation

$$[|A_1;\ldots;A_n|] \Longrightarrow B$$

abbreviates

$$A_1 \Longrightarrow \ldots \Longrightarrow A_n \Longrightarrow B$$

and means the rule (or potential rule):

$$\frac{A_1;\ldots;A_n}{B}$$

; \approx "and"

Note: A theorem is a rule; a rule is a theorem.

The Proof/Goal State

1.
$$\Lambda x_1 \dots x_m$$
. $[|A_1; \dots; A_n|] \Longrightarrow B$

Local constants (fixed variables)

Local assumptions $A_1 \dots A_n$

Actual (sub)goal

Proof Methods

- Simplification and a bit of logic
- auto Effect: tries to solve as many subgoals as possible using simplification and basic logical reasoning
- Simp Effect: relatively intelligent rewriting with database of theorem, extra given theorems, and assumptions.
- More specialized tactics to come

Top-down Proofs

sorry

"completes" any proof (by giving up, and accepting it) Suitable for top-down development of theories: Assume lemmas first, prove them later.

Only allowed for interactive proof!