Chapter 27

Approximating the Number of Distinct Elements
in a Stream

“See? Genuine-sounding indignation. I programmed that myself. It’s the first thing you need in a university environment: the
ability to take offense at any slight, real or imagined.”

. Robert Sawyer, Factoring Humanity
By Sariel Har-Peled, March 21, 2024

27.1. Counting number of distinct elements

27.1.1. First order statistic

Let X;,..., X, be u random variables uniformly distributed in [0, 1]. Let ¥ = min(Xj, ..., X,). The value Y is
the first order statistic of X4, ..., X,,.

For a continuous variable X, the probability density function (i.e., pdf) is the “probability” of X having
this value. Since this is not well defined, one looks on the cumulative distribution function F(x) = P[X <].
The pdf is then the derivative of the cdf. Somewhat abusing notations, the pdf of the X;s is P[X; = x] = 1.

The following proof is somewhat dense, check any standard text on probability for more details.

Lemma 27.1.1. The probability density function of Y is f(x) = (’]‘)1(1 —x)« L
Proof: Considering the pdf of X; being x, and all other X;s being bigger. We have that this pdf is

g = [(Xl—xmﬂ(bxo Bl)t > %0 | %1 = 5] BEX = 1= (1= 0.
i=2

Since every one of the X; has equal probability to realize Y, we have f(x) = ug(x). |
Lemma 27.1.2. We have]E[Y] p]E[YZ] m, and V[Y] m

Proof: Using integration by guessing, we have

1 1 1
ELY] :f yP[Y = y]dy =f y-(blt)l(l -y dy :f uy(1 —y)“' dy
y=0 y=0 y=0

(l_y)u+11 1
= |- 1— uw_ = .
[y(Y) u+1]yo u+1

®This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-nc/3.0/

Using integration by guessing again, we have

1 1 ") .]
E[YZ] — nyZP[Y:y]dy:foyZ(1)1(1_y)u ldy: fouyz(l _y)u ldy
y= y= -

— [_ 2(1 _)u _ 2y(1 _)’)HH _ 2(1 _}’)u+2]1 _ 2
SRy n+ 1 U+ Du+2)h=0 " w+ Hwu+2)
We conclude that
vl - 2 R 2 1) u
V[Y]_E[X] (ELXD S u+ Dw+2) (u+1)2_u+1(u+2 u+1)_(u+1)2(u+2)' u

27.1.2. The algorithm

A single estimator. Assume that we have a perfectly random hash function 4 that randomly maps N =
{1,...,n}to [0, 1]. Assume that the stream has u unique numbers in N. Then the set {A(s,), ..., h(s,,)} contains
u random numbers uniformly distributed in [0.1]. The algorithm as such, would compute X = min, A(s;).

Explanation. Note, that X is not an estimator for u — instead, as E[X] = 1/(u+ 1), we are estimating 1/(u+1).
The key observation is that an 1 + & estimator for 1/(u + 1), is 1 £ O(g) estimator for u + 1, which is in turn an
1 + O(¢) estimator for u.

Lemma 27.1.3. Let g,¢ € (0, 1) be parameters. Given a stream S of items from {1, ...,n} one can return an
estimate X, such that IP’[(I — 8/4)u% <X<(d+ 3/4)u%] > 1 — ¢, where u is the number of unique elements in

S. This requires O(é‘i2 log é) space.

Proof: The basic estimator Y has u = E[Y] = - and v = V[Y] = —%—. We now plug this estimator into

u+1 T (wr)2(u+2)”
the mean/median framework. By Lemma 27.1.2, for ¢ some absolute constant, this requires maintaining M

estimators, where M is larger than

4-16 1 2 1 1 1
c—vlog—:Ou—log— = 0| —log—|. [
22 @ 212 @ P
Observe that if (1 — &/4)— < X < (1 + £/4)—; then
u+1 _121_12 u+1 Y
1-¢g/4 X 1+¢&/4
which implies
A+e/du _ u+e/d 1 u+1
1+ > > >—=1> -1>(-¢eu.
Ireuz a2 T g x (2 1qeg 1 2U-om

Namely, 1/X — 1 is a good estimator for the number of distinct elements.

The algorithm revisited. Compute X as above, and output the quantity 1/X — 1.

This immediately implies the following.

Lemma 27.1.4. Under the unreasonable assumption that we can sample perfectly random functions from
{1,...,n} to [0, 1], and storing such a function requires O(1) words, then one can estimate the number of
unique elements in a stream, using O(g~>log ¢~') words.

2

27.2. Sampling from a stream with “low quality’’ randomness

Assume that we have a stream of elements S = sy, ..., s, all taken from the set {1, ..., n}. In the following, let
set(S) denote the set of values that appear in S. That is

Fo = Fo(S) = [set(S)]

is the number of distinct values in the stream S.
Assume that we have a random sequence of bits 8 = By, ..., B,, such that P[B; = 1] = p, for some p.
Furthermore, we can compute B; efficiently. Assume that the bits of B are pairwise independent.

The sampling algorithm. When the ith arrives s;, we compute B;,. If this bit is 1, then we insert s; into the
random sample R (if it is already in R, there is no need to store a second copy, naturally).
This defines a natural random sample

R={i|B;=1andie S} CS.

