CS576 Topics in Automated Deduction

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipkow

March 11, 2015

Elsa L Gunter CS576 Topics in Automated Deduction : /7

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Records in Isabelle/HOL

@ Records in HOL are basically tuples, but. ..

record (’a)graph_sig =

Vertices :: "’a set"
Edges :: "(’a x ’a) set"
definition one :: "(unit) graph_sig" where

"one = (Vertices = {()}, Edges = {((),())} D"
@ Components accessed by field

lemma "()€ Vertices one"
by (simp add: one def)

@ Unlike functional programming languages, position of fields matters

0 Edges = {((),())}, Vertices = {()} D"

causes an “Error in record input”

Elsa L Gunter CS576 Topics in Automated Deduction : /7

Record Field Update

@ Records support field update

definition no_edge :: "(unit) graph_sig" where
"no_edge = one(Edges := {} D"

lemma "no edge = (Vertices = {()}, Edges = {} D"
by (simp add: no_edge_def one_def)

Elsa L Gunter CS576 Topics in Automated Deduction : /7

Record Field Update

@ Record update is functional

definition no_edge :: "(unit) graph_sig" where
"no_edge = one(Edges := {}D"

lemma "no_ edge = (Vertices = {()}, Edges = {} D"
by (simp add: no_edge_def one_def)

lemma "no_edge # one"
by (simp add: no_edge_def one_def)

lemma "(Vertices no_edge = Vertices one) A
(Edges no_edge = {})"
by (simp add: no_edge_def one_def)

Elsa L Gunter CS576 Topics in Automated Deduction : /7

record type representations

o Every record type many be given by field syntax:

lemma "(one::unit graph sig) =
(one::(Vertices::unit set, Edges::(unit X unit) set))
by (rule refl)

@ Every record is extensible

o Every record rec_ty defines a polymorphic type
(’a) rec_ty_scheme;
type rec_ty same as (unit) rec_ty_scheme

term "one::(unit,unit) graph_sig_scheme"

@ Every record type has a “hidden field” more

Elsa L Gunter CS576 Topics in Automated Deduction : /7

New Record Types From Old

@ New record types may be created by extending existing record types
with addtional fields:

record (’a,’b) labeled graph sig = "’a graph_sig" +

Label :: "(’a X ’a) = (’b) option"
definition two :: "(Vertices :: mnat set,

Edges :: (mat X nat) set,

Label :: nat X nat = bool optionD" where
"two =

(Vertices = {1,2}, Edges = {(1,2)},
Label = (A (m,n). (if (m,n) = (1,2) then Some True else N

constants
two :: "(nat, bool) labeled graph sig"

Elsa L Gunter CS576 Topics in Automated Deduction : /7

Record Polymorphism

@ The _scheme types allow for (weak) record polymorphism

@ Also referrd to as record subtyping

@ Generally, input to functions should use _scheme type instead of strict
record type

definition is_graph :: "(’a,’b) graph sig scheme = bool" whe:
"is graph G = (V e € Edges G. {fst e, snd e} C Vertices G)"

lemma shows "is_graph one"
by (simp add: one_def is_graph_def)

lemma shows "is_graph two"
by (simp add: two_def is_graph def)

Elsa L Gunter CS576 Topics in Automated Deduction : /7

