Contact Information

Office: 2112 SC

CS576 Topics in Automated Deduction o Office Hours:

o Fridays 11:00am - 12:15pm
e Also by appointment

Elsa L Gunter e May add more if desirable
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Email: egunter@illinois.edu

Newsgroup:
https://piazza.com/illinois/spring2015/cs576/home

@ No TA this semester

Slides based in part on slides by Tobias Nipow

January 21, 2015

Elsa L Gunter CS576 Topics in Automated Deduction / Elsa L Gunter CS576 Topics in Automated Deduction

Course Structure Some Useful Links
o Recommended Texts: @ Website for class:
o Programming and Proving in Isabelle/HOL http://courses.engr.illinois.edu/cs576/sp2015/

by Tobias Nipkow
o lIsabelle/HOL: A Proof Assistant for Higher-Order Logic
by Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel

o Website for Isabelle:
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/

o Concrete Semantics with Isabelle/HOL @ Isabelle mailing list — to join, send mail to:
Tobias Nipkow and Gerwin Klein, isabelle-users@cl.cam.ac.uk
http://www.concrete-semantics.org

o Credit:

o Homework (submitted via svn) 33%
o Project and presentation 67%

@ No Final Exam

Elsa L Gunter €S576 Topics in Automated Deduction i /1 Elsa L Gunter CS576 Topics in Automated Deduction i /1

o Homework: @ To learn to do formal reasoning
o (Mostly) fairly short exercises in Isabelle

-] @ To learn to model complex problems from computer science
o Submitted via svn

o Project: @ To learn to given fully rigorous proofs of properties
o Develop a model of a system in Isabelle
o Prove some substantive properties of model
o Discuss progress weekly in class
o Give 20 minute presentation of work at end of course

Elsa L Gunter CS576 Topics in Automated Deduction . Elsa L Gunter CS576 Topics in Automated Deduction

System Architecture jEdit Input

Isabelle/jEdit jEdit based interface

Isar Isabelle proof scripting language
Isabelle/HOL Isabelle instance for HOL
Isabelle generic theorem prover
Standard ML implementation language

Elsa L Gunter

CS576 Topics in Automated Deduction

Symbol Translations

symbol v 3 A - A
ascii (1) | \<forall> | \<exists> | \<lambda> | \<not> | \<and>
ascii (2) ALL EX % ~ &
symbol \Y — =

ascii (1) | \<or> | \<longrightarrow> | \<Rightarrow>

ascii (2) | -—> =>

See Appendix A of tutorial for more complete list

Elsa L Gunter

€S576 Topics in Automated Deduction

Overview of Isabelle/HOL

Elsa L Gunter

CS576 Topics in Automated Deduction

Input of math symbols in jEdit
@ via “standard” ascii name: &, |, —=>, ...
@ via ascii encoding (similar to IKTEX):
\<and>, \<or>, ...
@ via menu (“Symbols”)

Elsa L Gunter CS576 Topics in Automated Deduction

Time for a demo of types and terms
(and a simple lemma)

Elsa L Gunter CS576 Topics in Automated Deduction i /1

HOL

HOL = Higher-Order Logic
HOL = Types + Lambda Calculus + Logic
e HOL has

o datatypes
e recursive functions
o logical operators (A, V, —, V, 3, ...)

HOL is very similar to a functional programming language
@ Higher-order = functions are values, too!

Elsa L Gunter

CS576 Topics in Automated Deduction

Formulae (Approximation) Examples

@ Syntax (in decreasing priority): e ~AABVC=((-A)AB)VC
e ANB=C=AA(B=C)

form = (form) | term = term
| form ' form A form o Vx. PxAQx=Vx. (PxAQx)
| formVform | form —s form o WxAy. Pxy AQx =¥y (PxyAQx)
| Vx. form | 3x. form

and some others

@ Scope of quantifiers: as for to right as possible

Elsa L Gunter CS576 Topics in Automated Deduction / Elsa L Gunter CS576 Topics in Automated Deduction

@ Abbreviations:

Vxy. Pxy=vxVy. Pxy (V,3,A...) " o
Quantifiers have low priority (broad scope) and may need to be
e Hiding and renaming: parenthesized:

Vxy. (V. Pxy)AQxy=Vxo y.(Vx1.P x1 y) AQ x0 y

o Parentheses: I V<. PxAQx#Z(Vx.Px)AQx !

e A, V, and — associate to the right:
AABAC=AA(BACQC)

e A—B—C =A—(B—0C)
#(A—B)—C !

