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λ-calculus in a nutshell

Informal notation: t[x ]
term t with 0 or more free occurrences of x

Function application:
f a is the function f called with argument a.

Function abstraction:
λx .t[x ] is the function with formal parameter x and body/result t[x ],
i.e. x 7→ t[x ].
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λ-calculus in a nutshell

Computation:

Replace formal parameter by actual value

(“β-reduction”): (λx .t[x ])a ;β t[a]

Example: (λx . x + 5) 3 ;β (3 + 5)

Isabelle performs β-reduction automatically

Isabelle considers (λx .t[x ])a and t[a] equivalent
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Terms and Types

Terms must be well-typed!

The argument of every function call must be of the right type

Notation: t :: τ means t is well-typed term of type τ
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Type Inference

Isabelle automatically computes (“infers”) the type of each variable in
a term.

In the presence of overloaded functions (functions with multiple,
unrelated types) not always possible.

User can help with type annotations inside the term.

Example: f(x::nat)
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Currying

Curried: f :: τ1 ⇒ τ2 ⇒ τ

Tupled: f :: τ1 × τ2 ⇒ τ

Advantage: partial application f a1 with a1 :: τ
Moral: Thou shalt curry your functions (most of the time :-) ).
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Terms: Syntactic Sugar

Some predefined syntactic sugar:

Infix: +, −, #, @, . . .

Mixfix: if then else , case of , . . .

Binders: ∀x.P x means (∀)(λx . P x)

Prefix binds more strongly than infix:

! f x + y ≡ (f x) + y 6≡ f (x + y) !
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Type bool

Formulae = terms of type bool

True::bool

False::bool

¬ :: bool⇒ bool

∧, ∨, . . . :: bool⇒ bool

...
if-and-only-if: = but binds more tightly
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Type nat

0::nat

Suc :: nat⇒ nat

+, ×, . . . :: nat⇒ nat⇒ nat

...
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Overloading

! Numbers and arithmetic operations are overloaded:

0, 1, 2, . . . :: nat or real (or others)

+ :: nat ⇒ nat ⇒ nat and

+ :: real ⇒ real ⇒ real (and others)

You need type annotations: 1 :: nat, x + (y :: nat)

. . . unless the context is unambiguous: Suc 0
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Type list

[ ]: empty list

x # xs: list with first element x (“head”)
and rest xs (“tail”)

Syntactic sugar: [x1, . . . , xn] ≡ x1# . . .#xn#[ ]

List is supported be a large library:
hd, tl, map, size, filter, set, nth, take, drop, distinct, . . .

Don’t reinvent, reuse!
; HOL/List.thy
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A Recursive datatype

datatype ’a list = Nil ("[ ]")

| Cons ’a "’a list" (infixr "#’’ 65)

[ ]: empty list

x # xs: list with head x::’a, tail xs::’a list

A toy list: False # (True # [ ])

Syntactic sugar: [False, True]
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Concrete Syntax

When writing terms and types in .thy files

Types and terms need to be enclosed in "..."

Except for single identifiers, e.g. ’a

" ..." won’t always be shown on slides
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Structural Induction on Lists

P xs holds for all lists xs if

P [ ]

and for arbitrary y and ys, P ys implies P (y # ys)

P ys
...

P (y # ys)

P xs
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A Recursive Function: List Append

Definition by primitive recursion:

primrec app :: "’a list ⇒ ’a list ⇒ ’a list

where

app [ ] ys =

app (x # xs) ys = app xs ...

One rule per constructor
Recursive calls only applied to constructor arguments
Guarantees termination (total function)
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Demo: Append and Reverse
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Proofs - Method 1

General schema:

lemma name: " ..."

apply (method)
...

done

If the lemma is suitable as a simplification rule:

lemma name[simp]: " ..."

Adds lemma name to future simplifications
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Proof - Method 2

General schema:

lemma lemma name: " ..."

proof (method)
fix x y z
assume hyp1 name: " ..."

from hyp1 name
show : " ..."

proof method
...
qed

qed

Will try to use only Method 2 (Isar) in lectures in class
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Top-down Proofs

sorry

“completes” any proof (by giving up, and accepting it)

Suitable for top-down development of theories:

Assume lemmas first, prove them later.

Only allowed for interactive proof!
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Isabelle Syntax

Distinct from HOL syntax

Contains HOL syntax within it

Also the same as HOL - need to not confuse them
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Theory = Module

Syntax:

theory MyTh
imports ImpTh1 . . . ImpThn
begin

declarations, definitions, theorems, proofs, . . .

end

MyTh: name of theory being built. Must live in file MyTh.thy.

ImpThi : name of imported theories. Importing is transitive.
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Meta-logic: Basic Constructs

Implication: =⇒ (==>)
For separating premises and conclusion of theorems / rules

Equality: ≡ (==)
For definitions

Universal Quantifier: Λ (!!)
Usually inserted and removed by Isabelle automatically

Do not use inside HOL formulae
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Rule/Goal Notation

[|A1; . . . ;An|] =⇒ B

abbreviates
A1 =⇒ . . . =⇒ An =⇒ B

and means the rule (or potential rule):

A1; . . . ;An

B

; ≈ “and”

Note: A theorem is a rule; a rule is a theorem.
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The Proof/Goal State

1. Λx1 . . . xm. [|A1; . . . ;An|] =⇒ B

x1 . . . xm Local constants (fixed variables)

A1 . . .An Local assumptions

B Actual (sub)goal
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Proof Methods

Simplification and a bit of logic

auto Effect: tries to solve as many subgoals as possible using simplification
and basic logical reasoning

simp Effect: relatively intelligent rewriting with database of theorem, extra
given theorems, and assumptions.

More specialized tactics to come
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Top-down Proofs

sorry

“completes” any proof (by giving up, and accepting it)
Suitable for top-down development of theories:
Assume lemmas first, prove them later.

Only allowed for interactive proof!
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