Demo: Proof Methods

Sets

Type 'a set gives sets over type 'a

•
$$\{ \}, \{e_1, \ldots, e_n\}, \{x. P x\}, \{f(x,y) | x y. P x y \}$$

- $e \in A$, $A \subseteq B$
- \bullet $A \cup B$, $A \cap B$, A B, -A
- $\bigcup_{x \in A} B x$, $\bigcap_{x \in A} B x$
- $\{a, b, c\}, \{i...j\}$
- insert ::' $a \Rightarrow' a set \Rightarrow' a set$
- $\bullet \ f \ `A \equiv \{y. \ \exists x \in A. \ y = f \ x\}$
- . . .

Proofs about Sets

Natural deduction proof rules:

- equalityI: $[A \subseteq B; B \subseteq A] \Longrightarrow A = B$
- equalityE: isaruleA = B; $[A \subseteq B; B \subseteq A] \Longrightarrow PP$
- subsetI: $(\Lambda x. x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$
- sutsetD: $||A \subset B|$; $c \in A|| \Longrightarrow c \in B$
- IntI: $[c \in A; c \in B] \implies c \in A \cap B$
- IntD1: $c \in A \cap B \Longrightarrow c \in A$
- IntD2: $c \in A \cap B \Longrightarrow c \in B$
- set_eqI: $(\Lambda x. (x \in A) = (x \in B)) \Longrightarrow A = B$
- mem_Collect_eq: $(a \in \{x. P x\}) = P a$
- Collect_mem_eq: $\{x. \ x \in A\} = A$
- ...(see Tutorial)

Bounded Quantification

- $\bullet \ \forall x \in A. \ P \ x \equiv \forall x. \ x \in A \longrightarrow P \ x$
- $\bullet \exists x \in A. P x \equiv \exists x. x \in A \land P x$
- ballI: $(\Lambda x. x \in A \Longrightarrow P x) \Longrightarrow \forall x \in A. P x$
- bspec: $[\![\forall x \in A. \ P \ x; \ x \in A]\!] \Longrightarrow P \ x$
- bexI: $[P x; x \in A] \Longrightarrow \exists x \in A. P x$
- $\bullet \text{ bexE: } \llbracket \exists x \in A. \ P \ x; \ \Lambda x. \ \llbracket x \in A; \ P \ x \rrbracket \Longrightarrow \mathbb{Q} \rrbracket \Longrightarrow \mathbb{Q}$

Demo: Some Set Theory

Format for Inductive Set Definitions

```
\begin{split} & \text{inductive\_set } S :: \text{``$\tau$ set" where} \\ & \| a_{1,1} \in S; \ldots; \ a_{1,n} \in S; A_{1,1}; \ \ldots; \ A_{1,k} \| \Longrightarrow a_1 \in S \mid \\ & \ldots \mid \\ & \| a_{m,1} \in S; \ldots; \ a_{m,1} \in S; A_{m,1}; \ \ldots; \ A_{m,j} \| \Longrightarrow a_m \in S \end{split} where A_{i,j} are side conditions not involving S.
```

Example: Finite Sets

Informally

- The empty set is finite
- Adding an element to a finite set yields a finite set
- These are the only finite sets

Example: Finite Sets

In Isabelle/HOL:

```
inductive_set Finites :: 'a set set

- The set of all finite sets

{ } ∈ Finites |
A ∈ Finites ⇒ insert a A ∈ Finites
```

Example: Even Numbers

Informally

- 0 is even
- If n is even, then so is n+2
- These are the only even numbers

Example: Even Numbers

In Isabelle/HOL:

```
inductive_set Ev :: nat set
```

— The set of all even numbers

$$0 \in Ev$$

$$n \in Ev \Longrightarrow n+2 \in Ev$$

Proving Properties of Even Numbers

Easy: $4 \in Ev$

$$0 \in Ev \Longrightarrow 2 \in Ev \Longrightarrow 4 \in Ev$$

Trickier: $m \in Ev \Longrightarrow m + m \in Ev$

Idea: induct on the length of the derivation of $m \in EV$

Better: induct on the structure of the derivation

Proving Properties of Even Numbers

Induction leads to two cases:

1.
$$0 + 0 \in Ev$$
 case $m = 0$

• rule:
$$n \in Ev \Longrightarrow n + 2 \in Ev$$

$$\texttt{z 2. } \texttt{An.} \\ \texttt{ } \\ \texttt{$$

case
$$m = n + 2$$

Rule Induction for Ev

To prove

$$n \in Ev \Longrightarrow P$$
 n

by rule induction on $n \in Ev$ we must prove

- P 0
- $P n \Longrightarrow P(n+2)$

Uses rule Ev.induct:

$$[\![n\in Ev;\ P\ 0;\ \Lambda n.\ P\ n\Longrightarrow P(n+2)]\!]\Longrightarrow P\ n$$

An elimination rule

Rule Induction in General

Set S is defined inductively. To prove

$$x \in S \Longrightarrow P x$$

by rule induction on $x \in S$ we must prove for every rule

$$[\![a_1 \in S; \ldots; a_n \in S]\!] \Longrightarrow a \in S$$

that P is preserved:

$$\llbracket P \ a_1; \ \ldots; \ P \ a_n \rrbracket \Longrightarrow P \ a$$

In Isabelle/HOL: apply(erule S.induct)

Demo: Inductive Set Definition

Demo: Evens are infinite