
CS576 Topics in Automated Deduction

Elsa L Gunter

2112 SC, UIUC

egunter@illinois.edu

http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipkow

March 5, 2015

Elsa L Gunter CS576 Topics in Automated Deduction

Slides based in part on slides by Tobias Nipkow March 5, 2015 1

/ 11

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Format for Inductive Relations Definitions

inductive R :: “⌧ �! bool” where

[|R(a1,1); . . . ; R(a1,n); A1,1; . . . ; A1,k|] =) R(a1) |

. . . |

[|R(am,1); . . . ; R(am,l); Am,1; . . . ; Am,j|] =) R(am)

where Ai,j are side conditions not involving R.

Elsa L Gunter CS576 Topics in Automated Deduction

Slides based in part on slides by Tobias Nipkow March 5, 2015 2

/ 11

Format for Inductive Relations Definitions

inductive R :: “⌧ �! bool00 where
[|R(a1,1); . . . ; R(a1,n); A1,1; . . . ; A1,k|] =) R(a1) |

. . . |

[|R(am,1); . . . ; R(am,l); Am,1; . . . ; Am,j|] =) R(am)

where Ai ,j are side conditions not involving R.

Elsa L Gunter CS576 Topics in Automated Deduction

Slides based in part on slides by Tobias Nipkow March 5, 2015 3

/ 11

Format for Mutual Inductive Relations Definitions

inductive

R1 :: “⌧1 �! bool” and

. . .

Rn :: “⌧n �! bool” where

[|Ri(a1,1); . . . ; Rj(a1,n); A1,1; . . . ; A1,k|] =) Rk(a1) |

. . . |

[|Rm(am,1); . . . ; Rn(am,l); Am,1; . . . ; Am,j|] =) Rp(am)

where Ai,j are side conditions not involving any Rk.

Elsa L Gunter CS576 Topics in Automated Deduction

Slides based in part on slides by Tobias Nipkow March 5, 2015 4

/ 11

Example with Mutual Recursion

inductive

Even :: "nat) bool" and

Odd :: "nat) bool" where

ZeroEven [intro!]: "Even 0" |

OddOne [intro!]: "Odd (Suc 0)" |

OddSucEven [intro]: "Odd n =) Even (Suc n)" |

EvenSucOdd [intro]: "Even n =) Odd (Suc n)"

Elsa L Gunter CS576 Topics in Automated Deduction

Slides based in part on slides by Tobias Nipkow March 5, 2015 5

/ 11

Elsa L. Gunter

General Recursive Functions: fun

Example:

fun fib :: ”nat) nat”where

”fib 0 = 0”|

”fib 1 = 1”|

”fib (Suc(Suc x)) = (fib x + fib (Suc x))”

Not primitive recursive because of fib(Suc(Suc x)) on left, and because

of fib(Suc x) on right.

Elsa L Gunter CS576 Topics in Automated Deduction

Slides based in part on slides by Tobias Nipkow March 5, 2015 6

/ 11

fun: Rules of Use

Compared to primrec, very few restrictions:

Can be used to define functions over any type

Clauses in fun must be equations

Left-hand side is function being defined applied to terms built from

data constructors, distinct variables and wildcards

Right-hand side is a expression made from the function being defined,

the variables in the argument on the left, and previously defined terms

If clauses overlap, first takes precedence.

Calculates a measure from lexicographic ordering of some collection

of arguments

Elsa L Gunter CS576 Topics in Automated Deduction

Slides based in part on slides by Tobias Nipkow March 5, 2015 7

/ 11

Example: sep

Define a function for putting a separator between all adjacent elements in

a list:

fun sep :: "’a * ’a list => ’a list" where

"sep(a, []) = []" |

"sep(a, [x]) = [x]" |

"sep(a, x#y#zs) = x # a # sep(a,y#zs)"

Elsa L Gunter CS576 Topics in Automated Deduction

Slides based in part on slides by Tobias Nipkow March 5, 2015 8

/ 11

Demo: General Recursive Functions

Elsa L Gunter CS576 Topics in Automated Deduction

Slides based in part on slides by Tobias Nipkow March 5, 2015 9

/ 11

Introducing new types

Existing type ty

New type nty
Model for

new type M

Abs_nty

Rep_nty

Elsa L Gunter CS576 Topics in Automated Deduction

Slides based in part on slides by Tobias Nipkow March 5, 2015 10

/ 11

Properties of a Defined Type Syntax for typedef:

typedef nty = ”modeling set”

Proof of 9x .x 2 modeling set.

introduces a new type named nty, and functions

Abs nty :: ty) new ty

Rep nty :: new ty) ty

where modeling set::ty

Elsa L Gunter CS576 Topics in Automated Deduction

Slides based in part on slides by Tobias Nipkow March 5, 2015 11

/ 11

Properties of a Defined Type Theorems automatically provided:

Rep nty : Rep nty x 2 modeling set

Abs nty inverse: Abs nty(Rep nty x) = x

Rep nty inverse:

y 2 modeling set =) Rep nty(Abs nty y) = y

Abs nty inject:

[|x 2 modeling set : y 2 modeling set|] =)
(Abs nty x = Abs nty y) = (x = y)

Rep nty inject: (Rep nty x = Rep nty y) = (x = y)

Elsa L Gunter CS576 Topics in Automated Deduction

Slides based in part on slides by Tobias Nipkow March 5, 2015 12

/ 11

