
CS576 Topics in Automated Deduction

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipkow
March 11, 2015

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow March 11, 2015 1

/ 7

Records in Isabelle/HOL

Records in HOL are basically tuples, but. . .

record (’a)graph sig =

Vertices :: "’a set"

Edges :: "(’a × ’a) set"

definition one :: "(unit) graph sig" where

"one ≡ (| Vertices = {()}, Edges = {((), ())} |)"

Components accessed by field

lemma "()∈ Vertices one"

by (simp add: one def)

Unlike functional programming languages, position of fields matters

(| Edges = {((), ())}, Vertices = {()} |)"

causes an “Error in record input”

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow March 11, 2015 2

/ 7

Record Field Update

Records support field update

definition no edge :: "(unit) graph sig" where

"no edge = one(| Edges := {} |)"

lemma "no edge = (| Vertices = {()}, Edges = {} |)"

by (simp add: no edge def one def)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow March 11, 2015 3

/ 7

Record Field Update

Record update is functional

definition no edge :: "(unit) graph sig" where

"no edge = one(|Edges := {}|)"

lemma "no edge = (|Vertices = {()}, Edges = {} |)"

by (simp add: no edge def one def)

lemma "no edge 6= one"

by (simp add: no edge def one def)

lemma "(Vertices no edge = Vertices one) ∧
(Edges no edge = {})"

by (simp add: no edge def one def)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow March 11, 2015 4

/ 7

record type representations

Every record type many be given by field syntax:

lemma "(one::unit graph sig) =

(one::(|Vertices::unit set, Edges::(unit × unit) set|))"

by (rule refl)

Every record is extensible

Every record rec ty defines a polymorphic type
(’a) rec ty scheme;
type rec ty same as (unit) rec ty scheme

term "one::(unit,unit) graph sig scheme"

Every record type has a “hidden field” more

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow March 11, 2015 5

/ 7

New Record Types From Old

New record types may be created by extending existing record types
with addtional fields:

record (’a,’b) labeled graph sig = "’a graph sig" +

Label :: "(’a × ’a) ⇒ (’b) option"

definition two :: "(|Vertices :: nat set,

Edges :: (nat × nat) set,

Label :: nat × nat ⇒ bool option|)" where

"two ≡
(| Vertices = {1,2}, Edges = {(1,2)},

Label = (λ (m,n). (if (m,n) = (1,2) then Some True else None)) |)"

constants

two :: "(nat, bool) labeled graph sig"

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow March 11, 2015 6

/ 7

Record Polymorphism

The scheme types allow for (weak) record polymorphism

Also referrd to as record subtyping

Generally, input to functions should use scheme type instead of strict
record type

definition is graph :: "(’a,’b) graph sig scheme ⇒ bool" where

"is graph G ≡ (∀ e ∈ Edges G. {fst e, snd e} ⊆ Vertices G)"

lemma shows "is graph one"

by (simp add: one def is graph def)

lemma shows "is graph two"

by (simp add: two def is graph def)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow March 11, 2015 7

/ 7

