CS576 Topics in Automated Deduction

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipow

January 22, 2015

Elsa L Gunter CS576 Topics in Automated Deduction : /29

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Time for a demo of types and terms
(and a simple lemma)

Elsa L Gunter CS576 Topics in Automated Deduction /29

Overview of Isabelle/HOL

CS576 Topics in Automated Deduction

HOL

@ HOL = Higher-Order Logic
@ HOL = Types + Lambda Calculus + Logic
@ HOL has
o datatypes
e recursive functions
o logical operators (A, V, —, ¥, 3, ...)
@ HOL is very similar to a functional programming language
@ Higher-order = functions are values, too!

Elsa L Gunter CS576 Topics in Automated Deduction : /29

Formulae (Approximation)

@ Syntax (in decreasing priority):

form = (form) | term = term
| —form | form A form
| formV form | form — form
| Vx. form | 3x. form

and some others

@ Scope of quantifiers: as for to right as possible

Elsa L Gunter CS576 Topics in Automated Deduction : /29

jEdit Input

Input of math symbols in jEdit
@ via “standard” ascii name: &, |, -==>, ...
@ via ascii encoding (similar to IATEX):
\<and>, \<or>, ...

@ via menu (“Symbols")

Elsa L Gunter CS576 Topics in Automated Deduction : /29

Symbol Translations

symbol v 3 A - A
ascii (1) || \<forall> | \<exists> | \<lambda> | \<not> | \<and>
ascii (2) ALL EX YA ~ &
symbol \Y — =

ascii (1) || \<or> | \<longrightarrow> | \<Rightarrow>

ascii (2) | -=> =>

See Appendix A of tutorial for more complete list

Elsa L Gunter CS576 Topics in Automated Deduction /29

e ~AABVC=((-A)AB)VvC

e AAB=C=AA(B=C)

o Vx. PxNQx=Vx. (PxAQx)

e VxJy. PxyAQx=Vx.(Ty. (PxyAQx))

Elsa L Gunter CS576 Topics in Automated Deduction : /29

Formulae

@ Abbreviations:
Vxy. Pxy=VxVy.Pxy (V,3,A...)

@ Hiding and renaming:
Vxy. (Vx. Pxy)AQxy=Vx y.(Vx1.Px1 y) AQx0y
@ Parentheses:

e A, V, and — associate to the right:
AABAC=AA(BACQC)

o A~—+B—C =A—(B—C0C)
#(A—B)— C !

Elsa L Gunter CS576 Topics in Automated Deduction : /29

Quantifiers have low priority (broad scope) and may need to be
parenthesized:

I Vx. PxAQx# (Vx. Px)AQx !

Elsa L Gunter CS576 Topics in Automated Deduction : /29

Syntax:
T = (1)
| bool | nat | ... base types
| 'a|'b | ... type variables
| 7=71 total functions (ascii : =>)
| 7x7T pairs (ascii : *)
| 7 list lists
|

user-defined types

Parentheses: T1 = T2= T3 =T1= (T2 = T3)

Elsa L Gunter CS576 Topics in Automated Deduction : /29

Terms: Basic syntax

Syntax:
term = (term)
| ¢ | x constant or variable (identifier)
| term term function application
| Ax. term function “abstraction”

lots of syntactic sugar

Examples: f(gx)y h (Ax f (gx))
Parentheses: f a; ag ag = ((f a1) a2) as
Note: Formulae are terms

Elsa L Gunter CS576 Topics in Automated Deduction : /29

A-calculus in a nutshell

Informal notation: t[x]
term t with O or more free occurrences of x

@ Function application:
f ais the function f called with argument a.

e Function abstraction:
Ax.t[x] is the function with formal parameter x and body/result t[x],
ie. x — t[x].

Elsa L Gunter CS576 Topics in Automated Deduction : /29

A-calculus in a nutshell

o Computation:
Replace formal parameter by actual value
(“B-reduction™): (Ax.t[x])a~z t[a]
Example: (Ax. x +5) 3~3 (3+5)
Isabelle performs (-reduction automatically

Isabelle considers (Ax.t[x])a and t[a] equivalent

Elsa L Gunter CS576 Topics in Automated Deduction : /29

Terms and Types

Terms must be well-typed!

