Topics in Automated Deduction (CS 576)

Elsa L. Gunter
2112 Siebel Center
egunter@illinois.edu
http://www.cs.illinois.edu/class/sp12/cs576/

Conditional Rewriting

Rewrite rules can be conditional:

$$[\![P_1;\ldots;P_n]\!] \Longrightarrow l = r$$

is applicable to term t[s] with substitution σ if:

- $\sigma(l) = s$ and
- $\sigma(P_1), \ldots, \sigma(P_n)$ are provable (possibly again by rewriting)

2

Variables

Three kinds of variables in Isabelle:

• bound: $\forall x. \ x = x$

• free: x = x

• schematic: ?x =?x

("unknown", a.k.a. meta-variables)

Can be mixed in term or formula: $\forall b. \exists y. f ? a \ y = b$

3

Variables

- Logically: free = bound at meta-level
- Operationally:
 - free variabes are fixed
 - schematic variables are instantiated by substitutions

4

From x to ?x

```
State lemmas with free variables:
```

```
lemma app_Nil2 [simp]: "xs @ [ ] = xs"
:
```

After the proof: Isabelle changes xs to ?xs (internally):

?xs @ [] = ?xs

Now usable with arbitrary values for ?xs

Example: rewriting

done

using app_Nil2 with $\sigma = \{ \text{?xs} \mapsto \text{a} \}$

Basic Simplification

Goal: 1. $[P_1; ...; P_m] \Longrightarrow C$

apply (simp add: eq_thm_1 ... eq_thm_n)

Simplify (mostly rewrite) $P_1; \ldots; P_m$ and C using

- lemmas with attribute simp
- rules from primrec and datatype
- ullet additional lemmas eq_thm_1 ... eq_thm_n
- assumptions $P_1; \ldots; P_m$

Variations:

- (simp ...del: ...) removes simp-lemmas
- \bullet $\, \mathtt{add} \,$ and $\, \mathtt{del} \,$ are optional

auto Versus simp

- auto acts on all subgoals
- simp acts only on subgoal 1
- auto applies simp and more
 - simp concentrates on rewriting
 - auto combines rewriting with resolution

7

Termination

Simplification may not terminate.

Isabelle uses simp-rules (almost) blindly left to right.

Example: f(x) = g(x), g(x) = f(x) will not terminate.

$$[\![P_1, \dots P_n]\!] \Longrightarrow l = r$$

is only suitable as a simp-rule only if l is "bigger" than r and each P_i .

$$\begin{array}{c} (n < m) = (Sucn < Sucm) & \mbox{NO} \\ (n < m) \Longrightarrow (n < Sucm) = True & \mbox{YES} \\ Sucn < m \Longrightarrow (n < m) = True & \mbox{NO} \end{array}$$

8

Assumptions and Simplification

Simplification of $[\![A_1,\ldots,A_n]\!] \Longrightarrow B$:

- Simplify A_1 to A'_1
- Simplify $[A_2, \ldots, A_n] \Longrightarrow B$ using A'_1

9

11

Ignoring Assumptions

Sometimes need to ignore assumptions; can introduce non-termination.

How to exclude assumptions from simp:

apply (simp (no_asm_simp)...)

Simplify only the conclusion, but use assumptions apply (simp (no_asm_use)...)

Simplify all, but do not use assumptions apply (simp (no_asm)...)

Ignore assumptions completely

10

Rewriting with Definitions (definition)

Definitions do not have the simp attirbute.

They must be used explicitly:

apply (simp add: f_def ...)

Ordered Rewriting

Problem: ?x+?y = ?y+?x does not terminate

Solution: Permutative ${\tt simp}\text{-rules}$ are used only if the

term becomes lexicographically smaller.

Example: $b + a \rightarrow a + b$ but not $a + b \rightarrow b + a$.

For types nat, int, etc., commutative, associative and distributive laws built in.

