CS576 Topics in Automated Deduction

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu

http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipow

January 22, 2015

Time for a demo of types and terms (and a simple lemma)

Overview of Isabelle/HOL

HOL

- HOL = Higher-Order Logic
- HOL = Types + Lambda Calculus + Logic
- HOL has
 - datatypes
 - recursive functions
 - logical operators $(\land, \lor, \longrightarrow, \forall, \exists, \ldots)$
- HOL is very similar to a functional programming language
- Higher-order = functions are values, too!

Formulae (Approximation)

Syntax (in decreasing priority):

```
form ::= (form) | term = term | \negform | form \land form | form \rightarrow form | \forall x. form | \exists x. form and some others
```

Scope of quantifiers: as for to right as possible

jEdit Input

Input of math symbols in jEdit

- via "standard" ascii name: &, |, -->, ...
- via ascii encoding (similar to LATEX): \<and>, \<or>, ...
- via menu ("Symbols")

Symbol Translations

symbol	\forall	3	λ	7	\wedge
ascii (1)	\ <forall></forall>	\ <exists></exists>	\ <lambda></lambda>	\ <not></not>	\ <and></and>
ascii (2)	ALL	EX	%	~	&

symbol	V	\longrightarrow	\Rightarrow	
ascii (1)	\ <or></or>	\ <longrightarrow></longrightarrow>	\ <rightarrow></rightarrow>	
ascii (2)		>	=>	

See Appendix A of tutorial for more complete list

Examples

- $A \wedge B = C \equiv A \wedge (B = C)$
- $\forall x. P x \land Q x \equiv \forall x. (P x \land Q x)$
- $\forall x.\exists y. P x y \land Q x \equiv \forall x.(\exists y. (P x y \land Q x))$

Formulae

Abbreviations:

$$\forall x \ y. \ P \ x \ y \equiv \forall x. \forall y. \ P \ x \ y \quad (\forall, \exists, \lambda, \ldots)$$

Hiding and renaming:

$$\forall x \ y. \ (\forall x. \ P \ x \ y) \land Q \ x \ y \equiv \forall x_0 \ y. (\forall x_1.P \ x_1 \ y) \land Q \ x_0 \ y$$

- Parentheses:
 - \bullet $\ \land,\ \lor,\ \mbox{and}\ \longrightarrow\mbox{associate}$ to the right:

$$A \wedge B \wedge C \equiv A \wedge (B \wedge C)$$

 $\bullet \quad A \longrightarrow B \longrightarrow C \quad \equiv A \longrightarrow (B \longrightarrow C)$

$$\not\equiv (A \longrightarrow B) \longrightarrow C !$$

Warning!

Quantifiers have low priority (broad scope) and may need to be parenthesized:

!
$$\forall x. P x \land Q x \not\equiv (\forall x. Px) \land Q x$$
!

Types

Syntax:

Parentheses: $T1 \Rightarrow T2 \Rightarrow T3 \equiv T1 \Rightarrow (T2 \Rightarrow T3)$

Terms: Basic syntax

Syntax:

```
\begin{array}{c|cccc} \textit{term} & ::= & \textit{(term)} \\ & | & c & | & x & & \text{constant or variable (identifier)} \\ & | & \textit{term term} & & \text{function application} \\ & | & \lambda x. \ \textit{term} & & \text{function "abstraction"} \\ & | & \dots & & \text{lots of syntactic sugar} \end{array}
```

```
Examples: f(g x) y h(\lambda x. f(g x))
Parentheses: f a_1 a_2 a_3 \equiv ((f a_1) a_2) a_3
```

Note: Formulae are terms

λ -calculus in a nutshell

Informal notation: t[x]

term t with 0 or more free occurrences of x

Function application:

f a is the function f called with argument a.

• Function abstraction:

 $\lambda x.t[x]$ is the function with formal parameter x and body/result t[x], i.e. $x \mapsto t[x]$.

