CS576 Topics in Automated Deduction

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipkow

March 13 2015

CS576 Topics in Automated Deducti

Locales in Isabelle/HOL

- Locales in Isabelle introduce a theorem proving context (mathematical theory)
- Context has a collection of parameters
- And a collection of assumptions

```
locale graph =
 fixes vertices ::"'a set" and edges ::"('a \times 'a)set"
 assumes IsGraph:
   \texttt{"(u,v)} \, \in \, \mathsf{edges} \, \longrightarrow \, ((\mathsf{u} \, \in \, \mathsf{vertices}) \, \wedge \, (\mathsf{v} \, \in \, \mathsf{vertices})) \, \texttt{"}
```

• Defines a predicate with name of the locale, whose arguments are the locale parameters, and whose definition is the conjunction of the assumptions

```
thm graph_def
graph ?vertices ?edges \equiv
   \forall u v. (u, v) \in ?edges\longrightarrow u \in ?vertices \land v \in ?vertices
                            CS576 Topics in Automated Dedu
```

Entering a Locale Context

- Using context locale_name begin ... end (from top level), can enter a context where the parameters and assumptions are treated as constants and theorems
- Inside, can make definitions, prove theoerems using the parameters and assumptions of the locale

```
context graph begin
inductive reachable where
Self [intro]: "v \in vertices \implies reachable v v" |
Edge: "[reachable u v; (v,w) \in edges[] \Longrightarrow reachable u w"
lemma reachable_vertices:
assumes Reachable: "reachable u v"
shows "u \in vertices \land v vertices"
using Reachable
proof (rule_tac reachable.induct, assumption)
```

Instantiating a Locale

- Concrete examples may be proven to be instances of a locale
- interpretation interp_name: locale_name args generates the proof obligation that the locale predicate holds of the ${\it args}$
- unfold_locale converts locale predicate into locale assumptions

```
interpretation one: graph \{()\} "\{((),())\}"
by (unfold_locales, clarsimp)
```

• Makes definitions and theorems of locale context available for the locale instance

```
term "one.reachable"
 "graph.reachable \{()\} \{((), ())\}" :: "unit \Rightarrow unit \Rightarrow bool"
thm one.reachable_vertices
graph.reachable \{()\} \{((), ())\} ?u ?v \Longrightarrow
 \mathbf{?u} \in \{()\} \land \mathbf{?v} \in \{()\}
```

CS576 Topics in Automated Deduc

Locale Extension

- New locales may be created from old by adding more parameters and
- All definitions and theorems of the context of the old locale and definitions and theorems of the new

```
locale labeled_graph = graph +
fixes label :: "'a \times 'a \Rightarrow 'b option"
assumes EdgesLabeled :
  "\forall e \in edges. (\exists 1. (label e = Some 1))"
```

Relating Existing Locales

- Locales arising in one setting may be instances of other locales from
- Want to incorporate theorems and definitions from second into first
- sublocale *locale1* \subseteq *local2* args generates proof obligation that the locale predicate holds of the args

```
fixes le :: "'a \implies 'a \implies bool" (infixl "\square" 50)
assumes refl [intro, simp]: "x \sqsubseteq x"
and anti_sym [intro]: "[x \sqsubseteq y; y \sqsubseteq x [x = y]]"
and trans : "[ x \sqsubseteq y; y \sqsubseteq z [ \Longrightarrow x \sqsubseteq z"
\verb|sublocale partial_order| \subseteq \verb|graph "UNIV" "\{(x,y) | | x y. | le x y \}|
by (unfold_locales, simp)
```

locale partial_order =