Example: apply simp yields:

 $((B+A)+((2::nat)*C))+(A+B) \sim \cdots \sim 2*A+(2*B+2*C)$

Preprocessing

simp-rules are preprocessed (recursively) for maximal

$$\begin{array}{ccc} \text{simplification power:} & \neq A \; \mapsto \; A = \text{False} \\ A \; \mapsto \; B \; \mapsto \; A \Longrightarrow B \\ A \land B \; \mapsto \; A, B \\ \forall x. A(x) \; \mapsto \; A(?x) \end{array}$$

$$A \longrightarrow B \mapsto A \Longrightarrow B$$

$$A \wedge B \mapsto A.B$$

$$\forall x. A(x) \mapsto A(?x)$$

$$A \mapsto A = \mathsf{True}$$

Example:

$$(p \longrightarrow q \land \neg r) \land s {\mapsto} p \Longrightarrow q = True, r = True, s = True$$

Demo: Simplification through Rewriting

14

Proof Basics

- Isabelle uses Natural Deduction proofs - Uses sequent encoding
- Rule notation:

$$\frac{\mathtt{A}_1 \ldots \mathtt{A}_n}{\mathtt{A}}$$

Sequent Encoding

$$[\![\mathtt{A}_1, \ldots, \mathtt{A}_n]\!] \Longrightarrow \mathtt{A}$$

$$\frac{A_1 \dots \overline{A_{\underline{1}}} \dots A_{\underline{1}}}{A}$$

$$\underbrace{ \begin{smallmatrix} \frac{\cdot}{A_1} & \dots & A_n \\ A \end{smallmatrix}}_{A} \quad \llbracket A_1, \dots, B \Longrightarrow A_1, \dots, A_n \rrbracket \Longrightarrow A$$

15

17

Natural Deduction

For each logical operator $\oplus\text{,}$ have two kinds of rules:

Introduction: How can I prove $A \oplus B$?

Elimination: What can I prove using $A \oplus B$?

$$A \oplus B \dots$$

16

Operational Reading

$$\frac{A_1 \dots A_n}{A}$$

Introduction rule:

To prove A it suffices to prove $A_1 \dots A_n$.

Elimination rule:

If we know \mathcal{A}_1 and we want to prove \mathcal{A} it suffices to prove $A_2 \dots A_n$

$$\frac{A \wedge B}{A} \text{ conjunct1} \qquad \frac{A \wedge B}{B} \text{ conjunct2}$$

$$\frac{\mathtt{A} \longrightarrow \mathtt{B} \quad \mathtt{A}}{\mathtt{B}} \; \mathtt{mp}$$

Compare to elimination rules:

$$\frac{\texttt{A} \land \texttt{B} \; [\![\texttt{A}; \texttt{B}]\!] \Longrightarrow \texttt{C}}{\texttt{C}} \; \texttt{conjE} \quad \frac{\texttt{A} \longrightarrow \texttt{B} \; \texttt{A} \; \texttt{B} \Longrightarrow \texttt{C}}{\texttt{C}} \; \texttt{impE}$$

"Classical" Rules

$$\frac{\neg A \Longrightarrow False}{A} \text{ ccontr } \frac{\neg A \Longrightarrow A}{A} \text{ classical}$$

- ccontr and classical are not derivable from the Natural Deduction rules.
- They make the logic "classical", i.e. "non-constructive or "non-intuitionistic".

19

Proof by Assumption

$$\frac{\mathtt{A_1 \dots A_i \dots A_n}}{\mathtt{A_i}}$$

20

Rule Application: The Rough Idea

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

- \bullet Unify A and C
- ullet Replace C with n new subgoals: A_1' ... A_n'

Backwards reduction, like in Prolog Example: rule: $\|?P;?Q\| \Longrightarrow ?P \land ?Q$ subgoal: 1. $A \wedge B$

Result: 1. A 2. B

21

Rule Application: More Complete Idea

Applying rule $[A_1; ...; A_n] \Longrightarrow A$ to subgoal C:

- ullet Unify A and C with (meta)-substitution σ
- Specialize goal to $\sigma(C)$
- Replace C with n new subgoals: $\sigma(A_1)$... $\sigma(A_n)$

Note: schematic variables in ${\it C}$ treated as existential variables

Does there exist value for ?X in C that makes C true? (Still not the whole story)

Proof by assumption

apply assumption

22

rule Application

 $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ Rule:

Subgoal: 1. $[B_1; \ldots; B_m] \Longrightarrow C$

Substitution: $\sigma(A) \equiv \sigma(C)$

New subgoals: 1. $\llbracket \sigma(B_1); \ldots; \sigma(B_m) \rrbracket \Longrightarrow \sigma(A_1)$

 $\begin{array}{ll}
 & n. \ \| \sigma(B_1); \dots; \sigma(B_m) \| \Longrightarrow \sigma(A_n) \\
 \| \sigma(B_1); \dots; \sigma(B_m) \| \Longrightarrow \sigma(C)
\end{array}$ Proves: Command: apply (rule <rulename>)

1. $[B_1; \ldots; B_m] \Longrightarrow C$

by unifying C with one of the B_i

proves:

Demo: Application of Introduction Rule

Applying Elimination Rules

apply (erule <elim-rule>)

Like rule but also

- unifies first premise of rule with an assumption
- eliminates that assumption instead of conclusion

25

26

Example

Rule: $[?P \land ?Q; [?P; ?Q] \Longrightarrow ?R] \Longrightarrow ?R$

 $\text{Subgoal:} \qquad \quad 1. \,\, [\![X; A \wedge B; Y]\!] \Longrightarrow Z$

Unification: $?P \land ?Q \equiv A \land B \text{ and } ?R \equiv Z$

New subgoal: 1. $[X; Y] \Longrightarrow [A; B] \Longrightarrow Z$

Same as: $1.[X; Y; A; B] \Longrightarrow Z$

How to Prove in Natural Deduction

- Intro rules decompose formulae to the right of ⇒
 apply (rule <intro-rule>)
- Elim rules decompose formulae to the left of \Longrightarrow apply (erule < elim-rule>)

28

27

Demo: Examples

Safe and Unsafe Rules

Safe rules preserve provability:

$$\label{eq:conjI} \begin{split} &\text{conjI, impI, notI, iffI, refl, ccontr, classical, conje,} \\ &\text{disjE} \end{split}$$

Unsafe rules can reduce a provable goal to one that is not:

disjI1, disjI2, impE, iffD1, iffD2, notE

Try safe rules before unsafe ones

30

\Longrightarrow vs \longrightarrow

- Theorems usually more useful written as $\|A_1; \ldots; A_n\| \Longrightarrow A$ instead of $A_1 \wedge \ldots \wedge A_n \longrightarrow A$ (easier to apply)
- Exception: (in apply-style): induction variable must not occur in premises
- Example: For induction on x, transform: $[\![A;B(x)]\!]\Longrightarrow C(x)\leadsto A\Longrightarrow B(x)\longrightarrow C(x)$

Reverse transformation (after proof):

lemma abc [rule_format]: $A \Longrightarrow B(x) \longrightarrow C(x)$

31

Demo: Further Techniques

32

Parameters

Subgoal:

1. $\Lambda x_1 \dots x_n$. Formula

The x_i are called *parameters* of the subgoal Intuition: local constants, i.e. arbitrary fixed values

Rules are automatically lifted passed $\Lambda x_1 \dots x_n$ and applied directly to Formula

33

35

Scope

- Scope of parameters: whole subgoal
- Scope of \forall , \exists , ...: ends with ; or \Longrightarrow , or enclosing)

34

α -Conversion and Scope of Variables

• ∀x. P x: x can appear in P x.

Example: $\forall x. \ x = x$ is obtained by $P \mapsto \lambda u. \ u = u$

• ∀x. P: x cannot appear in P

Example: $P \mapsto x = x$ yields $\forall x'$. x = x

Bound variables are renamed automatically to avoid name clashes with other variables.

Natural Deduction Rules for Quantifiers

- allI and exE introduce new parameters (Λx)
- allE and exI introduce new unknowns (?x)

Safe and Unsafe Rules

Safe: allI, exE

Unsafe: allE, exI

Create parameters first, unknowns later

37

Instantiating Variables in Rules

apply (rule_tac x = "term" in rule)

Like ${\tt rule}$, but ?x in ${\it rule}$ is instantiated with ${\it term}$ before application.

?x must be schematic variable occurring in statement of rule .

Similar: erule_tac

! x is in rule, not in goal !

38

Two Successful Proofs

simpler & cleaner shorter & trickier