Records in Isabelle/HOL
. } @ Records in HOL are basically tuples, but. ..
CS576 Topics in Automated Deduction ,
record (’a)graph sig =

Vertices :: "’a set"
Elsa L Gunter Edges :: "(’a x ’a) set"
2112 SC UI.UC definition one :: "(unit) graph sig" where
egunter@illinois.edu "one = (Vertices = {()}, Edges = {((),())} D"
http://courses.engr.illinois.edu/cs576 - ’ 8 ’
@ Components accessed by field
lemma "()€ Vertices one"
Slides based in part on slides by Tobias Nipkow by (simp add: one def)
March 11, 2015 @ Unlike functional programming languages, position of fields matters

0 Edges = {(().())}, Vertices = {()} D"

causes an “Error in record input”

Elsa L Gunter CS576 Topics in Automated Deduction / Elsa L Gunter

CS576 Topics in Automated Deduction

Record Field Update Record Field Update

@ Records support field update @ Record update is functional
definition no_edge :: "(unit) graph sig" where definition no_edge :: "(unit) graph sig" where
"no_edge = one(Edges := {} D" "no_edge = one(Edges := {}D"
lemma "no_edge = (Vertices = {()}, Edges = {} D" lemma "no_edge = (Vertices = {()}, Edges = {} D"
by (simp add: no_edge_def one_def) by (simp add: no_edge_def one_def)

lemma "no_edge # one"
by (simp add: no_edge_def one_def)

lemma "(Vertices no_edge = Vertices one) A
(Edges no_edge = {})"
by (simp add: no_edge def one_def)

record type representations New Record Types From Old
o Every record type many be given by field syntax: o New record types may be created by extending existing record types
lemma "(one::unit graph sig) = with addtional fields:
(one::(Vertices::unit set, Edges::(unit X unit) set))| record (’a,’b) labeled graph sig = "’a graph sig" +
by (rule refl) Label :: "(’a x ’a) = (’b) option"
o Every record is extensible definition two :: "(Vertices :: nat set,
o Every record rec_ty defines a polymorphic type Edges :: (nat X nat) set,
(’a) rec_ty_scheme; Label :: mnat x nat = bool option)" where
type rec_ty same as (unit) rec_ty_scheme "two =

(Vertices = {1,2}, Edges = {(1,2)},

n .. 1 9 1 n
term "one::(unit,unit) graph sigscheme Label = (A (m,n). (if (m,n) = (1,2) then Some True else N{

o Every record type has a "hidden field” more
constants
two :: "(mat, bool) labeled graph sig"

Elsa L Gunter CS576 Topics in Automated Deduction . Elsa L Gunter

CS576 Topics in Automated Deduction

Record Polymorphism

@ The _scheme types allow for (weak) record polymorphism

@ Also referrd to as record subtyping

@ Generally, input to functions should use _scheme type instead of strict
record type

definition is_graph :: "(’a,’b) graph sig scheme = bool" whe]
"is_graph G = (V e € Edges G. {fst e, snd e} C Vertices G)"

lemma shows "is_graph one"
by (simp add: one_def is_graph def)

lemma shows "is_graph two"
by (simp add: two_def is_graph def)

Elsa L Gunter CS576 Topics in Automated Deduction

