
CS576 Topics in Automated Deduction

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipow
January 28, 2015

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 1

/ 21

λ-calculus in a nutshell

Informal notation: t[x]
term t with 0 or more free occurrences of x

Function application:
f a is the function f called with argument a.

Function abstraction:
λx .t[x] is the function with formal parameter x and body/result t[x],
i.e. x 7→ t[x].

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 2

/ 21

λ-calculus in a nutshell

Computation:

Replace formal parameter by actual value

(“β-reduction”): (λx .t[x])a ;β t[a]

Example: (λx . x + 5) 3 ;β (3 + 5)

Isabelle performs β-reduction automatically

Isabelle considers (λx .t[x])a and t[a] equivalent

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 3

/ 21

Terms and Types

Terms must be well-typed!

The argument of every function call must be of the right type

Notation: t :: τ means t is well-typed term of type τ

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 4

/ 21

Type Inference

Isabelle automatically computes (“infers”) the type of each variable in
a term.

In the presence of overloaded functions (functions with multiple,
unrelated types) not always possible.

User can help with type annotations inside the term.

Example: f(x::nat)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 5

/ 21

Currying

Curried: f :: τ1 ⇒ τ2 ⇒ τ

Tupled: f :: τ1 × τ2 ⇒ τ

Advantage: partial application f a1 with a1 :: τ
Moral: Thou shalt curry your functions (most of the time :-)).

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 6

/ 21

Terms: Syntactic Sugar

Some predefined syntactic sugar:

Infix: +, −, #, @, . . .

Mixfix: if then else , case of , . . .

Binders: ∀x.P x means (∀)(λx . P x)

Prefix binds more strongly than infix:

! f x + y ≡ (f x) + y 6≡ f (x + y) !

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 7

/ 21

Type bool

Formulae = terms of type bool

True::bool

False::bool

¬ :: bool⇒ bool

∧, ∨, . . . :: bool⇒ bool

...
if-and-only-if: = but binds more tightly

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 8

/ 21

Type nat

0::nat

Suc :: nat⇒ nat

+, ×, . . . :: nat⇒ nat⇒ nat

...

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 9

/ 21

Overloading

! Numbers and arithmetic operations are overloaded:

0, 1, 2, . . . :: nat or real (or others)

+ :: nat ⇒ nat ⇒ nat and

+ :: real ⇒ real ⇒ real (and others)

You need type annotations: 1 :: nat, x + (y :: nat)

. . . unless the context is unambiguous: Suc 0

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 10

/ 21

Type list

[]: empty list

x # xs: list with first element x (“head”)
and rest xs (“tail”)

Syntactic sugar: [x1, . . . , xn] ≡ x1# . . .#xn#[]

List is supported be a large library:
hd, tl, map, size, filter, set, nth, take, drop, distinct, . . .

Don’t reinvent, reuse!
; HOL/List.thy

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 11

/ 21

A Recursive datatype

datatype ’a list = Nil ("[]")

| Cons ’a "’a list" (infixr "#’’ 65)

[]: empty list

x # xs: list with head x::’a, tail xs::’a list

A toy list: False # (True # [])

Syntactic sugar: [False, True]

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 12

/ 21

Concrete Syntax

When writing terms and types in .thy files

Types and terms need to be enclosed in "..."

Except for single identifiers, e.g. ’a

" ..." won’t always be shown on slides

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 13

/ 21

Structural Induction on Lists

P xs holds for all lists xs if

P []

and for arbitrary y and ys, P ys implies P (y # ys)

P ys
...

P (y # ys)

P xs

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 14

/ 21

A Recursive Function: List Append

Definition by primitive recursion:

primrec app :: "’a list ⇒ ’a list ⇒ ’a list

where

app [] ys =

app (x # xs) ys = app xs ...

One rule per constructor
Recursive calls only applied to constructor arguments
Guarantees termination (total function)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 15

/ 21

Demo: Append and Reverse

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 16

/ 21

Proofs - Method 1

General schema:

lemma name: " ..."

apply (method)
...

done

If the lemma is suitable as a simplification rule:

lemma name[simp]: " ..."

Adds lemma name to future simplifications

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 17

/ 21

Proof - Method 2

General schema:

lemma lemma name: " ..."

proof (method)
fix x y z
assume hyp1 name: " ..."

from hyp1 name
show : " ..."

proof method
...
qed

qed

Will try to use only Method 2 (Isar) in lectures in class

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 18

/ 21

Top-down Proofs

sorry

“completes” any proof (by giving up, and accepting it)

Suitable for top-down development of theories:

Assume lemmas first, prove them later.

Only allowed for interactive proof!

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 19

/ 21

Isabelle Syntax

Distinct from HOL syntax

Contains HOL syntax within it

Also the same as HOL - need to not confuse them

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 20

/ 21

Theory = Module

Syntax:

theory MyTh
imports ImpTh1 . . . ImpThn
begin

declarations, definitions, theorems, proofs, . . .

end

MyTh: name of theory being built. Must live in file MyTh.thy.

ImpThi : name of imported theories. Importing is transitive.

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 21

/ 21

Meta-logic: Basic Constructs

Implication: =⇒ (==>)
For separating premises and conclusion of theorems / rules

Equality: ≡ (==)
For definitions

Universal Quantifier: Λ (!!)
Usually inserted and removed by Isabelle automatically

Do not use inside HOL formulae

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 22

/ 21

Rule/Goal Notation

[|A1; . . . ;An|] =⇒ B

abbreviates
A1 =⇒ . . . =⇒ An =⇒ B

and means the rule (or potential rule):

A1; . . . ;An

B

; ≈ “and”

Note: A theorem is a rule; a rule is a theorem.

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 23

/ 21

The Proof/Goal State

1. Λx1 . . . xm. [|A1; . . . ;An|] =⇒ B

x1 . . . xm Local constants (fixed variables)

A1 . . .An Local assumptions

B Actual (sub)goal

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 24

/ 21

Proof Methods

Simplification and a bit of logic

auto Effect: tries to solve as many subgoals as possible using simplification
and basic logical reasoning

simp Effect: relatively intelligent rewriting with database of theorem, extra
given theorems, and assumptions.

More specialized tactics to come

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 25

/ 21

Top-down Proofs

sorry

“completes” any proof (by giving up, and accepting it)
Suitable for top-down development of theories:
Assume lemmas first, prove them later.

Only allowed for interactive proof!

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 28, 2015 26

/ 21