Types Terms: Basic syntax
Syntax: Syntax:
T o= (1) term = (term)
| bool | nat | ... base types | ¢] x constant or variable (identifier)
| a|'b | ... type variables | term term function application
| =71 total functions (ascii : =>) | Ax. term function “abstraction”
| TxT pairs (ascii: *) | lots of syntactic sugar
| 7 list lists) i
| user-defined types Examples: f (gx)y h(Ax f(gx))
Parentheses: f a; ag ag = ((f a1) a2) ag
Parentheses: T1 = T2 = T3 = T1 = (T2 = T3) Note: Formulae are terms

Elsa L Gunter CS576 Topics in Automated Deduction . Elsa L Gunter CS576 Topics in Automated Deduction

A-calculus in a nutshell A-calculus in a nutshell

Informal notation: t[x]
term t with 0 or more free occurrences of x

o Function application:
f ais the function f called with argument a.
o Function abstraction:

Ax.t[x] is the function with formal parameter x and body/result t[x],
i.e. x — t[x].

Elsa L Gunter CS576 Topics in Automated Deduction

o Computation:
Replace formal parameter by actual value
(“B-reduction™): (Ax.t[x])a~p t[a]
Example: (Ax. x +5) 3~3 (3+5)
Isabelle performs f-reduction automatically

Isabelle considers (Ax.t[x])a and t[a] equivalent

Elsa L Gunter

The argument of every function call must be of the right type

Notation: t :: 7 means t is well-typed term of type 7

Currying
o Curried: fim=>n=>r71
o Tupled: fum xXmm=71

Advantage: partial application f a; with a; == 7
Moral: Thou shalt curry your functions (most of the time :-)).

Elsa L Gunter CS576 Topics in Automated Deduction

CS576 Topics in Automated Deduction

Terms and Types Type Inference

Terms must be well-typed!

o Isabelle automatically computes (“infers”) the type of each variable in
a term.

In the presence of overloaded functions (functions with multiple,
unrelated types) not always possible.

@ User can help with type annotations inside the term.
o Example: f(x::nat)

Terms: Syntactic Sugar

Some predefined syntactic sugar:

o Infix: +, —, #, 0, ...
o Mixfix: if _then_else_, case_of_, ...
@ Binders: Vx.P x means (V)(Ax. P x)

Prefix binds more strongly than infix:

I fx+y=((fx)+y#£f (x+y) !

Elsa L Gunter

CS576 Topics in Automated Deduction

Formulae = terms of type bool 0::nat
Suc :: nat = nat
True::bool
+, X, ... nat = nat = nat
False::bool

= :: bool = bool

A, V, ... bool = bool

if-and-only-if: = but binds more tightly

Elsa L Gunter CS576 Topics in Automated Deduction / Elsa L Gunter

CS576 Topics in Automated Deduction

Overloading Type 1ist

I Numbers and arithmetic operations are overloaded:

o [1: empty list
0,1, 2, ...:: nator real (or others) @ x # xs: list with first element x (“head”)
and rest xs (“tail”)

@ Syntactic sugar: [x1,...,xn| = x1# ... #xa#[]

+ i nat = nat = nat and

+ :: real = real = real (and others)

You need type annotations: 1 :: nat, x + (y :: nat) List is supported be a large library:

... unless the context is unambiguous: Suc 0 hd, tl, map, size, filter, set, nth, take, drop, distinct, ...

Don't reinvent, reuse!
~» HOL/List.thy

Elsa L Gunter €S576 Topics in Automated Deduction i /1 Elsa L Gunter CS576 Topics in Automated Deduction i /1

A Recursive datatype Concrete Syntax

datatype ’a list = Nil ("[]1") When writing terms and types in .thy files

| Cons ’a "’a list" (infixr "#°° 65)
Types and terms need to be enclosed in "..."
[1: empty list

. . , . - Except for single identifiers, e.g. ’a
x # xs: list with head x::'a, tail xs::'a list

A toy list: False # (True # []) "

Syntactic sugar: [False, True]

." won't always be shown on slides

Elsa L Gunter CS576 Topics in Automated Deduction . Elsa L Gunter

CS576 Topics in Automated Deduction

Structural Induction on Lists A Recursive Function: List Append

P xs holds for all lists xs if Definition by primitive recursion:
e P [] primrec app :: "’a list = ’a list = ’a list
@ and for arbitrary y and ys, P ys implies P (y # ys) vhere
P vs app [ys=___
y app (x # xs) ys = app xs
P (y # ys) One rule per constructor
T P xs Recursive calls only applied to constructor arguments

Guarantees termination (total function)

Elsa L Gunter CS576 Topics in Automated Deduction / Elsa L Gunter CS576 Topics in Automated Deduction

Demo: Append and Reverse

Elsa L Gunter CS576 Topics in Automated Deduction