The argument of every function call must be of the right type

Notation: t :: 7 means t is well-typed term of type 7

Elsa L Gunter CS576 Topics in Automated Deduction

/29

Type Inf

@ Isabelle automatically computes (“infers”) the type of each variable in
a term.

@ In the presence of overloaded functions (functions with multiple,
unrelated types) not always possible.

@ User can help with type annotations inside the term.

e Example: f(x::nat)

Elsa L Gunter CS576 Topics in Automated Deduction : /29

@ Curried: fuim=>mn=r1

@ Tupled: f:T xXm=r1

Advantage: partial application f a; with a; :: 7
Moral: Thou shalt curry your functions (most of the time :-)).

Elsa L Gunter CS576 Topics in Automated Deduction : /29

Terms: Syntactic Sugar

Some predefined syntactic sugar:

o Infix: 4+, —, #, @, ...
o Mixfix: if _then_else_, case_of_, ...
@ Binders: Vx.P x means (V)(Ax. P x)

Prefix binds more strongly than infix:

P fx+y=(E(Ex)+y#f (x+y) !

Elsa L Gunter CS576 Topics in Automated Deduction : /29

Type bool

Formulae = terms of type bool

True::bool

False::bool

= :: bool = bool

A, V, ... bool = bool

if-and-only-if: = but binds more tightly

Elsa L Gunter CS576 Topics in Automated Deduction : /29

0::nat

Suc :: nat = nat

+, X, ...::nat = nat = nat

Elsa L Gunter CS576 Topics in Automated Deduction : /

Overloading

I' Numbers and arithmetic operations are overloaded:

0,1, 2,...:: nat or real (or others)

+ :: nat = nat = nat and

+ :: real = real = real (and others)

You need type annotations: 1 :: nat, x + (y :: nat)

... unless the context is unambiguous: Suc 0

Elsa L Gunter CS576 Topics in Automated Deduction /29

Type list

o []: empty list
@ x # xs: list with first element x (“head")
and rest xs (“tail”)

e Syntactic sugar: [X1,...,Xy| = X1# ... #xnH#[|

List is supported be a large library:
hd, tl, map, size, filter, set, nth, take, drop, distinct, ...

Don't reinvent, reuse!
~» HOL/List.thy

Elsa L Gunter CS576 Topics in Automated Deduction : /29

A Recursive datatype

datatype ’a list = Nil ("[]1")
| Cons ’a "’a list" (infixr "#’’ 65)

[1: empty list

x # xs: list with head x::'a, tail xs::'a list

A toy list: False # (True # [])
Syntactic sugar: [False, True]

Elsa L Gunter CS576 Topics in Automated Deduction /29

Concrete Syntax

When writing terms and types in .thy files
Types and terms need to be enclosed in "..."

Except for single identifiers, e.g. ’a

." won't always be shown on slides

Elsa L Gunter CS576 Topics in Automated Deduction

/29

Structural Induction on Lists

P xs holds for all lists xs if
oP []
@ and for arbitrary y and ys, P ys implies P (y # ys)
P ys

P (y # ys)
P xs

Elsa L Gunter CS576 Topics in Automated Deduction : /29

A Recursive Function: List Append

Definition by primitive recursion:

primrec app :: "’a list = ’a list = ’a list
where

app L1 ys =___

app (x # xs) ys = __ app xs

One rule per constructor

Recursive calls only applied to constructor arguments
Guarantees termination (total function)

Elsa L Gunter CS576 Topics in Automated Deduction : /29

Demo: Append and Reverse

CS576 Topics in Automated Deduction

Proofs - Method 1

General schema:

lemma name: " ..."
apply C ...)

done
If the lemma is suitable as a simplification rule:
lemma name[simp]: " ..."

Adds lemma name to future simplifications

Elsa L Gunter CS576 Topics in Automated Deduction : /29

Proof - Method 2

General schema:

lemma lemma_name: " ..."
proof method
fixxyz
assume hypl_name: " ..."
from hypl_name
show : " ..."

proof method

ged
qed

Will try to use only Method 2 (lIsar) in lectures in class

Elsa L Gunter CS576 Topics in Automated Deduction : /29

	Intro to HOL

