
CS576 Topics in Automated Deduction

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipow
January 22, 2015

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 1

/ 29

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Time for a demo of types and terms

(and a simple lemma)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 2

/ 29

Overview of Isabelle/HOL

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 3

/ 29

HOL

HOL = Higher-Order Logic

HOL = Types + Lambda Calculus + Logic

HOL has

datatypes
recursive functions
logical operators (∧, ∨, −→, ∀, ∃, . . .)

HOL is very similar to a functional programming language

Higher-order = functions are values, too!

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 4

/ 29

Formulae (Approximation)

Syntax (in decreasing priority):

form ::= (form) | term = term

| ¬form | form ∧ form

| form ∨ form | form −→ form

| ∀x . form | ∃x . form

and some others

Scope of quantifiers: as for to right as possible

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 5

/ 29

jEdit Input

Input of math symbols in jEdit

via “standard” ascii name: &, |, -->, . . .

via ascii encoding (similar to LATEX):
\<and>, \<or>, . . .

via menu (“Symbols”)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 6

/ 29

Symbol Translations

symbol ∀ ∃ λ ¬ ∧
ascii (1) \<forall> \<exists> \<lambda> \<not> \<and>
ascii (2) ALL EX % ∼ &

symbol ∨ −→ ⇒
ascii (1) \<or> \<longrightarrow> \<Rightarrow>
ascii (2) | --> =>

See Appendix A of tutorial for more complete list

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 7

/ 29

Examples

¬A ∧ B ∨ C ≡ ((¬A) ∧ B) ∨ C

A ∧ B = C ≡ A ∧ (B = C)

∀x. P x ∧Q x ≡ ∀x. (P x ∧Q x)

∀x.∃y. P x y ∧Q x ≡ ∀x.(∃y. (P x y ∧Q x))

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 8

/ 29

Formulae

Abbreviations:
∀x y. P x y ≡ ∀x.∀y. P x y (∀,∃, λ, . . .)

Hiding and renaming:
∀x y. (∀x. P x y) ∧Q x y ≡ ∀x0 y.(∀x1.P x1 y) ∧Q x0 y

Parentheses:

∧, ∨, and −→ associate to the right:
A ∧ B ∧ C ≡ A ∧ (B ∧ C)

A −→ B −→ C ≡ A −→ (B −→ C)

6≡ (A −→ B) −→ C !

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 9

/ 29

Warning!

Quantifiers have low priority (broad scope) and may need to be
parenthesized:

! ∀x. P x ∧Q x 6≡ (∀x. Px) ∧Q x !

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 10

/ 29

Types

Syntax:

τ ::= (τ)
| bool | nat | . . . base types
| ′a | ′b | . . . type variables
| τ ⇒ τ total functions (ascii : =>)
| τ × τ pairs (ascii : *)
| τ list lists
| . . . user-defined types

Parentheses: T1⇒ T2⇒ T3 ≡ T1⇒ (T2⇒ T3)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 11

/ 29

Terms: Basic syntax

Syntax:

term ::= (term)
| c | x constant or variable (identifier)
| term term function application
| λx . term function “abstraction”
| . . . lots of syntactic sugar

Examples: f (g x) y h (λx. f (g x))
Parentheses: f a1 a2 a3 ≡ ((f a1) a2) a3
Note: Formulae are terms

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 12

/ 29

λ-calculus in a nutshell

Informal notation: t[x]
term t with 0 or more free occurrences of x

Function application:
f a is the function f called with argument a.

Function abstraction:
λx .t[x] is the function with formal parameter x and body/result t[x],
i.e. x 7→ t[x].

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 13

/ 29

λ-calculus in a nutshell

Computation:

Replace formal parameter by actual value

(“β-reduction”): (λx .t[x])a ;β t[a]

Example: (λx . x + 5) 3 ;β (3 + 5)

Isabelle performs β-reduction automatically

Isabelle considers (λx .t[x])a and t[a] equivalent

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 14

/ 29

Terms and Types

Terms must be well-typed!

The argument of every function call must be of the right type

Notation: t :: τ means t is well-typed term of type τ

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 15

/ 29

Type Inference

Isabelle automatically computes (“infers”) the type of each variable in
a term.

In the presence of overloaded functions (functions with multiple,
unrelated types) not always possible.

User can help with type annotations inside the term.

Example: f(x::nat)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 16

/ 29

Currying

Curried: f :: τ1 ⇒ τ2 ⇒ τ

Tupled: f :: τ1 × τ2 ⇒ τ

Advantage: partial application f a1 with a1 :: τ
Moral: Thou shalt curry your functions (most of the time :-)).

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 17

/ 29

Terms: Syntactic Sugar

Some predefined syntactic sugar:

Infix: +, −, #, @, . . .

Mixfix: if then else , case of , . . .

Binders: ∀x.P x means (∀)(λx . P x)

Prefix binds more strongly than infix:

! f x + y ≡ (f x) + y 6≡ f (x + y) !

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 18

/ 29

Type bool

Formulae = terms of type bool

True::bool

False::bool

¬ :: bool⇒ bool

∧, ∨, . . . :: bool⇒ bool

...
if-and-only-if: = but binds more tightly

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 19

/ 29

Type nat

0::nat

Suc :: nat⇒ nat

+, ×, . . . :: nat⇒ nat⇒ nat

...

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 20

/ 29

Overloading

! Numbers and arithmetic operations are overloaded:

0, 1, 2, . . . :: nat or real (or others)

+ :: nat ⇒ nat ⇒ nat and

+ :: real ⇒ real ⇒ real (and others)

You need type annotations: 1 :: nat, x + (y :: nat)

. . . unless the context is unambiguous: Suc 0

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 21

/ 29

Type list

[]: empty list

x # xs: list with first element x (“head”)
and rest xs (“tail”)

Syntactic sugar: [x1, . . . , xn] ≡ x1# . . .#xn#[]

List is supported be a large library:
hd, tl, map, size, filter, set, nth, take, drop, distinct, . . .

Don’t reinvent, reuse!
; HOL/List.thy

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 22

/ 29

A Recursive datatype

datatype ’a list = Nil ("[]")

| Cons ’a "’a list" (infixr "#’’ 65)

[]: empty list

x # xs: list with head x::’a, tail xs::’a list

A toy list: False # (True # [])

Syntactic sugar: [False, True]

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 23

/ 29

Concrete Syntax

When writing terms and types in .thy files

Types and terms need to be enclosed in "..."

Except for single identifiers, e.g. ’a

" ..." won’t always be shown on slides

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 24

/ 29

Structural Induction on Lists

P xs holds for all lists xs if

P []

and for arbitrary y and ys, P ys implies P (y # ys)

P ys
...

P (y # ys)

P xs

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 25

/ 29

A Recursive Function: List Append

Definition by primitive recursion:

primrec app :: "’a list ⇒ ’a list ⇒ ’a list

where

app [] ys =

app (x # xs) ys = app xs ...

One rule per constructor
Recursive calls only applied to constructor arguments
Guarantees termination (total function)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 26

/ 29

Demo: Append and Reverse

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 27

/ 29

Proofs - Method 1

General schema:

lemma name: " ..."

apply (...)
...

done

If the lemma is suitable as a simplification rule:

lemma name[simp]: " ..."

Adds lemma name to future simplifications

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 28

/ 29

Proof - Method 2

General schema:

lemma lemma name: " ..."

proof method
fix x y z
assume hyp1 name: " ..."

from hyp1 name
show : " ..."

proof method
...
qed

qed

Will try to use only Method 2 (Isar) in lectures in class

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipow January 22, 2015 29

/ 29

	Intro to HOL

