

Rule Induction in General $x \in S \Longrightarrow P \ x$ by rule induction on $x \in S$ we must prove for every rule $\|a_1 \in S; \ \ldots; \ a_n \in S\| \Longrightarrow a \in S$ that P is preserved: $\|P \ a_1; \ \ldots; \ P \ a_n\| \Longrightarrow P \ a$ In Isabelle/HOL: $proof(rule \ S.induct)$ or $apply(erule \ S.induct)$

Demo: Inductive Set Definition

Demo: Evens are infinite

Elsa L Gunter CS576 Topics in Automated Deduction

Format for Inductive Relations Definitions $\text{inductive R} :: \text{``$\tau \longrightarrow \text{bool''}$ where } \\ \|R(a_{1,1}); \ldots; R(a_{1,n}); A_{1,1}; \ldots; A_{1,k}\| \Longrightarrow R(a_1) \mid \\ \ldots \mid \\ \|R(a_{m,1}); \ldots; R(a_{m,1}); A_{m,1}; \ldots; A_{m,j}\| \Longrightarrow R(a_m)$ where $A_{i,j}$ are side conditions not involving R.

Format for Inductive Relations Definitions

```
\begin{split} & \text{inductive R} :: ``\tau \longrightarrow \text{bool}'' \text{ where} \\ & \quad \| R(a_{1,1}); \ldots; \ R(a_{1,n}); A_{1,1}; \ldots; \ A_{1,k} \| \Longrightarrow R(a_1) \mid \\ & \quad \ldots \mid \\ & \quad \| R(a_{m,1}); \ldots; \ R(a_{m,1}); A_{m,1}; \ldots; \ A_{m,j} \| \Longrightarrow R(a_m) \end{split}
```

where $A_{i,i}$ are side conditions not involving R.

S576 Tonics in Automated Deduction

Format for Mutual Inductive Relations Definitions

where $A_{i,j}$ are side conditions not involving any R_k .

Elea I Guntar

S576 Topics in Automated Deduction

Example with Mutual Recursion

```
inductive  
Even :: "nat \Rightarrow bool" and  
Odd :: "nat \Rightarrow bool" where  
ZeroEven [intro!]: "Even 0" | 
OddOne [intro!]: "Odd (Suc 0)" | 
OddSucEven [intro]: "Odd n \Longrightarrow Even (Suc n)" | 
EvenSucOdd [intro]: "Even n \Longrightarrow Odd (Suc n)"
```

Elsa L Gunter

76 Topics in Automated Deduction

General Recursive Functions:

Example:

```
fun fib :: "nat \Rightarrow nat"where
"fib 0 = 0" |
"fib 1 = 1" |
"fib (Suc(Suc x)) = (fib x + fib (Suc x))"
```

Not primitive recursive because of $fib(Suc(Suc\ x))$ on left, and because of $fib(Suc\ x)$ on right.

Elsa L Gun

576 Topics in Automated Deductio

: Rules of Use

Compared to primrec, very few restrictions:

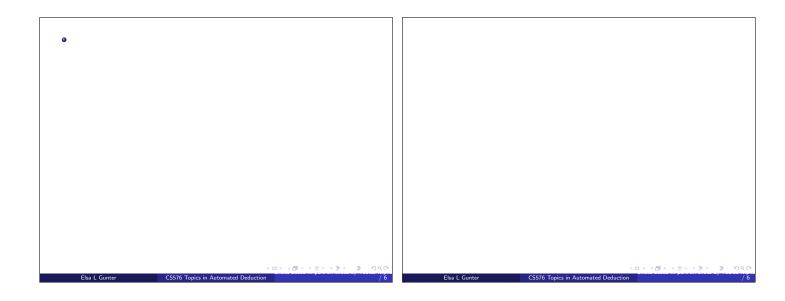
- \bullet Can be used to define functions over any type
- Clauses in fun must be equations
- Left-hand side is function being defined applied to terms built from data constructors, distinct variables and wildcards
- Right-hand side is a expression made from the function being defined, the variables in the argument on the left, and previously defined terms
- If clauses overlap, first takes precedence.
- Calculates a measure from lexicographic ordering of some collection of arguments

Example: s

Define a function for putting a separator between all adjacent elements in

```
fun sep :: "'a * 'a list => 'a list" where
  "sep(a, []) = []" |
  "sep(a, [x]) = [x]" |
  "sep(a, x#y#zs) = x # a # sep(a,y#zs)"
```

Elsa L Gun


5576 Topics in Automated Deduction

4 다 > 4라 > 4분 > 분 의 의

Elsa L Gunter

S576 Topics in Automated Deduction

/6