Lemma 27.2.1. For the above random sample R, let X = |R|. We have that E[X] = pv and V[X] = pv — p*v,
where v = Fy(S) is the number of district elements in S

E[X]=E|) B = > EIBl=p»

ieS ieS

Proof: Let X = |R|, and we have

As for the IE[XZ], we have
E[x*| =E[B = Y E[B}|+2 > E[BBj|=pv+2) EIBIEIB]=pv+ 2p2(;)-
ics ics i,jes,i<j ijes.i<j
As such, we have

-1
v =1 _ A

VIX] = VIR = E[X*| - (E[X])* = pv + 2p2(;) —pV =py+2p

= pv+ pv(v—1) = p*V* = pv — p*v. [

Lemma 27.2.2. Let ¢ € (0, 1/4). Given O(1/&*) space, and a parameter N. Consider the task of estimating
the size of Fy = |set(S)|, where Fo > N/4. Then, the algorithm described below outputs one of the following:
(A) Foy > 2N.
(B) Output a number p such that (1 —&)Fy < p < (1 + &)F,.
(Note, that the two options are not disjoint.) The output of this algorithm is correct, with probability > 7/8.
Proof: We set p = 55, where c is a constant to be determined shortly. Let T = pN = O(1 /€%). We sample a
random sample R from S, by scanning the elements of §, and adding i € S to R if B; = 1, If the random sample
is larger than 87, at any point, then the algorithm outputs that S| > 2N.
In all other cases, the algorithm outputs |R| /p as the estimate for the size of S, together with R.
To bound the failure probability, consider first the case that N/4 < [set(S)|. In this case, we have by the
above, that

)) E[X] , VIX] 1
PIIX - E[X]| > e E[X]] < P|{|X - E[X]| > & m\/w{] S S

if % < %, For v = Fy > N/4, this happens if Szg—ivz < % This in turn is equivalent to 8/&> < pv. This is in
turn happens if
c N
N2 4
which implies that this holds for ¢ = 32. Namely, the algorithm in this case would output a (1 + &)-estimate for
IS.
If the sample get bigger than 87, then the above readily implies that with probability at least 7/8, the size

of S is at least (1 — £)8T/p > 2N, Namely, the output of the algorithm is correct in this case. |

8

2 =,
£2

Lemma 27.2.3. Let & € (0,1/4) and ¢ € (0, 1). Given O(s 2 log ¢~") space, and a parameter N, and the task
is to estimate Fy of S, given that Fy > N/4. Then, there is an algorithm that would output one of the following:
(A) Fo > 2N.
(B) Output a number p such that (1 —)Fy < p < (1 + ¢)F,.
(Note, that the two options are not disjoint.) The output of this algorithm is correct, with probability > 1 — ¢.

Proof: We run O(log ¢~ !) copies of the of Lemma 27.2.2. If half of them returns that Fy > 2N, then the
algorithm returns that F;, > 2N. Otherwise, the algorithm returns the median of the estimates returned, and
return it as the desired estimated. The correctness readily follows by a repeated application of Chernoff’s
inequality. |

Lemma 27.2.4. Let € € (0,1/4). Given O(g™? log2 n) space, one can read the stream S once, and output a
number p, such that (1-&)Fy < p < (1+&)F,. The estimate is correct with high probability (i.e., > 1 —1/n°D),

Proof: Let N; = 2/, fori = 1,...,M = [lgn]. Run M copies of Lemma 27.2.3, for each value of N;, with
@ = 1/n°D, Let Y,,..., Yy be the outputs of these algorithms for the stream. A prefix of these outputs, are
going to be “Fy, > 2N;”, Let j be the first Y; that is a number. Return this number as the desired estimate.
The correctness is easy — the first estimate that is a number, is a correct estimate with high probability. Since
Ny > n, it also follows that Y,, must be a number. As such, there is a first number in the sequence, and the
algorithm would output an estimate.

More precisely, there is an index i, such that N;/4 < Fy, < 2F,, and Y; is a good estimate, with high

probability. If any of the Y;, for j < i, is an estimate, then it is correct (again) with high probability. |

27.3. Bibliographical notes

27.4. From previous lectures

Theorem 27.4.1. Let D be a non-negative distribution with u = E[D] and v = V[D], and let &,¢ € (0, 1)
4y

be parameters. For some absolute constant ¢ > 0, let M > 24[-|1n é, and consider sampling variables

242

Xi,..., Xy ~ D. One can compute, in, O(M) time, a quantity Z from the sampled variables, such that
P[(l —ou<z< +8),u] >1-0.

Theorem 27.4.2 (Chebyshev’s inequality). Let X be a real random variable, with uy = E[X], and ox =
VVIX]. Then, for any t > 0, we have P[|X — ux| > tox] < 1/7.

4

Lemma 27.4.3. Let X,,..., X, be n independent Bernoulli trials, where P[X; = 1] = p;, and P[X; = 0] = 1 —p,,
fori=1,...,n Let X = Y2 | X;, and u = E[X] = ¥; pi. For § € (0,4), we have

P[X > (1+ 6)u] < exp(-ud”/4),

Theorem 27.4.4. let p be a prime number, and pick independently and uniformly k values by.by, . .., by_\ € Z,,
and let g(x) = Zf:ol b;x' mod p. Then the random variables

Yo =g00),....Y,., =g(p-1).

are uniformly distributed in Z, and are k-wise independent.

References

[MRO95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge, UK: Cambridge University
Press, 1995.

http://us.cambridge.org/titles/catalogue.asp?isbn=0521474655

	Approximating the Number of Distinct Elements in a Stream
	Counting number of distinct elements
	First order statistic
	The algorithm

	Sampling from a stream with ``low quality'' randomness
	Bibliographical notes
	From previous lectures