λ -calculus in a nutshell

Computation:

Replace formal parameter by actual value

("
$$\beta$$
-reduction"): $(\lambda x.t[x])a \leadsto_{\beta} t[a]$

Example:
$$(\lambda x. x + 5) \ 3 \sim_{\beta} (3 + 5)$$

Isabelle performs β -reduction automatically

Isabelle considers $(\lambda x.t[x])a$ and t[a] equivalent

Terms and Types

Terms must be well-typed!

The argument of every function call must be of the right type

Notation: t :: τ means t is well-typed term of type τ

Type Inference

- Isabelle automatically computes ("infers") the type of each variable in a term.
- In the presence of *overloaded* functions (functions with multiple, unrelated types) not always possible.
- User can help with type annotations inside the term.
- Example: f(x::nat)

Currying

```
• Curried: f:: \tau_1 \Rightarrow \tau_2 \Rightarrow \tau

• Tupled: f:: \tau_1 \times \tau_2 \Rightarrow \tau

Advantage: partial application f \ a_1 with a_1:: \tau

Moral: Thou shalt curry your functions (most of the time :-) ).
```

Terms: Syntactic Sugar

Some predefined syntactic sugar:

- Infix: +, −, #, @, . . .
- Mixfix: if_then_else_, case_of_, ...
- Binders: $\forall x.P \ x \ \text{means} \ (\forall)(\lambda x.\ P \ x)$

Prefix binds more strongly than infix:

!
$$f x + y \equiv (f x) + y \not\equiv f (x + y)$$
 !

Type bool

```
Formulae = terms of type bool
           True::bool
           False::bool
           \neg :: bool \Rightarrow bool
          \land. \lor. . . . :: bool \Rightarrow bool
if-and-only-if: = but binds more tightly
```

Type nat

0::nat

Suc ::
$$nat \Rightarrow nat$$

+, \times , ...:: $nat \Rightarrow nat \Rightarrow nat$

Overloading

! Numbers and arithmetic operations are overloaded:

```
0, 1, 2, ...:: nat or real (or others)
+ :: nat \Rightarrow nat \Rightarrow nat \text{ and}
+ :: real \Rightarrow real \Rightarrow real \text{ (and others)}
You need type annotations: 1 :: nat, x + (y :: nat)
... unless the context is unambiguous: Suc 0
```

Type list

- []: empty list
- x # xs: list with first element x ("head")and rest xs ("tail")
- \bullet Syntactic sugar: $[x_1,\dots,x_n] \equiv x_1\#\dots\#x_n\#[\]$

List is supported be a large library: hd, tl, map, size, filter, set, nth, take, drop, distinct, . . .

Don't reinvent, reuse! → HOL/List.thy

A Recursive datatype

Concrete Syntax

When writing terms and types in .thy files

Types and terms need to be enclosed in "..."

Except for single identifiers, e.g. 'a

" ... " won't always be shown on slides

Structural Induction on Lists

- P xs holds for all lists xs if
 - P []
 - and for arbitrary y and ys, P ys implies P (y # ys)

```
P ys
:
P (y # ys)
P xs
```

A Recursive Function: List Append

Definition by *primitive recursion*:

```
primrec app :: "'a list ⇒ 'a list ⇒ 'a list
where
app [] ys = ____
app (x # xs) ys = ___app xs ...___
```

One rule per constructor
Recursive calls only applied to constructor arguments
Guarantees termination (total function)

Demo: Append and Reverse

Proofs - Method 1

```
General schema:
```

```
lemma name: " ..."
apply ( ...)
i
done
```

If the lemma is suitable as a simplification rule:

```
lemma name[simp]: " ..."
```

Adds lemma name to future simplifications

Proof - Method 2

General schema:

```
lemma lemma name: " ..."
proof method
fix x y z
assume hyp1_name: " ..."
from hyp1_name
show: " ..."
 proof method
 qed
qed
```

Will try to use only Method 2 (Isar) in lectures in class